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1 INTRODUCTION
Visibility is the greatest horizontal distance at which selected objects can be seen and identified. Reduced visibility often occurs during periods of heavy rain and snow and also occurs when sunlight is scattered or absorbed by atmospheric particles. Visibility is a leading safety factor in determining aircraft flight rules, pilot certification and aircraft equipment required for taking off or landing. Federal Aviation Regulations require that aircraft operations at airports must be conducted under Instrument Flight Rules (IFR) when the prevailing visibility is below three statue miles (approximately 5km). In addition to these important safely considerations, reduced visibility due to regional haze also obscures the view in our nation’s parks. The Clean Air Act authorizes the United States Environmental Protection Agency (EPA) to protect visibility, or visual air quality, through a number of different programs. The EPA’s Regional Haze Rule calls for state and federal agencies to work together to improve visibility in national parks and wilderness areas such as the Grand Canyon, Yosemite, the Great Smokies and Shenandoah. 
Fog droplets and haze particles are small enough to scatter and absorb sunlight, leading to reduced visibility. The meteorological definition of fog is a cloud (stratus) which has its cloud base on or close to ground, and reduces visibility to less than 1 km. Haze is caused when sunlight encounters tiny pollution particles in the air. More pollutants mean more absorption and scattering of light, which reduces visibility. The attenuation of light due to scattering and absorption by atmospheric particles is referred to as extinction. In general, scattering is the primary cause of light extinction and therefore visibility reduction. The smallest pollution particles (< 2.5microns) scatter sunlight more efficiently then larger particles. Haze is primarily composed of sulfate, organic, elemental carbon, and nitrate aerosols. Sulfur dioxide (SO2) emissions from power plants, nitrogen oxide (NOx) emissions from motor vehicles, and secondary organic aerosols of biogenic and wildfire origin contribute the most to regional haze events.
The GOES-R Advanced Baseline Imager (ABI) visibility retrieval will provide a satellite based estimate of boundary layer visibility to augment existing measurements from Automated Surface Observing System (ASOS) extinction measurements.  The ability of ABI to continuously monitor visibility over the continental US will allow smoke and fog related transportation hazards to be monitored in real-time, providing valuable information to the Aviation Weather Center (AWC), National Weather Service (NWS), Federal Aviation Administration (FAA), and Department of Transportation (DOT). The ability of GOES-R to continuously monitor visibility in remote regions of the US will improve visibility monitoring within our National Parks and provide useful information to the regional planning offices responsible for developing mitigation strategies required under the EPA’s Regional Haze Rule.     
1.1 Purpose of This Document

The primary purpose of this algorithm theoretical basis document (ATBD) is to provide a high level description of the algorithms required by the visibility product from the Advanced Baseline Imager (ABI) onboard the GOES-R series of NOAA geostationary meteorological/environmental satellites. 
1.2 Who Should Use This Document

The intended users of this document are those who are interested in understanding the theoretical basis of visibility product and how to use the product in a particular application. It provides information useful to anyone maintaining or modifying related algorithms and software systems.
1.3 Inside Each Section

This document consists of the following main sections:

· Product Overview: provides relevant details of the ABI and a brief description of the product generated by the algorithm.

· Product Requirement Description: provides the detailed requirements for the visibility algorithm and software system. 

· Algorithm Description: provides the details for product processing outline, input/output parameters and key algorithms.  

· Test Data Sets, and Output: provides a description of the test data sets used to characterize the performance of the algorithms and quality of the data products. It also describes the results using test data sets.

· Practical Considerations: provides a description of the issues involving the software system programming, quality assessment, diagnostics, and exception handling.

· Assumptions and Limitations: provides an overview of the current assumption and limitations of the approach and a plan for overcoming these limitations with further algorithm development.

1.4 Related Documents

The visibility retrieval uses ABI Aerosol Optical Depth (AOD), Cloud Optical Thickness (COT), fog/low cloud probability and thickness retrievals in addition to meteorological predictors to estimate surface visibility.  Readers should refer to Suspended Matter/Aerosol Optical Depth and Aerosol Size Parameter,  Low Cloud and Fog, and Daytime Cloud Optical and Microphysical Properties (DCOMP) Algorithm Theoretical Basis Documents (ATBDs) for further discussion of the visibility input products. The GOES-R ABI Ground Segment (GS) Functional and Performance Specification (F&PS) document provides a summary of the ABI visibility specifications. 
1.5 Revision History

