

ASHLAND COUNTY WI. PRE-FLIGHT OPERATIONS PLAN

November 2014

PLANNED FLIGHT LINES

Woolpert Inc. has completed preliminary flight planning for the Ashland County Wisconsin project area. Ashland is scheduled to be acquired fall/winter 2014-2015 when the leaves are off and delivered to STARR by August 2015. The Ashland area is 976 square miles with an additional 23 square miles over Madeline Island initial planning details are depicted in Figure 1 on the following page. This Figure details that STARR expects to collect **64 flight lines covering 1,671 flight line miles**. This area warranted a "Highest" vertical accuracy requirement and will be collected with a nominal pulse spacing of 1-meter. Key components of this flight planning include:

- Generating a plan that takes all specifications into account, and the required Laser settings to meet those specs, review of terrain and water issues, along with potential base station locations at airports with sufficient services available to support the crews.
- Orientation of flight lines parallel to major terrain features and variation in flight line spacing due to terrain variation (steeper slopes generally require tighter line spacing between adjacent parallel lines to ensure point density and side overlap are maintained)
- ✓ Check Airspace issues and access issues for Base Stations.
- ✓ Safety considerations, both for flights, and Laser collection.

Acquisition (1000 sq. miles @ 1-meter nominal post spacing to meet 24.5 cm FVA, LAS point cloud delivery with metadata, pre-operations flight plan, and post flight aerial acquisition report).

PLANNED GPS STATIONS

Normally existing high accuracy monuments at airports are utilized if possible. Typically a Primary Airport Control Monument (or Secondary) is available; otherwise any other high accuracy monument can be used. We typically prefer these on the airport grounds as they can be monitored for security by airport staff. If no monument is available or an existing monument is damaged, we will set a monument with re-bar and use OPUS to control the monument. These are then used for initial field processing of the data.

PLANNED CONTROL

A minimum of twenty (20) ground control points will be surveyed to control the LiDAR data and to support a vertical test. Each of these two functions shall remain independent of each other and also be collected by independent subcontractor (CompassData). Independent check or calibration points will be three times as accurate as the surface being checked. Therefore, in order to validate a 24.5 cm LiDAR surface (consistent with 2 foot contours), STARR will collect elevation control data accurate to 8 cm. This "three times" model for collecting ground control and QA points will be used throughout the task order.

Vertical accuracy checkpoints will be located by independent STARR contractor (CompassData) to check Woolpert Inc. work in open terrain, where there is a high probability that the sensor will have detected the ground surface without influence from surrounding vegetation. Checkpoints will be located on flat or uniformly sloping terrain and will be at least five (5) meters away from any break line where there is a change in slope. This criterion applies for all QA points for the Fundamental Vertical Accuracy (FVA) Assessment as well.

Blind vertical QA points for the Consolidated Accuracy Check (CVA) will also be collected by CompassData to check Woolpert Inc. work randomly across different land use types using the ASPRS NSSDA land cover types. The points will be located in flat areas with no substantial elevation breaks within a 3-5 meter radius. We expect to normally pick one area and get 3-5 different land use classes from a single setup. We expect to normally use GPS to position an occupation and backsight point and then use a total station to get the other classes from that setup. The CVA assessment will incorporate a representative sample of the FVA assessment into the dataset to save on the total number of points collected. Figure 1 below has a location map of the flight lines and ground control points.

Figure 1 - Ashland County Flight Lines, Ground Control

Pre-Flight Operations Plan FEMA STARR November 2014

Planned Airport Locations

Woolpert Inc. will utilize a known monument at near Ashland, Wisconsin or will set a station and tie into the control and / or generate an OPUS solution. This will involve a separate ground person if required. Aircraft will utilize KASX – John F. Kennedy Memorial Airport Ashland, Wisconsin.

Calibration Plans

Periodic detailed boresighting of the LiDAR sensor is performed at a boresight facility established in Dayton, Ohio for both our LiDAR and imagery platforms. Over 95 high-accuracy control points are located within this facility. The area also has numerous pitched roofs that are necessary in boresighting LiDAR instruments. Local boresights are also carried out at individual project sites. Typically these are established at local airports and consist of opposing and cross flights conducted at multiple flight elevations. The boresight data is processed by our Lead LiDAR Specialist with the results for all boresight parameters applied to the project acquisition.

Calibration – To accomplish the formal calibration, Woolpert has established a calibration range of an airport runway. The calibration ranges will be ground surveyed to an accuracy of better than 1 cm. The mission will consist of 3 different altitudes flown along and across the runway and opposing directions which is required in order to capture the pitch, roll, heading, and torsion errors.

Calibration of the Elevation Surface – the raw LiDAR surface is compared against ground points that are established for the calibration of the elevation surface. System biases are identified and removed during this calibration. An early statistical analysis takes place that provides an indication of the precision of the acquired data.

Quality Control Procedures for Flight Crew

Acquisition Crews

An experienced and knowledgeable acquisition crew is also critical to a successful LiDAR project. We will bring two capable crews to the project site with three more in reserve should any unexpected health issues or similar complications arise.

General Flight Mission Procedures

On a lift by lift basis the flight crew will check cloud conditions, atmospheric conditions (fog or probability of fog) and winds and turbulence. If any of those factors would make acquisition difficult they will wait a few hours and review again.

