Check Point Survey Report # "NE Illinois and SE Wisconsin FEMA Region 6 LiDAR" USGS Contract Task Order Number: G16PD00498 & G17PD00315 ### Prepared for: United States Geological Survey (USGS) Prepared By: ## **Dewberry Consultants LLC** 10003 Derekwood Lane, Suite 204 Lanham, Maryland, 20706 Phone (301)364-1855 Fax (301)731-0188 ## **TABLE OF CONTENTS** | 1. | Introduction | |----|--| | | 1.1 Project Summary | | | 1.2 Points of Contact(s) | | | 1.3 Project Area | | 2. | Project Details | | | 2.1 Survey Equipment5 | | | 2.2 Survey Point Details5 | | | 2.3 Network Design5 | | | 2.4 Field Survey Procedures and Analysis6-7 | | | 2.5 Adjustment8 | | | 2.6 Data Processing Procedures8 | | 3. | Final Coordinates9-10 | | 4. | GPS Observation & Re-Observation Schedule11-12 | | 5. | Point Comparison Report13 | | 6. | DeliverablesSent via Electronic Transfer | | | Including: a) Point Documentation Report & Photos of Survey Points | | | b) Final Coordinate List in Excel Format | | | c) NGS Data Sheets for Project Controls | #### 1. INTRODUCTION #### 1.1 Project Summary Dewberry Consultants LLC is under contract to the United States Geological Survey to provide 53 Check Points in the States of Wisconsin and Illinois. Under the above referenced USGS Task Order, Dewberry is tasked to complete the quality assurance of LiDAR products. As part of this work Dewberry staff will complete Check Point surveys that will be used to evaluate vertical and horizontal accuracy. The ground survey was conducted June 24 thru June 26, 2017. Existing NGS Control Points were located and surveyed to check the accuracy of the RTK/GPS survey equipment with the results shown in Section 2.4 of this Report. As an internal QA/QC procedure and to verify that the Check Points meet the 95% confidence level approximately 50% of the points were re-observed and are shown in Section 5 of this report. Final horizontal coordinates are referenced to South Wisconsin SPCS, NAD83 (2011) and East Illinois SPCS, NAD83 (2011), both in feet. Final Vertical elevations are referenced to NAVD88 in meters using Geoid model 2012B (Geoid12B). #### 1.2 Points of Contact Questions regarding the technical aspects of this report should be addressed to: #### **Dewberry Consultants LLC** Gary D. Simpson, L.S. Senior Associate 10003 Derekwood Lane Suite 204 Lanham, Maryland 20706 (301) 364-1855 direct (301) 731-0188 fax ## 1.3 Project Area #### PROJECT DETAILS #### 2.1 Survey Equipment In performing the GPS observations Trimble R-10 GNSS receiver/antenna attached to a two meter fixed height pole with a Trimble TSC3 Data Collector to collect GPS raw data were used to perform the field surveys. #### 2.2 Survey Point Detail The 53 LiDAR Check Points were well distributed throughout the project area. A sketch was made for each location and a nail was set at the point where possible or at an identifiable point. The Check Point locations are detailed on the "Check Point Documentation Report" sheets attached to this report. #### 2.3 Network Design The GPS survey performed by Dewberry Consultants LLC office located in Lanham, MD was tied to a Real Time Network operated by VRSNow RTK and WISCORS RTN. The network is a series of "real-time" continuously operating, high