The first draft of this document (dated September 20, 2008) was created by Tim Schmit of NOAA/NESDIS/STAR, Wayne Feltz of CIMSS, and Brad Pierce NOAA/NESDIS/ STAR and was reviewed by Shobha Kondragunta NOAA/NESDIS/STAR. However, this was prior to any algorithm development.  The first draft was updated (dated September 24, 2010) after significant progress was made with the algorithm. The first draft accompanied the delivery of the version 1.0 (V1) algorithm to the GOES-R AWG Algorithm Integration Team (AIT). The second draft (dated June 28, 2011) accompanied the delivery of the version 3.0 (V3) algorithm to the GOES-R AWG AIT and reflected the status of the algorithm at the 80% delivery. This third draft (dated June 29, 2012) accompanies the delivery of the version 5.0 (V5) algorithm to the GOES-R AWG AIT and reflects the status of the algorithm at the 100% delivery. Significant updates occurred between version 3.0 (V3) and version 4.0 (V4) including the addition of multiple meteorological predictors to estimate surface visibility. Relatively minor updates occurred between V4 and V5, primarily the addition of Quality Control flags and aggregation from a 1km to 10km retrieval output. 
2 PRODUCT OVERVIEW 

This section describes the visibility product and the requirements it places on the system.

2.1 Product Generated
The visibility product is produced using a number of other ABI products. Other products include the fog/low cloud probability and depth, aerosol optical depth (AOD), and cloud optical thickness (COT) and cloud effective radius (reff).   It is important that the visibility algorithm obtain mature AOD/COT/fog derived products for robust testing and implementation. Fog detection is typically associated with a visibility of less than 1 km; while haze is associated with visibilities from 2-30 km. Heavy smoke or dust plumes may be associated with significantly lower visibilities. To determine the range of visibilities associated with haze the visibility product will use the ABI Aerosol Optical Depth (AOD) retrieval. AOD is the degree to which aerosols prevent the transmission of light at a particular wavelength and is the integrated extinction coefficient over a vertical column of unit cross section. The extinction coefficient is the fractional depletion of radiance per unit path length. Under haze conditions the visibility algorithm must be able to relate AOD (at a particular wavelength) to horizontal visibility within the Planetary Boundary Layer (PBL).  Primary auxiliary inputs (in addition to AOD) are meteorological predictors from a model analysis. Under low cloud and fog conditions the visibility algorithm must be able to relate visible COT to horizontal visibility within the low cloud or fog layer. Primary auxiliary inputs (in addition to COT) are fog probability, fog depth and meteorological predictors.

2.2 Instrument Characteristics

ABI has 16 spectral bands designed for a variety of application purposes. While the ABI visibility product does not directly use any of the ABI spectral channels it relies on cloud, aerosol, and fog retrievals that do. In fact, the ABI band 1 was added to the ABI to support aviation via retrieval of aerosol optical depth for an enhanced visibility product. Table 2‑1 summarizes the instrument central wavelength, spatial resolution, and product characteristics. The instrument has two basic modes. One mode is that every 15 minutes ABI will scan the full disk (FD), plus continental United States (CONUS) 3 times, plus a selectable 1000 km × 1000 km mesoscale area every 30 seconds. The second mode is that the ABI can be programmed to scan the FD iteratively. The FD image can be acquired in approximately 5 minutes (Schmit et al. 2005). 

	Band Number
	Central Wavelength (μm)
	Spatial Resolution

(km)
	Product
	Used in visibility product

	1
	0.47
	1
	aerosol
	X

	2
	0.64
	0.5
	aerosol
	X

	3
	0.86
	1
	-
	X

	4
	1.38
	2
	clouds
	X

	5
	1.61
	1
	snow
	X

	6
	2.26
	2
	-
	X

	7
	3.9
	2
	fog
	X

	8
	6.15
	2
	clouds
	X

	9
	7.0
	2
	clouds
	X

	10
	7.4
	2
	clouds
	X

	11
	8.5
	2
	-
	X

	12
	9.7
	2
	ozone
	X

	13
	10.35
	2
	surface
	X

	14
	11.2
	2
	surface
	X

	15
	12.3
	2
	surface
	X

	16
	13.3
	2
	clouds
	X


Table 2‑1 GOES-R ABI instrument characteristics (the spatial resolution reflects the sub-point value).
The visibility product could be on three scales: CONUS, FD, and mesoscale. The performance of the product is sensitive to any imagery artifacts or instrument noise, calibration accuracy, and geolocation accuracy, as well as the quality of the intermediate products.  
3 PRODUCT REQUIREMENT DESCRIPTION 

The visibility requirements are summarized based on the GOES-R Series Ground Segment (GS) Functional and Performance Specification (F&PS) (NOAA/NASA 2008). The software system that generates routine Visibility Product (VP) shall meet the following requirements:

	
	Threshold

	Geographic Coverage/Conditions
	FD
	FD
	

	Primary Instrument
	ABI

	Prioritization
	O2

	Vertical Resolution
	N/A

	Horizontal Resolution
	10 km

	Measurement Accuracy
	Clear (vis ≥ 30 km)