LiDAR crews can fly at night or during the day. Night flights can be smoother in some cases, but extra care must be used as it is easy to lose orientation with the ground if in very rural areas or over large expanses of water. Additionally, if there are fog probabilities then flights will not take place as fog will block the laser. It must be clear below the aircraft at all times.

The initial item is to set the base station properly over the monument, verify it is secure and running. Prior to setting the crew will have ascertained that it has storage space on the hard drives and full battery life. They will also verify that it is running with proper collection parameters. PDOP is also reviewed as collection will not take place during times of high PDOP.

The LiDAR system (controller hard drives and Laser) is connected to the flight management system and once the project plan is loaded the parameters for collection will load as well. The sensor operator will verify that everything loaded correctly before flight.

Once the LiDAR has been started the crew will taxi to the run up area and wait for the IMU, GPS and the rest of the system level out. They will collect data in a stationary position for about 5 minutes until the POS (position and orientation system) provides good level characteristics (Green Lights!).

Prior to capturing the first line of data and after the last line the flight crew will perform "S" turns to maintain IMU integrity and avoid IMU drift. Collection requires that speeds be maintained, sometimes quite slow depending on the accuracy requirements. Additionally altitudes must be watched closely.

During flights the sensor operator must monitor the laser to be sure that temperatures are consistent and within guidelines, that pulsing is taking place correctly and returns are consistent and within guidelines while watching atmospheric conditions, speeds and monitoring the pilot.

Planned ScanSet (Laser Collection Parameters)

Parameters	1m NPS
Flying Height	7,800
Aircraft Ground Speed (knots)	150
Pulse Rate (KHz)	230.0
Scan Rate (Hz)	34.4
Full Field of View (degrees)	40
Multi-Pulse	Yes
Full Swath Width (meters)	1,730
Swath Overlap (percentage)	25%
Max. Point Spacing Across Track (meters)	1.12
Max. Point Spacing Along Track (meters)	1.12
Across Track/Along Track Ratio	1.0
Average Point Density (M2)	1.72
Average Point Spacing (Meters)	.76
Nadir Point Density (pts/m2)	1.6
Illuminated Foot Print Diameter (meters)	.54

Acquisition (1000 sq. miles @ 1-meter nominal post spacing to meet 24.5 cm FVA, LAS point cloud delivery with metadata, pre-operations flight plan, and post flight aerial acquisition report).

Type of Aircraft

All of our LiDAR sensors are currently flown in specially modified Twin engine Cessna 310 and 404 platforms. This platform provides a very stable platform for LiDAR data acquisition, with the ability to easily achieve altitudes and speeds that are most common for LiDAR collection.

Our platforms also have significant fuel capacity, which allows us considerable time over target for performing data collection. It is also a safe platform, which is important when flying over rugged terrain. The added bonus is this is a very economical platform to fly in terms of operational and maintenance costs. Moreover, that translates to competitive rates for LiDAR data acquisition.

Aircraft Name	Engine Configuration	ABGPS	Flight Management System	Ceiling Feet		
Cessna 310-H	Twin	Yes	Yes	18,000		
Cessna T310-P	Twin	Yes	Yes	26,000		
Cessna 404	Twin	Yes	Yes	26,000		

Procedure for Tracking, Executing, and Checking Re-flights

All daily flights are tracked with specific logs for each area. The field crew performs nightly backups of all data collected. This includes mission logs indicating the lines, date flown etc. as well as specific information concerning the lift, weather conditions, times, speeds and other criteria critical to the performance of the laser. The mission flight logs, GPS ground base station data and raw mission data are copied to two external hard drives as two separate copy procedure from the sensor solid state drive. One copy is shipped to our Dayton facility for processing and QC and the second copy remain in the field until acceptance from the processing center. Daily Flight Blogs are posted to the company Intranet site detailing the daily operation sensor health lodging location and plans for the following day. The flight blog serves as a database for tracking purposes. This helps determine where next to move crews and overall project status.

The flight crews do not leave the area of collection until all data has been shipped for verification. During rare incidences it may be necessary to relocate the crew if the forecast weather conditions display extend downtime usually four or five days.

Considerations for Terrain, Cover, and Weather

Terrain is not an issue for flight planning on this project. The area is very flat. Cover has been considered and collection is scheduled for the Fall of 2014 during leaf-off conditions. Traditional LiDAR weather conditions will be observed for this area.

FEMA Task Order Number HSFE05-14-J-0037 STARR Project Number 400000254 Woolpert Project #74908

FEMA STARR Ashland County Wisconsin Federal

Emergency Management Agency (FEMA) September 2015

Summary of Contents

Section 1: Overview	1-1
Section 2: Acquisition	2-1
Section 3: Lidar Data Processing	3-3
Section 4: Flight Logs	4-1
Section 5: Final Deliverables	5-1