precision GPS reference stations. All of the reference stations have been linked together using Trimble GPSNet software, creating a Virtual Reference Station System (VRS). The Trimble NetR5 Reference Station is a multi-channel, multi-frequency GNSS (Global Navigation Satellite System) receiver designed for use as a stand-alone reference station or as part of a GNSS infrastructure solution. Trimble R-Track technology in the NetR5 receiver supports the modernized GPS L2C and L5 signals as well as GLONASS L1/L2 signals. #### 2.4 Field Survey Procedures and Analysis Dewberry field surveyors used Trimble R-10 GNSS receivers, which is a geodetic quality dual frequency GPS receiver, to collect data at each surveyed location. All locations were occupied once with approximately 50% of the locations being reobserved. All re-observations matched the initially derived station positions within the allowable tolerance of \pm 5cm or within the 95% confidence level. Each occupation which utilized the VRS network was occupied for approximately three (3) minutes in duration and measured to 180 epochs. Each occupation which utilized OPUS (if used) was occupied between 20 and 30 minutes. Field GPS observations are detailed on the "Check Point Documentation Reports" submitted as part of this report. Three (3) existing NGS monument listed in the NSRS database were located as an additional QA/QC method to check the horizontal and vertical accuracy of the VRS network as well as being the primary project control monuments designated as AJ2903, MF0016 and DF9489. The results are as follows: | | Observed Values | | | Data Sheet Values | | | | | | |-------------------|-----------------|------------|--------|-------------------|------------|--------|-------|-------|-------| | PT. # | NORTHING | EASTING | ELEVS. | NORTHING | EASTING | ELEVS. | ΔΧ | ΔΥ | ΔΖ | | NGS-
MCH1732B | 2114620.94 | 977051.72 | 902.50 | 2114621.07 | 977051.71 | 902.59 | -0.13 | 0.01 | -0.10 | | NGS-W19 | 1884208.59 | 989513.98 | 717.79 | 1884208.59 | 989513.97 | 717.73 | 0.00 | 0.01 | 0.06 | | NGS-
WATERFORD | 288697.98 | 2454108.42 | 794.23 | 288698.07 | 2454108.47 | 794.30 | -0.09 | -0.05 | -0.07 | The above results indicate that the VRS network is providing positional values within the 5cm parameters for this survey. ### NGS Monuments #### 2.5 Adjustment The survey data was collected using Virtual Reference Stations (VRS) methodology within a Virtual Reference System (VRS). The system is designed to provide a true Network RTK performance, the RTKNet software enables high-accuracy positioning in real time across a geographic region. The RTKNet software package uses real-time data streams from the VRSNow RTK and WISCORS RTN systems user and generates correction models for high-accuracy RTK GPS corrections throughout the network. Therefore, corrections were applied to the points as they were being collected, thus negating the need for a post process adjustment. #### 2.6 Data Processing Procedures After field data is collected the information is downloaded from the data collectors into the office software. The Software program used is called TBC or Trimble Business Center. Downloaded data is run through the TBC program to obtain the following