Moderate (10 km ≤ Vis < 30 km)

Low (2 km ≤ vis < 10 km);

Poor (vis < 2 km)
	under the conditions of clear up through clouds of only layer
	Correct classification 80%

	Refresh Rate/

Coverage Time 
	60 min
	5 min
	

	Mapping Accuracy
	5 km
	5 km 
	-

	Data Latency
	806 sec
	806 sec
	-

	Temporal Coverage Qualifier
	Day 

	Product Extent Qualifier
	Quantitative out to at least 70 degrees LZA and qualitative at larger LZA

	Cloud Cover Conditions Qualifier
	Clear conditions down to feature of interest associated with threshold accuracy


Table 3‑1 Visibility Requirements.
4 ALGORITHM DESCRIPTION

This section describes visibility software system processing outline, input/output parameters, and key algorithms at the current level of maturity (will be improved with each revision).

4.1 Overview

Visibility is the greatest horizontal distance at which selected objects can be seen and identified. Reduced visibility often occurs during periods of heavy rain and snow and also occurs when sunlight is scattered or absorbed by atmospheric particles. Fog droplets and haze particles are small enough to scatter and absorb sunlight, leading to reduced visibility. The meteorological definition of fog is a cloud (stratus) which has its cloud base on or close to ground, and reduces visibility to less than 1 km. Haze is caused when sunlight encounters tiny pollution particles in the air. More pollutants mean more absorption and scattering of light, which reduces visibility. The attenuation of light due to scattering and absorption by atmospheric particles is referred to as extinction. In general, scattering is the primary cause of light extinction and therefore visibility reduction. 
Visibility is inversely proportional to extinction which is a measure of attenuation of the light passing through the atmosphere due to the scattering and absorption by aerosol particles. The visibility calculation is based on the Koschmieder [1924] method, which is based on scattering of light by a black object that is being observed, is given as
V=-ln()/(σ)








(1a)
where V is the visibility (in km), and σ is the extinction coefficient (km-1), and  is the threshold visual contrast which is usually taken to be 0.02 or 0.05. The ABI visibility algorithm uses 0.05 since this is recommended by the World Meteorological Organization (WMO) [Boudala and Isaac, 2009, WMO 2008]. Taking the natural log of 0.05 results in:
V = 3.0/σ








(1b)
The extinction coefficient (σ) relates the intensity (I) of light transmitted through a layer of material with thickness (x) relative to the incident intensity (I0) according to the inverse exponential power law that is usually referred to as the Beer-Lambert Law: 

I = I0e-σx








(2)
Optical depth is defined as σx. Expressing visibility in terms of gives:

V = 3.0/(/x) 








(3)
Equation (3) forms the theoretical basis for the GOES-R ABI Visibility algorithm. Equation (3) shows that visibility is inversely proportional to optical depth divided by the thickness of the material layer. No legacy algorithm exists relating satellite derived AOD/COT to boundary layer visibility measurements. However, feasibility studies have been conducted using ground based AOD measurements. Peterson et al. [1981] compared 6 years (August 1969-July 1975) of sunphotometer measurements of decadic turbidity at the Environmental Protection Agency (EPA) Research Triangle Park (RTP) Laboratory near Raleigh, NC with observer estimates of visibility from the Raleigh Durham airport (RDU). Decadic turbidity multiplied by a factor of 2.3 is equal to the aerosol optical depth. They considered four visibility classes ranging from <6, 7-8, 9-10, and >11 miles. Their primary conclusion was that there was a pronounced increase in turbidity for visibility < 7 miles. Monthly correlation coefficients between turbidity and visibility were large during the summer (-0.66 in June and -0.70 in July) and small during the winter (-0.02 in January and -0.03 in February). However, when RDU visibility exceeded 7 miles observers tended to report 10 or 12 miles visibility exclusively. This would tend to reduce the monthly correlation coefficients in the winter since mean turbidities are lowest during this time period. Kaufman and Fraser [1983] used correlations between transmissometer measurements of aerosol optical depth and nepholometer measurements of aerosol volume scattering coefficients [Charlson et al., 1969] to assess the feasibility of using satellite based AOD measurements to predict surface visibility. They compared inverse visibility (V-1) measured at Baltimore, MD and Dulles airports with AOD measurements at Goddard Space Flight Center (GSFC) during 1980 and 1981. GSFC is 40 km south of Baltimore and 60 km northeast of Dulles. They found strong correlations between V-1 at Baltimore and Dulles in both 1980 and 1981 (0.96 and 0.91, respectively). They found good correlations between GSFC AOD and V-1 at Baltimore and Dulles during 1980 (0.85 and 0.84, respectively) but only moderate correlations during 1981 (0.51 and 0.58, respectively).  