List of Figures

Figure 1.1: Lidar Task Order AOI and Base Station Locations1-	-2
Figure 2.1: Lidar Flight Layout, Ashland County Wisconsin Lidar2-	-2
Figure 3.1: Trajectory, Day 30514_SH7177	-2
Figure 3.2: Trajectory, Day30614_SH71773-	-3
Figure 3.3: Trajectory, Day 10715_ SH7108	-3
Figure 3.4: Combined Separation, Day 30514_SH71773-	-4
Figure 3.5: Combined Separation, Day 30614_SH71773-	-4
Figure 3.6: Combined Separation, Day 10715_SH71083-	-5
Figure 3.7: Estimated Positional Accuracy, Day 30514_SH71773-	-5
Figure 3.8: Estimated Positional Accuracy, Day 30614_SH71773-	-6
Figure 3.9: Estimated Positional Accuracy, Day 10715_SH71083-	-6
Figure 3.10: PDOP, Day 30514_SH7177	-7
Figure 3.11: PDOP, Day 30614_SH7177	-7
Figure 3.12: PDOP, Day 10715_SH7108	-8
Figure 3.13: Altitude, Day30514_SH7177	-8
Figure 3.14: Altitude, Day30614_SH7177	-9
Figure 3.15: Altitude, Day10715_SH7108	-9
Figure 3.16: Histogram Interswath Accuracy	0
Figure 3.17: Scan Angle Rank	1

List of Tables

Table 1.1: Sensor Specifications	1-1
Table 2.1: ALS Lidar System Specifications	2-1
Table 2.2: Airborne Lidar Acquisition Flight Summary	2-3
Table 3.1: GNSS Base Station	3-2

Section 1: Overview

Project Name: FEMA STARR ASHLAND COUNTY WISCONSIN LIDAR

Woolpert Project: #74908

This report contains a comprehensive outline of the FEMA STARR Ashland County Lidar task order. This task is issued under FEMA Task Order Number: HSFE05-14-J-0037, and STARR Project Number: 400000254. This task order requires lidar data to be acquired over Ashland County, Wisconsin. The total area of the Ashland County Lidar AOI is approximately 1,011 square miles. The lidar was collected and processed to meet a maximum Nominal Post Spacing (NPS) of 1 meter. The NPS assessment is made against single swath, first return data located within the geometrically usable center portion (typically ~90%) of each swath.

The data was collected using a Leica ALS70 500 kHz Multiple Pulses in Air (MPiA) lidar sensor. The ALS70 sensor collects up to four returns per pulse, as well as intensity data, for the first three returns. If a fourth return was captured, the system does not record an associated intensity value. The aerial lidar was collected at the following sensor specifications:

Table 1.1:

Sensor Specifications	
Post Spacing	3.3 ft / 1 m
AGL (Above Ground Level) average flying height	7,800 ft / 2,377 m
MSL (Mean Sea Level) average flying height	variable
Average Ground Speed:	150 knots / 173 mph
Field of View (full)	40 degrees
Pulse Rate	230 kHz
Scan Rate	34.4 Hz
Side Lap	25%

The lidar data was processed and projected in UTM, Zone 15, North American Datum of 1983 (2011) in units of meters. The vertical datum used for the task order was referenced to NAVD 1988, GEOID12A, in units of survey feet.

WOOLPERT

Figure 1.1: Lidar Task Order AOI and Base Station Locations

Section 2: Acquisition

The existing lidar data was acquired with a Leica ALS70 500 kHz Multiple Pulses in Air (MPiA) Lidar Sensor System, on board Woolpert Cessna aircraft. The ALS70 lidar system, developed by Leica Geosystems of Heerbrugg, Switzerland, includes the simultaneous first, intermediate and last pulse data capture module, the extended altitude range module, and the target signal intensity capture module. The system software is operated on an OC50 Operation Controller aboard the aircraft.

The ALS70 500 kHz Multiple Pulses in Air (MPiA) Lidar System has the following specifications:

ALS Lidar System Specific	ations					
Operating Altitude	200 – 3,500 meters					
Scan Angle	0 to 75° (variable)					
Swath Width	0 to 1.5 X altitude (variable)					
Scan Frequency	0 – 200 Hz (variable based on scan angle)					
Maximum Pulse Rate	500 kHz (Effective)					
Range Resolution	Better than 1 cm					
Elevation Accuracy	7 - 16 cm single shot (one standard deviation)					
Horizontal Accuracy	5 – 38 cm (one standard deviation)					
Number of Peturns per Pulse	7 (infinite)					
Number of Intensities	3 (first second third)					
Number of Intensities	8 hit intensity ± 8 hit AGC (Automatic Gain Control)					
Intensity Digitization	level					
MPiA (Multiple Pulses in Air)	8 bits @ 1nsec interval @ 50kHz					
Laser Beam Divergence	0.22 mrad @ 1/e ² (~0.15 mrad @ 1/e)					
Laser Classification	Class IV laser product (FDA CFR 21)					
Fire Cafe Davide	400m single shot depending on laser repetition					
Eye Sale Range	rate					
	Automatic adaptive, range = 75 degrees minus					
Roll Stabilization	current FOV					
Power Requirements	28 VDC @ 25A					
Operating Temperature	0-40°C					
Humidity	0-95% non-condensing					
Supported GNSS Receivers	Ashtech Z12, Trimble 7400, Novatel Millenium					

Table 2.1:

Prior to mobilizing to the project site, Woolpert flight crews coordinated with the necessary Air Traffic Control personnel to ensure airspace access.