reports; points report, point comparison report and a point detail report. The reports are reviewed for point accuracy and precision. After review of the point data an "ASCII" or "txt" file which is the industry standard is created. Point files are loaded into our CADD program (Carlson Survey 2014) to make a visual check of the point data (Pt. #, Coordinates, Elev. and Description). The data can now be imported into the final product. # 3. FINAL COORDINATES | NVA | | | | | | | | |--|--------------------------|-----------------------|------------|--|--|--|--| | POINT ID NORTHING (ft) EASTING (ft) ELEV. (| | | | | | | | | South Wisconsin SPCS NAD83 (2011), NAVD88 Feet | | | | | | | | | NVA-1 | 286641.67 | 2441631.09 | 816.58 | | | | | | NVA-2 | 282649.66 | 2517703.92 | 770.39 | | | | | | NVA-3 | 244692.74 | 2435123.62 | 774.80 | | | | | | NVA-4 | 229128.33 | 2493011.99 | 735.43 | | | | | | NVA-5 | 245764.88 | 2553274.75 | 608.26 | | | | | | NVA-6 | 187479.74 | 2538411.28 | 707.21 | | | | | | NVA-8 | 203439.14 | 2393023.88 | 880.56 | | | | | | | East Illinois SPCS NAD83 | 3 (2011), NAVD88 Feet | | | | | | | NVA-7 | 2098618.73 | 1025897.55 | 741.36 | | | | | | NVA-9 | 2067526.60 | 883664.49 | 837.43 | | | | | | NVA-10 | 2052880.31 | 998861.56 | 819.40 | | | | | | NVA-11 | 2046010.37 | 1081473.39 | 702.57 | | | | | | NVA-12 | 1981181.72 | 1127023.03 | 636.29 | | | | | | NVA-13 | 1978237.09 | 1036587.32 | 863.61 | | | | | | NVA-14 | 1987539.67 | 973737.88 | 897.61 | | | | | | NVA-15 | 1992923.01 | 914997.17 | 835.06 | | | | | | NVA-16 | 1939080.72 | 948465.03 | 1002.86 | | | | | | NVA-17 | 1935067.50 | 1080465.26 | 714.52 | | | | | | NVA-18 | 1888653.92 | 1145263.03 | 602.77 | | | | | | NVA-19 | 1832701.72 | 1185344.78 | 589.20 | | | | | | NVA-20 | 1751424.00 | 1173208.15 | 712.21 | | | | | | NVA-21 | 1812708.41 | 1105023.03 | 733.51 | | | | | | NVA-22 | 1908446.60 | 995130.72 | 758.42 | | | | | | NVA-23 | 1899011.91 | 905982.68 | 860.12 | | | | | | NVA-24 | 1866673.42 | 988973.17 | 664.75 | | | | | | NVA-25 | 1819179.12 | 957215.18 | 642.93 | | | | | | NVA-26 | 2056698.76 | 926916.81 | 849.77 | | | | | | NVA-27 | | | | | | | | | (Harris Pt 63A) | 1760782.87 | 1164780.54 | 698.94 | | | | | | VVA | | | | | | | | | POINT ID | NORTHING (ft) | EASTING (ft) | ELEV. (ft) | | | | | | | East Illinois SPCS NAD83 | 1 | | | | | | | VVA-1 | 1758548.12 | 1202032.93 | 645.66 | | | | | | VVA-2 | 1812319.59 | 1136308.20 | 643.21 | |--------|--------------------------|-------------------------|--------| | VVA-3 | 1826694.27 | 1083015.68 | 612.39 | | VVA-4 | 1885533.16 | 1114787.01 | 622.82 | | VVA-5 | 1823050.23 | 990881.25 | 681.66 | | VVA-6 | 1869395.94 | 900321.48 | 764.27 | | VVA-7 | 1900916.54 | 959636.03 | 799.64 | | VVA-8 | 1937885.24 | 905789.83 | 902.05 | | VVA-9 | 1927748.99 | 1009037.12 | 752.18 | | VVA-10 | 1956437.93 | 1074654.17 | 724.44 | | VVA-11 | 1964882.50 | 1137112.88 | 621.80 | | VVA-12 | 1995601.98 | 1054723.62 | 826.52 | | VVA-13 | 1981109.60 | 962284.22 | 908.92 | | VVA-14 | 2016076.60 | 918925.47 | 895.36 | | VVA-15 | 2051836.40 | 878180.48 | 797.25 | | VVA-16 | 2047569.34 | 945431.45 | 887.31 | | VVA-17 | 2051042.76 | 1035176.56 | 792.65 | | VVA-18 | 2022713.12 | 1094806.36 | 648.05 | | VVA-19 | 2121566.37 | 1096546.14 | 675.78 | | VVA-20 | 2096286.58 | 987700.83 | 803.96 | | VVA-21 | 1826736.65 | 1154528.46 | 616.40 | | | South Wisconsin SPCS NAI | 083 (2011), NAVD88 Feet | | | VVA-22 | 192839.34 | 2383017.38 | 993.36 | | VVA-23 | 222120.89 | 2443593.10 | 784.01 | | VVA-24 | 250822.83 | 2516918.90 | 752.97 | | VVA-25 | 295266.86 | 2465120.75 | 772.29 | | VVA-26 | 301700.76 | 2540766.54 | 679.00 | | | | • | | ## 4. GPS OBSERVATIONS | POINT | | JULIAN | TIME OF DAY | RE-OBSERV. | RE-OBSERV. | | | |-----------|--------------|--------|-------------|------------|------------|--|--| | ID | OBSERV. DATE | DATE | (AST) | DATE | TIME | | | | NVA | | | | | | | | | Wisconsin | | | | | | | | | NVA-1 | 6/25/2017 | 75 | 18:08 | 6/26/2017 | 15:43 | | | | NVA-2 | 6/25/2017 | 75 | 19:28 | 6/26/2017 | 16:41 | | | | NVA-3 | 6/25/2017 | 75 | 17:31 | 6/26/2017 | 15:21 | | | | NVA-4 | 6/25/2017 | 75 | 21:51 | N/A | N/A | | | | NVA-5 | 6/25/2017 | 75 | 20:51 | 6/26/2017 | 17:41 | | | | NVA-6 | 6/25/2017 | 75 | 22:52 | N/A | N/A | | | | NVA-8 | 6/25/2017 | 75 | 16:32 | N/A | N/A | | | | | | II | linois | | | | | | NVA-7 | 6/25/2017 | 75 | 14:17 | 6/26/2017 | 11:33 | | | | NVA-9 | 6/25/2017 | 75 | 11:05 | 6/26/2017 | 13:51 | | | | NVA-10 | 6/25/2017 | 75 | 12:57 | 6/26/2017 | 11:52 | | | | NVA-11 | 6/25/2017 | 75 | 23:55 | 6/26/2017 | 11:06 | | | | NVA-12 | 6/26/2017 | 76 | 10:04 | 6/26/2017 | 10:08 | | | | NVA-13 | 6/24/2017 | 74 | 16:28 | 6/25/2017 | 8:10 | | | | NVA-14 | 6/25/2017 | 75 | 8:51 | N/A | N/A | | | | NVA-15 | 6/25/2017 | 75 | 9:41 | 6/26/2017 | 12:37 | | | | NVA-16 | 6/25/2017 | 75 | 7:17 | N/A | N/A | | | | NVA-17 | 6/24/2017 | 74 | 14:35 | 6/25/2017 | 7:08 | | | | NVA-18 | 6/24/2017 | 74 | 13:32 | N/A | N/A | | | | NVA-19 | 6/24/2017 | 74 | 9:14 | N/A | N/A | | | | NVA-20 | 6/24/2017 | 74 | 7:57 | 6/25/2017 | 5:49 | | | | NVA-21 | 6/24/2017 | 74 | 10:41 | N/A | N/A | | | | NVA-22 | 6/24/2017 | 74 | 16:37 | 6/24/2017 | 22:47 | | | | NVA-23 | 6/24/2017 | 74 | 9:32 | N/A | N/A | | | | NVA-24 | 6/24/2017 | 74 | 18:39 | N/A | N/A | | | | NVA-25 | 6/24/2017 | 74 | 19:49 | N/A | N/A | | | | NVA-26 | 6/25/2017 | 75 | 11:29 | N/A | N/A | | | | NVA-27 | 6/24/2017 | 74 | 7:31 | N/A | N/A | | | | | VVA's | | | | | | | | Illinois | | | | | | | | | VVA-1 | 6/24/2017 | 74 | 8:32 | 6/25/2017 | 5:27 | | | | 6/24/2017 | 74 | 10:07 | N/A | N/A | | | |-----------|---|--|--|---|--|--| | 6/24/2017 | 74 | 11:08 | N/A | N/A | | | | 6/24/2017 | 74 | 11:55 | 6/25/2017 | 6:37 | | | | 6/24/2017 | 74 | 19:20 | 6/24/2017 | 19:25 | | | | 6/24/2017 | 74 | 20:45 | N/A | N/A | | | | 6/24/2017 | 74 | 22:29 | 6/25/2017 | 7:26 | | | | 6/24/2017 | 74 | 7:45 | N/A | N/A | | | | 6/24/2017 | 74 | 17:10 | 6/24/2017 | 23:10 | | | | 6/24/2017 | 74 | 15:06 | 6/24/2017 | 15:10 | | | | 6/26/2017 | 76 | 10:39 | N/A | N/A | | | | 6/24/2017 | 74 | 15:50 | N/A | N/A | | | | 6/25/2017 | 75 | 8:29 | 6/26/2017 | 12:18 | | | | 6/25/2017 | 75 | 10:07 | 6/26/2017 | 12:58 | | | | 6/25/2017 | 75 | 10:44 | 6/26/2017 | 14:16 | | | | 6/25/2017 | 75 | 11:49 | N/A | N/A | | | | 6/25/2017 | 75 | 13:31 | N/A | N/A | | | | 6/26/2017 | 76 | 9:28 | 6/26/2017 | 9:33 | | | | 6/25/2017 | 75 | 22:31 | N/A | N/A | | | | 6/25/2017 | 75 | 14:58 | N/A | N/A | | | | 6/26/2017 | 76 | 13:23 | N/A | N/A | | | | Wisconsin | | | | | | | | 6/25/2017 | 75 | 16:03 | N/A | N/A | | | | 6/25/2017 | 75 | 15:08 | N/A | N/A | | | | 6/25/2017 | 75 | 21:24 | 6/26/2017 | 18:10 | | | | 6/25/2017 | 75 | 18:58 | 6/26/2017 | 16:16 | | | | 6/25/2017 | 75 | 20:00 | 6/26/2017 | 17:01 | | | | | 6/24/2017 6/24/2017 6/24/2017 6/24/2017 6/24/2017 6/24/2017 6/24/2017 6/24/2017 6/24/2017 6/26/2017 6/25/2017 6/25/2017 6/25/2017 6/25/2017 6/25/2017 6/25/2017 6/25/2017 6/25/2017 6/25/2017 6/25/2017 6/25/2017 6/25/2017 | 6/24/2017 74 6/24/2017 74 6/24/2017 74 6/24/2017 74 6/24/2017 74 6/24/2017 74 6/24/2017 74 6/24/2017 74 6/24/2017 74 6/24/2017 75 6/25/2017 75 | 6/24/2017 74 11:08 6/24/2017 74 11:55 6/24/2017 74 19:20 6/24/2017 74 20:45 6/24/2017 74 22:29 6/24/2017 74 7:45 6/24/2017 74 17:10 6/24/2017 74 15:06 6/26/2017 76 10:39 6/24/2017 74 15:50 6/25/2017 75 8:29 6/25/2017 75 10:07 6/25/2017 75 10:44 6/25/2017 75 13:31 6/25/2017 75 13:31 6/26/2017 76 9:28 6/25/2017 75 14:58 6/25/2017 75 14:58 6/25/2017 75 13:23 Wisconsin 6/25/2017 75 15:08 6/25/2017 75 15:08 6/25/2017 75 15:08 6/25/2017 75 15:08 6/25/2017 75 15:08 | 6/24/2017 74 11:08 N/A 6/24/2017 74 11:55 6/25/2017 6/24/2017 74 19:20 6/24/2017 6/24/2017 74 20:45 N/A 6/24/2017 74 22:29 6/25/2017 6/24/2017 74 7:45 N/A 6/24/2017 74 17:10 6/24/2017 6/24/2017 74 15:06 6/24/2017 6/26/2017 76 10:39 N/A 6/25/2017 75 8:29 6/26/2017 6/25/2017 75 10:07 6/26/2017 6/25/2017 75 10:44 6/26/2017 6/25/2017 75 13:31 N/A 6/25/2017 75 13:31 N/A 6/25/2017 75 13:31 N/A 6/25/2017 75 13:31 N/A 6/25/2017 75 14:58 N/A 6/25/2017 75 13:23 N/A < | | | ## 5. POINT COMPARISON | | | | | Vertical Difference | | | | |----------|----------|------------------|-----------------|---------------------|--|--|--| | Point ID | Point CK | Delta North (ft) | Delta East (ft) | (ft) | | | | | NVA's | | | | | | | | | NVA-1 | NVA-1CK | -0.01 | -0.01 | 0.01 | | | | | NVA-2 | NVA-2CK | -0.01 | 0.03 | -0.01 | | | | | NVA-3 | NVA-3CK | 0.00 | -0.01 | -0.01 | | | | | NVA-5 | NVA-5CK | -0.01 | -0.03 | -0.02 | | | | | NVA-7 | NVA-7CK | 0.02 | -0.01 | 0.01 | | | | | NVA-9 | NVA-9CK | 0.01 | -0.01 | -0.01 | | | | | NVA-10 | NVA-10CK | -0.01 | 0.01 | -0.01 | | | | | NVA-11 | NVA-11CK | 0.01 | 0.01 | -0.02 | | | | | NVA-12 | NVA-12CK | 0.03 | 0.01 | 0.00 | | | | | NVA-13 | NVA-13CK | 0.01 | 0.00 | 0.02 | | | | | NVA-15 | NVA-15CK | -0.01 | 0.02 | 0.02 | | | | | NVA-17 | NVA-17CK | -0.01 | 0.00 | -0.02 | | | | | NVA-20 | NVA-20CK | 0.00 | 0.03 | -0.01 | | | | | NVA-22 | NVA-22CK | 0.00 | 0.00 | 0.03 | | | | | | | VVA's | <u></u> | <u> </u> | | | | | VVA-1 | VVA-1CK | 0.04 | 0.00 | 0.00 | | | | | VVA-4 | VVA-4CK | -0.01 | 0.04 | 0.03 | | | | | VVA-5 | VVA-5CK | -0.02 | 0.01 | -0.01 | | | | | VVA-7 | VVA-7CK | 0.01 | 0.01 | 0.01 | | | | | VVA-9 | VVA-9CK | 0.02 | -0.03 | 0.02 | | | | | VVA-10 | VVA-10CK | 0.00 | 0.03 | -0.01 | | | | | VVA-13 | VVA-13CK | 0.00 | -0.01 | -0.02 | | | | | VVA-14 | VVA-14CK | 0.01 | -0.03 | 0.03 | | | | | VVA-15 | VVA-15CK | 0.00 | 0.04 | -0.04 | | | | | VVA-18 | VVA-18CK | -0.02 | 0.01 | 0.04 | | | | | VVA-24 | VVA-24CK | -0.01 | 0.00 | -0.01 | | | | | VVA-25 | VVA-25CK | 0.00 | -0.01 | -0.02 | | | | | VVA-26 | VVA-26CK | 0.01 | 0.00 | 0.04 | | | |