From Equation (3), the ABI Visibility uses retrieved Aerosol Optical Depth (AOD) to estimate under clear-sky conditions and uses retrieved Cloud Optical Thickness (COT) to estimate under cloudy conditions when Fog or Low Clouds have been detected. The ABI Visibility algorithm uses NWP Planetary Boundary Layer (PBL) depth to estimate x under clear-sky conditions and uses retrieved Fog and Low Cloud depth to estimate x under cloudy conditions when Fog or Low Clouds have been detected. Measurement requirements dictate the need to distinguish between; Clear (vis ≥ 30 km), Moderate (10 km ≤ Vis < 30 km); Low (2 km ≤ vis < 10 km); Poor (vis < 2 km). A “blended” retrieval approach is adapted. The blended visibility retrieval is constructed using a weighted combination of a “first guess” visibility estimate and a multiple linear regression visibility estimate that includes additional meteorological predictors for both aerosol and fog/low cloud visibilities. The combination of blended aerosol and blended fog/low cloud visibility estimates is referred to as the “merged” visibility product. 

Monthly regression coefficient look-up tables (LUT) for aerosol and fog/low cloud visibilities are obtained through multiple linear regression statistics based on historical 10 minute harmonically averaged ASOS visibilities. Satellite based aerosol and fog/low cloud AOD and COT, fog probability, and fog depth retrievals and eight meteorological predictors are used in the multiple linear regression against coincident ASOS measurements. The eight meteorological predictors for V5 aerosol and low cloud fog visibility consist of 1) PBL mean relative humidity, 2) relative humidity at the top of the PBL, 3) height of the PBL above sea level (including topography), 4) 2m relative humidity, 5) PBL lapse rate, 6) PBL depth, 7) 2m temperature, 8) temperature at the top of the PBL.

In the Version 5.0 ABI aerosol visibility algorithm the LUTs are based on V5 MODIS AOD retrievals. Meteorological predictors are derived from the NOAA Global Forecasting System (GFS) Comprehensive Large Array-data Stewardship System (CLASS) archive. Version 5.0 ABI fog/low cloud visibility algorithm LUTs are based on COT, reff, and Fog probability retrievals provided by the GOES-R AWG Cloud and Aviation  Teams that were generated using MODIS radiances.  Optimal weighting between the first guess and multiple regression visibility estimates for aerosol and fog/low cloud visibility is determined based on assessment of required categorical accuracy (percent correct classification), required precision (standard deviation of categorical error), Heidke Skill Score (fractional improvement relative to chance), and False Alarm Rate. 
4.2 Processing Outline
Figure 4-1 provides a high level flowchart of the ABI visibility algorithm. For each pixel either aerosol or fog/low cloud retrievals are possible depending on whether clouds or aerosols are present. If clouds are not present but aerosols are then a “first guess” aerosol visibility is computed using Equation (3) and used as one of the predictors in the multiple regression aerosol visibility . The blended aerosol visibility is computed based on a weighted average of the first guess and multiple regression aerosol visibility estimates. If clouds are present an additional check is performed to determine if fog/low clouds are present using the fog/low cloud probability product. A 50% Instrument Flight Rules (IFR) probability threshold is used to identify fog/low clouds. If fog/low clouds are present then a “first guess” fog/low cloud visibility is computed using Equation (3) and used as one of the predictors in the multiple regression fog/low cloud visibility. The blended fog/low cloud visibility is computed based on a weighted average of the first guess and multiple regression fog/low cloud visibility estimates. Next, the aerosol and fog/low cloud visibility retrievals are combined to produce a 1km “merged” visibility retrieval. Finally, the 1km visibility retrieval is aggregated to 10km for output and the Quality Assurance flags are computed based on the statistics of the aggregation. 
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Figure 4‑1 High level flowchart for generating visibility. 

4.3 Algorithm Input

The ABI Visibility algorithm uses input products and other static and dynamic ancillary data. The input to the ABI Visibility algorithm includes the following ancillary data:
· ABI Dynamic Data:  Cloud Mask, Cloud Optical Thickness (COT), Cloud Effective Radius (reff), Aerosol Optical Depth (AOD), Fog and Low Cloud Probability, Fog and Low Cloud Depth, Cloud Mask, Cloud Optical Thickness, Cloud Effective Radius, Aerosol Optical Deth, and Fog/Low Cloud Probability Quality Flags

· Non-ABI Static Data: Aerosol and Fog/Low Cloud Visibility monthly multiple regression coefficient  LUT