Woolpert survey crews were onsite, operating a Global Navigation Satellite System (GNSS) Base Station for the airborne GPS support.

The lidar data was collected in three (3) separate missions, flown as close together as the weather permitted, to ensure consistent ground conditions across the project area.

An initial quality control process was performed immediately on the lidar data to review the data coverage, airborne GPS data, and trajectory solution. Any gaps found in the lidar data were relayed to the flight crew, and the area was re-flown.

FEMA STARR September 2015

Figure 2.1: Lidar Flight Layout, Ashland County Wisconsin Lidar

Date of Mission Lines Flow		Mission Time (UTC) Wheels Up/ Wheels Down	Mission Time (Local = EDT) Wheels Up/ Wheels Down
November 1, 2014 – Sensor 7177	1-11, 14-25, 31-38	16:25 - 0:13	11:25AM – 07:13PM
November 2, 2014 - Sensor 7177	12-13,26-30,39-64	13:45 – 20:57	08:45AM - 03:57PM
April 17, 2015 – SH7108	49	13:35 - 17:25	08:35AM – 12:25PM

Table 2.2: Airborne Lidar Acquisition Flight Summary

Section 3: Lidar Data Processing

Applications and Work Flow Overview

- Resolved kinematic corrections for three subsystems: inertial measurement unit (IMU), sensor orientation information and airborne GPS data. Developed a blending post-processed aircraft position with attitude data using Kalman filtering technology or the smoothed best estimate trajectory (SBET).
 Software: POSPac Software v. 5.3, IPAS Pro v.1.35.
- Calculated laser point position by associating the SBET position to each laser point return time, scan angle, intensity, etc. Created raw laser point cloud data for the entire survey in LAS format. Automated line-to-line calibrations were then performed for system attitude parameters (pitch, roll, heading), mirror flex (scale) and GPS/IMU drift.
 Software: ALS Post Processing Software v.2.75 build #25, Proprietary Software, TerraMatch v. 14.01.
- 3. Imported processed LAS point cloud data into the task order tiles. Resulting data were classified as ground and non-ground points with additional filters created to meet the task order classification specifications. Statistical absolute accuracy was assessed via direct comparisons of ground classified points to ground RTK survey data. Based on the statistical analysis, the lidar data was then adjusted to reduce the vertical bias when compared to the survey ground control. **Software**: TerraScan v.14.011.
- The LAS files were evaluated through a series of manual QA/QC steps to eliminate remaining artifacts from the ground class.
 Software: TerraScan v.14.011.

Global Navigation Satellite System (GNSS) – Inertial Measurement Unit (IMU) Trajectory Processing

Equipment

Flight navigation during the lidar data acquisition mission is performed using IGI CCNS (Computer Controlled Navigation System). The pilots are skilled at maintaining their planned trajectory, while holding the aircraft steady and level. If atmospheric conditions are such that the trajectory, ground speed, roll, pitch and/or heading cannot be properly maintained, the mission is aborted until suitable conditions occur.

The aircraft are all configured with a NovAtel Millennium 12-channel, L1/L2 dual frequency Global Navigation Satellite System (GNSS) receivers collecting at 2 Hz.

All Woolpert aerial sensors are equipped with a Litton LN200 series Inertial Measurement Unit (IMU) operating at 200 Hz.

A base-station unit was mobilized for each acquisition mission where a CORS station was not utilized, and was operated by a member of the Woolpert acquisition team. Each base-station setup consisted of one Trimble 4000 – 5000 series dual frequency receiver, one Trimble Compact L1/L2 dual frequency antenna, one 2-meter fixed-height tripod, and essential battery power and cabling. Ground planes were used on the base-station antennas. Data was collected at 1 or 2 Hz.

The GNSS base station operated during the Lidar acquisition missions is listed below:

Station Latitude (Name) (DMS)		Longitude (DMS)	Ellipsoid Height (L1 Phase center) (Meters)				
MIIW CORS Base	46° 28' 12.86538"	-90°09' 56.56048"	420.172				
PID RM0890	46° 33' 05.94204"	-90°54' 57.26501"	219.273				

Table 3.1: GNSS Base Station

Data Processing

All airborne GNSS and IMU data was post-processed and quality controlled using Applanix MMS software. GNSS data was processed at a 1 and 2 Hz data capture rate and the IMU data was processed at 200 Hz.

Trajectory Quality

The GNSS Trajectory, along with high quality IMU data are key factors in determining the overall positional accuracy of the final sensor data. Within the trajectory processing, there are many factors that affect the overall quality, but the most indicative are the Combined Separation, the Estimated Positional Accuracy, and the Positional Dilution of Precision (PDOP).

Figure 3.1: Trajectory, Day 30514_SH7177

Figure 3.2: Trajectory, Day30614_SH7177

Figure 3.3: Trajectory, Day 10715_SH7108

Combination Separation

The Combined Separation is a measure of the difference between the forward run and the backward run solution of the trajectory. The Kalman filter is processed in both directions to remove the combined directional anomalies. In general, when these two solutions match closely, an optimally accurate reliable solution is achieved.

Woolpert's goal is to maintain a Combined Separation Difference of less than ten (10) centimeters. In most cases we achieve results below this threshold.

FEMA STARR September 2015

Figure 3.4: Combined Separation, Day 30514_SH7177

Figure 3.5: Combined Separation, Day 30614_SH7177

Figure 3.6: Combined Separation, Day 10715_SH7108

The Estimated Positional Accuracy plots the standard deviations of the east, north, and vertical directions along a time scale of the trajectory. It illustrates loss of satellite lock issues, as well as issues arising from long baselines, noise, and/or other atmospheric interference.

Woolpert's goal is to maintain an Estimated Positional Accuracy of less than ten (10) centimeters, often achieving results well below this threshold.

Figure 3.7: Estimated Positional Accuracy, Day 30514_SH7177

Figure 3.8: Estimated Positional Accuracy, Day 30614_SH7177

The PDOP measures the precision of the GPS solution in regards to the geometry of the satellites acquired and used for the solution.

Woolpert's goal is to maintain an average PDOP value below 3.0. Brief periods of PDOP over 3.0 are acceptable due to the calibration and control process if other metrics are within specification.

Figure 3.10: PDOP, Day 30514_SH7177

Figure 3.12: PDOP, Day 10715_SH7108

Figure 3.13: Altitude, Day30514_SH7177

Figure 3.14: Altitude, Day30614_SH7177

Lidar Data Processing

When the sensor calibration, data acquisition, and GPS processing phases were complete, the formal data reduction processes by Woolpert lidar specialists included:

- Processed individual flight lines to derive a raw "Point Cloud" LAS file. Matched overlapping flight lines, generated statistics for evaluation comparisons, and made the necessary adjustments to remove any residual systematic error.
- Calibrated LAS files were imported into the task order tiles and initially filtered to create a ground and non-ground class. Then additional classes were filtered as necessary to meet client specified classes.

- Once all project data was imported and classified, survey ground control data was imported and calculated for an accuracy assessment. As a QC measure, Woolpert has developed a routine to generate accuracy statistical reports by comparisons against the TIN and the DEM using surveyed ground control of higher accuracy. The lidar is adjusted accordingly to meet or exceed the vertical accuracy requirements.
- The lidar tiles were reviewed using a series of proprietary QA/QC procedures to ensure it fulfills the task order requirements. A portion of this requires a manual step to ensure anomalies have been removed from the ground class.
- The lidar LAS files are classified into the Default (Class 1), FGDC Compliant metadata was developed for the task order in .xml format for the final data products.
- The horizontal datum used for the task order was referenced to in UTM, Zone 15, North American Datum of 1983 (2011) in units of meters. The vertical datum used for the task order was referenced to NAVD 1988, GEOID12A, in units of survey feet.
- Relative vertical accuracy refers to the internal geometric quality of a lidar dataset, without regard to surveyed ground control. Overlap consistency (interswath) was tested at 20 locations all over the project area. Overlap consistency is a measure of geometric alignment of two overlapping swaths; the principles used with swaths can be applied to overlapping lifts and projects as well. Overlap consistency will be assessed at multiple locations within overlap in nonvegetated areas of only single returns. The overlap areas that will be tested are those between the following:

Adjacent, overlapping parallel swaths within a project,

Cross-tie swaths and the intersecting project swaths, and

Adjacent, overlapping lifts.

The average line to line difference was tested at -0.010 survey feet. The RMSDz of line to line difference is 0.162 survey feet. The number of samples is 189. The Frequency of relative vertical accuracy between flightlines is shown as following.

Figure 3.16: Histogram Interswath Accuracy

- This LAS 1.2 dataset contains return numbers beyond a 5th return(6th, 7th, 8th, etc). A fully compliant LAS 1.2 file only supports the encoding of up to and including 5 returns in the LAS header information. Any subsequent returns (6th, 7th, 8th, etc) cannot be encoded in the header and most lidar processing software will generate a warning stating "Number of points by return not equal point record count".
- The vertical scale factor of this lidar dataset is 0.01. The LAS generating software defaults the vertical scale factor to 0.001 so the Z-value of a lidar point at 50.53 ft is stored by the software as 50.530 ft. This is what is known as "fluff". There is nothing wrong with the data only that most lidar processing softwares are able to detect this "fluff" and display a warning.
- The scan angle rank in point data record is the angle at which the laser point was output from the laser system includes roll of the aircraft added by roll compensation. Due to the tiled nature of the LAS data, some LAS files may exhibit a lower scan angle rank than what the overall project was acquired at and/or contain only negative or positive scan angle ranks. This is due to the fact that when swath data is imported to a tiled format that tile assumes whatever scan angle rank values that fall within that tile boundary. See figure 3.17- Assuming that nadir of the swath falls roughly on the tile boundary it could be expected that tile 672152 might only contain negative scan angle ranks or have lower scan angle ranks than anticipated.