· Non-ABI Dynamic Data: Meteorological predictors from Numerical Weather Prediction (NWP) model 
Geolocation information and view zenith and relative azimuth angles are extracted from the rebroadcast data stream. In Version 5.0 of the ABI Visibility algorithm MODIS AOD and COT retrievals and radiances are used as proxy data. The 10km MODIS AOD retrieval and 0.5x0.5 degree NWP meteorological predictors are interpolated to the 1km resolution of the MODIS COT and radiances prior to use. The MODIS AOD Quality Flags are remapped to the 1km resolution using a nearest neighbor approach. The visibility retrieval is performed on the 1km grid and then statistically aggregated to 10km prior to output. The selection for the 10km aggregate is based on the input cloud mask, COT, AOD, and fog probability Quality Flags. For aggregation both the 0.47 and 0.66 micron MODIS AOD, COT, and reff Quality Assurance (QA) summary flags must indicate “useful” retrievals and the 0.47 and 0.66 micron confidence level QA must be “good’ or ‘very good”. For aggregation of the fog/low cloud visibility the fog/low cloud probability Quality Flag must be greater than or equal to 50%.  
When ABI DCOMP COT, reff and ABI AOD retrievals are available the input COT, reff, and AOD QA flags will be used. For COT and reff the current input QA flags will be replaced with  a single COT and reff QA, “valid, good quality converged retrieval”. For the AOD the current input QA flags will be replaced with the AOD Product Quality Flag and only use AOD retrievals where there is no extrapolation outside of the AOD LUT, the retrieval is within the F&PS specification range, the solar and local zenith angles are not larger than 80 degrees.
In Version 5.0 of the ABI Visibility algorithm the aerosol and fog/low Cloud LUTs include 12 sets of monthly multiple regression coefficients for both aerosol and fog/low cloud visibility retrievals. There are 10 multiple regression coefficients in V5 aerosol visibility LUT which are applied to the following predictors: 1) first guess aerosol visibility, 2) AOD, 3) relative humidity at the top of the PBL, 4) 2m relative humidity, 5) PBL mean relative humidity, 6) PBL lapse rate, 7) PBL depth, 8) 2m temperature, 9) temperature at the top of the PBL, and 10) height of the PBL above sea level (including topography). There are 11 multiple regression coefficients in the V5 fog visibility LUT which are applied to the following predictors: 1) first guess fog visibility, 2) COT, 3) relative humidity at the top of the PBL, 4) 2m relative humidity, 5) PBL mean relative humidity, 6) PBL lapse rate, 7) PBL depth, 8) 2m temperature, 9) temperature at the top of the PBL, 10) height of the PBL above sea level (including topography), and 11) fog probability.   
4.4 Key Algorithms Description

4.4.1 Aerosol Product

The first step in constructing the aerosol LUT involves collocation of 10minute harmonically averaged raw (one-minute) ASOS extinction measurements with MODIS AOD retrievals and 12hr GFS forecasted meteorological predictors for 2007-2008. ASOS visibility sensors measure forward scattering of light in a mid-visible wavelength (550 nanometers) and convert the measured scattering to Sensor Equivalent Visibility using Koschmieder’s Law. The harmonic mean is computed from the formula:
V = n / (1/V1 + 1/V2 + ...+ 1/Vn)





(4)
Where V is the harmonic mean, n = 10, and V1, V2,... Vn, are the individual 1-minute values. Eight one-minute data samples in the last 10 minutes are required to form a
report. A total of 155,077 ASOS/ABI coincident pairs were identified and used in subsequent statistical analysis. Figure 4-2 shows categorical histograms of the coincident ASOS and first guess ABI aerosol visibility derived using Equation (3). The first guess ABI aerosol visibility tends to overestimate the frequency of Poor and Low visibility classes resulting in a 55% categorical success rate for 2007-2008 ASOS coincident pairs. This overestimate of low and poor visibility relative to ASOS is most likely associated with increase in relative humidity (RH) at the top of the planetary boundary layer (PBL) under stable conditions. Increased RH leads to increased aerosol extinction due to hydroscopic growth of hydrophilic aerosols. Higher aerosol extinctions near the top of the PBL lead to overestimates in the frequency of Low and Poor visibility relative to ASOS since it measures surface visibility.  
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Figure 4-2 Categorical Histogram of first guess corrected ABI (red) and ASOS (green) aerosol visibility for 2007-2008 coincident pairs. 

Multiple linear regression between the ASOS visibility and the 10 aerosol visibility predictors was performed to determine regression coefficients for best estimate of ASOS visibility for each month using historical (2007-2008) ASOS/MODIS coincident pairs. This is referred to as “multiple regression” aerosol visibility. Table 4-1 summarizes the regression coefficients used for the aerosol visibility meteorological predictors.