Figure 3.17: Scan Angle Rank

Section 4: Flight Logs

Flight logs for the project are shown on the following pages:

WOOLPERT

Woolpert													
Leica	LIDAR	11/1/2014	30514	74908		1		Ashland, WI					
	COSMISS SALAMBOS		N2029E		100110	23-00	16:25:00	Di N	NGS				
Filot. 3		lensor Type	HOBES END		Local D	ad Time	Zulu End Time	PID					
	SWAIN		ALS-7177	3438.2		7:1	3:00	0:13:00	RM0890				
Wind D	r/Speed	Mubliky	Celling Cloud	Cover % Temp	Dew Point	a - 2	Breckers 30.44	Haze/Fire/Cloud	Departing	KASX			
Scan A	ngle (FOV)	Scan Frequen	ky (Hz) Pul	se Rate (kHz)	Laser Po	wer %	Fixed Gain	255 Mos	Arriving ie Th	KASX reshold Values			
1	40	34.4		230	10	0	Gain - Course/U	ip Single	6 - K	A 170			
Air Speed		AGL	MSL		Waveform U	sed	Gain - Fine/Dow Waveforth Mode	m Multi	Pre-Tog	er Dist.			
19	50	ка 7800	Ft §	3400 Pt	Yes	No X		Ø	w¢.	Ft			
Line #	Dir.	Line Start Time	Line End Time	Time On Line	SV's	HDOP	PDOP	Line Not	es/Comments				
Test	n/a		8	n/a	n/a	n/a	n/a	GPS Began Logging At:	10	5:30:00			
		1 Times entered a	re zulu / GMI 1	10.00.10				Verity 5-Turns Before Mis	SSIDDI WES	No			
1	N	16:53:53	16:56:06	10:08:10	17	0.7	1.2	Takeoff: 11:37 (L	16:37 z	las.			
2	5	10:58:34	17:09:36	0:00:00	18	0.7	1,1	to the see litit	e nilis simi	iaľ			
5	N C	17:14;55	17:29:15	0:00:00	17	0.7	1.1	to the condition	in wass th	at			
4	M	17:51:47	18:02:22	0:00:00	17	0.7	1.1	light dusting of a	bac woo	or o			
6	S	18:05:42	18:20:24	0:00:00	17	0.7	1.3	thick frost	now and/	<i>4</i> 0			
7	N	18:22:13	18:36:55	0:00:00	17	0.7	1	and a set					
8	5	18:39:22	18:54:28	0:00:00	17	0.7	1.1	DROPOUTS DUE	E TO THE BAY				
9	N	18:56:22	19:11:17	0:00:00	18	0.6	1	and numerous po	onds				
10	S	19:13:40	19:28:44	0:00:00	16	0.6	1.2						
11	N	19:30:34	19:45:52	0:00:00	15	0.6	1.1	as we work east	it appears	as			
14	N	19:47:16	19:49:23	0:00:00	17	0.6	1.1	the dusting of sn	ses				
15	S	19:51:40	20:10:40	0:00:00	15	0.6	1.2						
16	N	20:12:34	20:31:37	0:00:00	15	0.6	1.2						
17	S	20:33:52	20:53:20	0:00:00	17	0.7	1.1						
31	N	20:55:06	21:11:47	0:00:00	15	0.7	1.2						
18	N	21:13:12	21:14:43	0:00:00	17	0.6	1.2						
19	S	21:17:02	21:18:43	0:00:00	18	0.7	1.1						
32	S	20:20:14	21:36:42	0:00:00	18	0.7	1.3	s k		2			
33	N	21:38:30	21:54:55	0:00:00	17	0.7	1.1						
20	N	21:56:55	21:58:27	0:00:00	18	0.6	1.1	200		2			
21	S	22:00:53	22:02:26	0:00:00	18	0.6	1.1			2			
34	5	22:04:40	22:21:09	0:00:00	18	0.6	1.1						
35	N	22:23:00	22:38:50	0:00:00	18	0.6	1.1						
22	N C	22:41:22	22:43:08	0:00:00	18	0.6	1.1						
36	5	22:45:42	22:47:54	0:00:00	10	0.0	1.1						
37	N	23:07:55	23:22:25	0:00:00	16	0.7	1.1						
24	N	23:27:29	23:28:12	0:00:00	16	0.7	1.3	Landing: 00:07:1	1				
25	5	23:31:12	23:37:35	0:00:00	16	0.7	1.3	Static: 00:11:20 -	00:13:20				
38	S	23:36:46	23:52:09	0:00:00	16	0.7	1.3	T					
↑ Times	entered	are Zulu / GMT 🛧	6	Pag	e	3		Verity S-Turns After Mis	sion Tes X	No			
Additional	Comments:		-							Drive #			

WOOLPERT

	Woolpert													
Leica	LIDAR	11/2/2014	306	74908		1		Project name Achiend, WI						
		ACOS			Local St.	5:00	1245-00		NSS					
-	Pliat		enoor Type	HOBES END	-	S:4	ad Time	2ulu End Time	PID					
22	SWAIN		ALS-7177	3445.1	63.00	3:5	7:00	20:57:00	RN	10890				
Wind Di	r/Speed	10 Visibility	Celling Cloud	Cover % Temp	Dew Pois	nt.	Pressure 30.13	Hate/Tire/Cloud	Departing	KASX				
Scan A	ngle (FOV)	Scan Frequen	cy (Hz) Put	se Rate (KHz)	Laser P	ower %	Fixed Gain	255 Mo	de T	KDLH treshold Values				
(40	34.4		230	10	00	Gain - Course/U	lp Single		A 170				
Air Speed	9.5760.	AGL	MSL	57555	Waveform U	Ised	Gain - Fine/Dow Waveform Mode	m Muta	Pre-Trig	B 150 ger Dist.				
15	50	Kts 7800	Ft §	3400 Pt	fes	X No		ര		Ft				
Line #	Dir.	Line Start Time	Line End Time	Time On Line	SV's	HDOP	PDOP	Line No.	tes/Comments					
Test	n/a			n/a	n/a	n/a	n/a	GPS Remon Lossing At-	1	3-53-00				
ic.r	ny s	1. Times entered a	rezulu / GMI 👃	iqu	.yu	140	igu	Venity S-Turns Before M	ISSION Yes X	No				
39	N	14:23:00	14:34:00	5:28:59	17	0.6	1.2	Takeoff: 13:59:3	0/ Fast be	ginning				
47	S	14:40:44	14:48:15	0:00:00	16	0.7	1.5	line 39 remain 1	2.5 miles v	wpts 25 -1				
46	N	14:50:14	14:56:45	0:00:00	15	0.7	1.5	fast beginning						
49	5	14:59:26	15:07:01	0:00:00	15	0.7	1.4							
54	N	15:10:13	15:16:54	0:00:00	16	0.7	1.2	wpts 15-7 clouds	s					
26	N	15:29:02	15:30:23	0:00:00	16	0.6	1.2	Dropouts due to	water					
27	S	15:33:08	15:34;30	0:00:00	16	0.6	1.4	surrounding Isla	nds					
28	N	15:36:50	15:37:42	0:00:00	14	0.8	1.4							
29	SW	15:40:24	15:41:04	0:00:00	15	0.8	1.4	-						
10	500	15:44:48	15:47:45	0:00:00	15	0.7	1,2	-						
12	IN C	15:55:49	15:54:52	0:00:00	19	0.7	1	-						
40	5	15:38:27	16:00:52	0:00:00	10	0.6	1	-						
41	N	16:26:02	16:41:05	0:00:00	17	0.6	1.5	-						
42	S	16:43:42	16:59:08	0:00:00	18	0.6	1.1	1						
43	N	17:01:03	17:15:50	0:00:00	18	0.6	1.1							
44	S	17:18:16	17:23:00	0:00:00	19	0.6	1.1							
45	N	17:35;16	17:49:30	0:00:00	19	0.6	1.2	50 M						
39	Ν	17:55;58	18:02:41	0:00:00	16	0.7	1.5	Manu Strt UL 00	1 wpt 28 -	1				
48	5	18:13:10	18:19:42	0:00:00	18	0.6	1.1							
51	N	18:21:50	18:28:26	0:00:00	18	0.6	1							
50	S	18:30:46	18:37:20	0:00:00	17	0.6	1.1							
53	N	18:39:40	18:46;14	0:00:00	18	0.6	1							
52	S	18:48:30	18:55:00	0:00:00	19	0.6	0.9	(5) (6) (1)		5				
55	N	18:57:12	19:03:40	0:00:00	19	0.6	0.9							
54	N	19:06:40	19:08:52	0:00:00	15	0.7	1.2	PATCH JOB wpts	16- 6/ULC	002				
56	5	19:11;20	19:15:49	0:00:00	15	0.7	1.2							
57	N	19:18:09	19:22:37	0:00:00	15	0.7	1.2							
58	5	19:24:53	19:29:19	0:00:00	15	0.7	1.2							
59	N	19:31:30	19:35:55	0:00:00	15	0.7	1.2	CEE DAGE IN						
60	5	19:38:30	19:43:00	0:00:00	17	0.7	1.2	SEE PAGE #2						
T Times	entered a	are Zulu / GMT 🛧	k i	Pag	e	2	1	Verity S-Turns After Mi	ISSION Yes X	No Drive #				
	samments:								Ű.	and a				
										00096				
										19679557965				