Regression coefficients for Aerosol Visibility meteorological predictors
	month
	     bias
	   visaodfg
	        aod
	   rhpbltop
	       rh2m
	      rhpbl

	jan
	65.3879
	0.002681
	-32.7991
	0.059726
	0.337285
	-0.37413

	feb
	110.073
	0.001269
	-28.2057
	0.064463
	0.348682
	-0.4631

	mar
	158.992
	0.000747
	-21.1998
	-0.04379
	0.196516
	-0.19396

	apr
	164.344
	0.000582
	-17.9588
	0.005875
	0.0857
	-0.14395

	may
	248.679
	0.000475
	-22.074
	-0.03625
	-0.1029
	0.052229

	jun
	213.282
	0.006177
	-18.939
	-0.17207
	-0.13245
	0.238551

	jul
	191.874
	0.00188
	-20.8431
	-0.16686
	-0.25839
	0.341579

	aug
	342.033
	0.002103
	-16.2641
	-0.12326
	-0.31524
	0.267925

	sep
	320.941
	0.002513
	-28.4085
	-0.04582
	-0.34777
	0.237827

	oct
	205.162
	0.00042
	-34.4769
	-0.02746
	-0.01746
	-0.01722

	nov
	110.973
	0.001301
	-50.2803
	0.054206
	-0.04584
	-0.1145

	dec
	86.4592
	0.001137
	-28.4511
	-0.0169
	0.39957
	-0.38517


	
	   pbllapse
	    pblhght
	        t2m
	    tpbltop
	 pblhght+zsfc

	jan
	1.35551
	-0.0022
	-0.38765
	0.264323
	0.005734

	feb
	0.817403
	-0.00171
	0.025732
	-0.29479
	0.003831

	mar
	0.543207
	-0.00048
	-0.1832
	-0.25684
	0.002566

	apr
	0.427875
	-0.00571
	-0.29303
	-0.11643
	0.001656

	may
	0.914754
	-0.00781
	-0.88391
	0.209703
	0.001608

	jun
	1.26467
	-0.00018
	-0.77187
	0.153594
	0.002156

	jul
	0.795759
	-0.00329
	-0.68573
	0.172793
	0.001889

	aug
	1.03763
	-0.00297
	-1.16973
	0.169742
	0.000507

	sep
	0.306594
	-0.00268
	-0.92885
	0.001714
	-0.00022

	oct
	0.291529
	-0.00958
	-0.27099
	-0.24501
	0.00121

	nov
	0.812836
	-0.0069
	-0.45903
	0.235632
	0.004573

	dec
	0.640483
	-0.00796
	0.059203
	-0.20531
	0.00422


Table 4-1: Aerosol multiple regression coefficients for bias, first guess aerosol visibility (visaodfg), Aerosol Optical Depth (aod), relative humidity at top of the PBL (rhpbltop), 2 meter relative humidity (rh2m), mean PBL relative humidity (rhpbl), PBL lapse rate (pbllapse), PBL height (pblhght), 2 meter temperature (t2m), temperature at the top of the PBL (tpbltop), and PBL height plus surface height (pblhght+zsfc) predictors.
Figure 4-3 shows categorical histograms of the coincident ASOS and multiple regression ABI aerosol visibilities. The multiple regression ABI aerosol visibility tends to underestimate the frequency of Moderate and Low visibility classes but the categorical success rate has increased to 69% for 2007-2008 ASOS coincident pairs. 
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Figure 4-3 Categorical Histogram of multiple regression ABI (red) and ASOS (green) aerosol visibility for 2007-2008 coincident pairs. 

Heidke Skill Scores [Brier and Allen, 1952] and False Alarm Rates [Olson, 1962] were calculated for the first guess and multiple regression aerosol visibility for each visibility category using 2007-2008 coincident pairs. Heidke Skill Scores measure the fractional improvement in skill relative to chance. Results are summarized in Tables 4-2 and 4-3. They show that multiple regression increases predictive skill for all aerosol visibility classes except for low visibility and reduces False Alarm Rates for Moderate and Low aerosol visibility classes but increases False Alarm Rates for Clear aerosol visibility classes which make up the majority of the coincident pairs. 
Heidke Skill Score (Hit Rate) for ABI aerosol visibility
	Visibility Category
	First Guess 
	Multiple Regression 

	1 (Clear)
	0.282846
	0.361332

	2 (Moderate)
	0.149827
	0.320985

	3 (Low)
	0.127139
	0.0777247

	4 (Poor)
	0.00376796
	0.00766809


Table 4-2: Heidke Skill Scores for coincident ASOS and ABI  First Guess and Multiple Regression aerosol visibility during 2007-2008. 