WOOLPERT

	Woolpert																		
Leica LIDAR 11/2/2014 306					74908				1					Project Name Ashland, Wi					
CONTROL		APOINT.		100	1530 300 8-454					0 42			2000 Start Inte						
3	PER		anuor type	10	-	HIS END	10	-		ESCELE	3:00 53 1151#		13:45:00 1 200 the field			PID			
	SWAIN		ALS-7177		з	445.1		l.		3:57	7:00			20:5	7:00		RMOSS	0	
Wind D	ir/Speed	Viability 10	Celling	Cloud	Cover %	Temp	De	w Point			Press 3.0	13	8	Haze/F	ire/Cloud	Depart	ing	KASX	
Scan	Angle (FOV)	Scan Frequen	ICY (Hz)	Pul	se Rate (kHz)	-		aser Po	wer%	-	50.	Fixed Gain		2551	M	ode	Thres	KDLH hold Values	
	40	34.4			230			10	0		Gai	n - Course/L	ЧU	_	Single		A	170	
Air Speed	2900	AGL		MSL	-1455000		Wavef	orm Usi	ed	_	Wavefor	rm Mode	ND.	STREET,	Multo	Pn	=Trigger I	Jost.	
1	50	кts 7800	Pt	8	3400	R	Yes		No	х			-	0		NS		Ft	
Line #	Dir.	Line Start Time	Line End	Time	Time Or	Line	S	٧s	H	DOP	1	PDOP	Т		Line N	lotes/Comn	nents		
Test	n/a			- 23	n/a		n	/a	1	n/a		n/a	GPS	Began Lo	ogging At	<u>2</u> 9	13:5	3:00	
61	N	19:45:26	19:49	52	15:49	:34	1	7	1 8	0.7	_	1.2	Tai	rty S-Tur ceoff:	15:59:3	dission lye	XN	0	
62	S	19:52:32	19:57	02	0:00	:00	1	7	0	0.7	-	1.2	-						
63	N	19:59:43	20:04	13	0:00	:00	1	7	1	0.7	<u> </u>	1.2							
64	S	20:07:22	20:10	11	0:00:	:00	1	.6	(2)	0.7		1.2							
					0:00:	00							ov	ERFLY	BASES	TATION	l:		
				Ĵ	0:00:	:00							20:	27:15	ended	20:29:4	5		
					0:00:	:00							Lar	nding	at DLH :	2050z/3	:50 pn	n (L)	
					0:00:	:00		_											
_					0:00:00		_	_			_								
				23	0:00:00														
				23	0:00:	:00		_		_	_								
				- 3	0:00:	:00		_	1				-						
				- 3	0:00:	:00	L	-	-	_	_		-						
			2	- 3	0:00:	:00	-	-	-	_	-		+						
_					0:00:	00	-	_	-		_		-					-	
-			_	- 8	0:00	00	-	-	-	_	_		+					-	
			-	53	0:00:00		-	-			-		-						
		· · · · · · · · · · · · · · · · · · ·		- 53	0:00:00						· · · ·		4					_	
-					0:00:00		-	-		_	_		-					_	
				10	0:00:00			-	t										
				10	0:00:00														
				1	0:00:00														
					0:00:00														
					0:00:	00													
					0:00:	00													
					0:00:	:00		_											
				10	0:00:	:00	_		-				4						
_					0:00:	:00	—	-	-		—		-					_	
2			2	2)	0:00:	00	_	_	-				+-						
		an Talu (an Ta		22	0:00:	Dec		_	-			-				diana and		3	
T IImes	Comments:	are Zuiù / GMT 个				Pag	e				2		Ver	ny S-Tur	ns Aπer N	nission Ye	N	o anno a	
	-																		

WOOLPERT

			WC	OOLP	ERT	FLI	GHT	LOG	SHE	EET #:	1			
Leica ALS-70					MM/bb/mm 4/17/2015			Day of Year 107		Mission Name / Job # Marinette CO 74908				
Operator Pilot	Annen Niet Voris				Aircraft Sen N475RC SH-7177 N040CP SH-7177 N7079F SH-5157 N475CP SH-7108 N1107Q X			sor нс 2 ж 2		xbbs Start 2660 xbbs End 669.5			Zulu Start Time 13:35 Zulu End Time 17:25	
Passengers	hassengers					Using or Relying on CORS			GPS Base #1 Operato		or Annen		PID KMNM	
Wind Dir/S	Vind Dir/Speed Visibility Ceiling			Cloud Cover % Temp			Dew Point	GPS Base #2 Operato Pressure		erator Haze/Fi	tor CORS Haze/Fire/Cloud		PID MIIW Departing ICAO KMNM	
030/5		10	6-9k	vario	us	12	4		30.08	-		Arriving	CAO KMNM	
Scan Angre	40		ү(на) (4	230		1052	100		Course/Up Fine/Down		Mode Single Multi		2+2 4+3	
Air Speed	ISPeed AGL 8,300		300 _{Ft}	MSL 8,300		R	Threshold /		Waveform Mode		0	Pre-Trig	gger Dist.	
Line #	Dir.	Line Start Time	Line E	nd Time	Time	On Line	SV's	HDOP	PDOP		Line No	tes/Comments	5	
Test	t n/a				n/a n/a			n/a	n/a	n/a GPS Began Logging At:				
2.4	М	\$ Times ente	red are Zulu / G	1.00			16	0.6	1 1	Verity S-Tu	ums Before Miss		X No	
54	Moved to		Ash	Ashland		Re-flight		0.0	1.1	AL	HS: 2666.4 @ 9:15			
49	S	15:12:00	15:1	3:00				1 1			HE: 2667.6 @10:30			
		Back to Marin		ette CO									- 6.7	
9	S	15:58:00	16:1	11:00			2	8						
10	Ν	16:13:00 16:1		9:00	:00]]		Abar	Abandon line, 10 NM FNE Clouds			
55	N	16:43:00	17:0	17:02:00						Clouds moving into entire area				
-	-	2	8					s <u>n</u>						
				9			2							
			10 24]				į "						
2		3	al and	0			6	s – 5						
		2	8				-	10 - 32						
		5	6.7 825		-			7 8						
		2						1 1						
		0	10				-							
-			- S.	9			2	ci - 8						
	<u> </u>	↑ Times enter	red are Zulu / G	MT↑	0:0	0:00	Tol	tal Time On I	Line	Verify S-T	urns After Missi	on Yes	X No	
Additional	Comments:	12010-020-020-020-0		Suter united will no intere										

Section 5: Final Deliverables

The final lidar deliverables are listed below.

- LAS v1.2 unclassified point cloud.
- FGDC compliant project level metadata in XML format
- Post-flight aerial acquisition and calibration report
- Lidar certificate of compliance