False Alarm Rate for ABI aerosol visibility
	Visibility Category
	Non-Bias Corrected 
	Bias Corrected

	1 (Clear)
	0.261043
	0.303517

	2 (Moderate)
	0.517259
	0.309721

	3 (Low)
	0.910115
	0.679724

	4 (Poor)
	0.997567
	0.994413


Table 4-3: False Alarm Rate for coincident ASOS and ABI First Guess and Multiple Regression aerosol visibility during 2007-2008. 

The Heidke Skill Score and False Alarm Rate tests show that the multiple regression results in the highest categorical success rates except for low visibility and results in an increase in false alarm rates for Clear visibility classes. These degradations point to the need to develop a “blended” aerosol visibility retrieval that is a weighted combination of the first guess and multiple regression aerosol visibility estimates. Optimal weighting for the blended aerosol visibility retrieval is determined based on assessment of Heidke Skill Score and false alarm rates. 

Heidke Skill Score and False Alarm rates were calculated for each visibility category using the 2007-2008 coincident pairs. Weightings between the first guess and multiple regression aerosol visibility estimates varied by 10% from 0% to 100% multiple regression visibilities. Figure 4-4 shows Heidke Skill Scores and Figure 4-5 shows False Alarm Rates verses the percentage of the multiple regression aerosol visibility for each visibility class. Results of Heidke Skill Score and False Alarm Rates show that a 80% multiple regression weighting resulted in the largest improvement relative to chance for both Clear and Moderate aerosol visibility and reduces false detections for Low aerosol visibility.  Based on these tests, the Version 5.0 ABI aerosol visibility blended retrieval uses a 20/80% weighting of the first guess and multiple regression aerosol visibility estimates.
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Figure 4-4: Results of Heidke Skill Score tests for 2007-2008 ABI aerosol visibility as a function of the percentage multiple regression for each visibility class.
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Figure 4-5: Results of False Alarm Rate tests for 2007-2008 ABI aerosol visibility as a function of the percentage multiple regression for each visibility class.

Figure 4-6 shows categorical histograms of the coincident ASOS and blended ABI aerosol visibilities. The blended ABI aerosol visibility improves the estimates of Clear, Moderate, and Low visibility relative to both the first guess and multiple regression estimates but still tends to overestimate the frequency of Poor visibility classes. The categorical success rate of the blended aerosol visibility retrieval is 69% for 2007-2008 ASOS coincident pairs.
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Figure 4-6 Categorical Histogram of blended ABI (red) and ASOS (green) aerosol visibility for 2007-2008 coincident pairs. 

4.4.2 Low cloud/fog Product

The first step in constructing the fog/low cloud LUT involves collocation of 10 minute harmonically averaged raw (one-minute) ASOS extinction measurements with ABI fog/low cloud retrievals for 2007-2008. A total of 10,468 coincident ASOS/ABI coincident pairs were identified and used in subsequent statistical analysis. MODIS radiances were used as proxy data to generate the ABI fog/low cloud retrievals. An 50% threshold was used for the IFR fog/low cloud probability. Figure 4-7 shows categorical histograms of the coincident ASOS and first guess ABI fog/low cloud visibility derived using Equation (3). The first guess ABI fog/low cloud visibility falls within the Low and Poor visibility class resulting in a 5.0% categorical success rate for 2007-2008 ASOS coincident pairs. This overestimate in the frequency of Low and Poor visibility relative to ASOS is due to a relatively high minimum COT within the GOES-R ABI cloud optical and microphysical retrieval. This overestimate is also likely to be associated with increase in relative humidity (RH) at the top of the planetary boundary layer (PBL) under stable conditions. Fog and low Clouds are more likely to form near the top of the PBL and may not reach surface.
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Figure 4-7 Categorical Histogram of first guess ABI (red) and ASOS (green) fog/low cloud visibility for 2007-2008 coincident pairs.
Multiple linear regression between the ASOS visibility and the 11 fog/low cloud visibility predictors was performed to determine regression coefficients for best estimate of ASOS visibility for each month using historical (2007-2008) ASOS/MODIS coincident pairs. This is referred to as “multiple regression” fog/low cloud visibility. Table 4-4 summarizes the regression coefficients used for the fog/low cloud visibility meteorological predictors.

Regression coefficients for Fog/Low Cloud Visibility meteorological predictors
	Month
	     bias
	   viscotfg
	        cot
	   rhpbltop
	       rh2m
	      rhpbl

	jan
	12.579
	-2.65708
	-0.02046
	0.169246
	1.19418
	-1.83799

	feb
	98.5937
	-3.24155
	-0.00745
	-0.34592
	0.34142
	-0.88173

	mar
	114.42
	-7.08866
	-0.02672
	0.59534
	1.30254
	-2.52998

	apr
	212.164
	-10.9161
	-0.05456
	0.070336
	0.770728
	-1.95193

	may
	373.987
	-9.53948
	-0.05558
	-1.40813
	-1.0635
	1.53344

	jun
	371.406
	-7.38332
	0.025901
	-2.24021
	-0.16803
	1.49541

	jul
	246.62
	-4.40236
	0.012443
	-4.04248
	-0.54056
	3.92192

	aug
	147.202
	-9.49104
	-0.05982
	-1.25803
	-1.50024
	2.62571

	sep
	193.671
	-9.93674
	-0.0574
	-0.92217
	-1.8585
	2.45118

	oct
	176.718
	-2.56813
	-0.03199
	-0.77974
	0.100988
	0.373931

	nov
	30.5473
	-1.48106
	-0.01932
	-1.05789
	0.323024
	0.373914

	dec
	-2.39151
	-4.14431
	-0.00627
	-0.02919
	-0.09455
	-0.12258


	Month
	   pbllapse
	    pblhght
	        t2m
	    tpbltop
	 pblhght+zsfc
	    fogprob

	jan
	0.967626
	11.015
	-1.0044
	1.17683
	0.004598
	-0.09335

	feb
	0.078064
	-1.50126
	0.741054
	-0.7351
	0.00489
	-0.08965

	mar
	0.34288
	1.69033
	1.7438
	-1.87214
	0.000927
	-0.09008

	apr
	0.249843
	-16.1806
	2.88001
	-3.12655
	-0.00044
	-0.17389

	may
	0.585293
	-19.3097
	-0.05953
	-0.85291
	0.005951
	-0.04787

	jun
	0.282177
	-15.9934
	0.963552
	-1.82975
	0.003903
	-0.19144

	jul
	1.35404
	-32.5426
	2.52488
	-2.96303
	0.004724
	-0.48559

	aug
	-0.98966
	-31.7148
	4.14971
	-4.41582
	-0.00267
	-0.38578

	sep
	0.858375
	-11.3469
	-0.01412
	-0.50033
	0.002041
	0.105595

	oct
	-0.76862
	-15.4938
	3.09443
	-3.41753
	-0.00597
	-0.4022

	nov
	0.373224
	-16.0381
	3.57892
	-3.47473
	0.00292
	-0.17429

	dec
	0.058036
	2.77937
	-0.07394
	0.242283
	0.002166
	-0.13538


Table 4-4: Fog/low cloud multiple regression coefficients for bias, first guess fog visibility (viscotfg), Cloud Optical Thickness (cot), relative humidity at top of the PBL (rhpbltop), 2 meter relative humidity (rh2m), mean PBL relative humidity (rhpbl), PBL lapse rate (pbllapse), PBL height (pblhght), 2 meter temperature (t2m), temperature at the top of the PBL (tpbltop), PBL height plus surface height (pblhght+zsfc), and fog/low cloud probability (fogprob) predictors

Figure 4-8 shows categorical histograms of the coincident ASOS and multiple regression GOES fog/low cloud visibilities. The multiple regression GOES fog/low cloud visibility improves the prediction of Clear, Moderate, and Low visibility classes but now underestimates the frequency of Poor visibility. Categorical success rates have increased to 45% for 2007-2008 ASOS coincident pairs. 
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Figure 4-8 Categorical Histogram of multiple regression ABI(red) and ASOS (green) fog/low cloud visibility for 2007-2008 coincident pairs.

Heidke Skill Scores and False Alarm Rates were calculated for the first guess and multiple regression fog/low cloud visibility for each visibility category using 2007-2008 coincident pairs. Results are summarized in Tables 4-3 and 4-4. They show that without multiple regression the ABI  fog/low cloud visibility estimates have no skill relative to chance. Since all of the first guess ABI fog/low cloud visibility estimates fall into the Low or Poor visibility classes the False Alarm Rate for the first guess ABI fog/low cloud Clear and Moderate visibility classes are not applicable (NA). Multiple regression slightly increases predictive skill for all classes and decreases False Alarm Rates for Low and Poor visibility classes which are the only ones that can be compared. 
Heidke Skill Score (Hit Rate) for ABI fog/low cloud visibility
	Visibility Category
	 First Guess
	 Multiple Regression

	1 (Clear)
	0.00000 
	0.0745926

	2 (Moderate)
	0.00000 
	0.0500750

	3 (Low)
	0.00347656
	0.0813930

	4 (Poor)
	0.00000 

	0.00918382


Table 4-5: Heidke Skill Scores for coincident ASOS and ABI first guesss and multiple regression fog/low cloud visibility during 2007-2008. 

False Alarm Rate for ABI fog/low cloud visibility
	Visibility Category
	First Guess
	 Multiple Regression

	1 (Clear)
	NA
	0.412903

	2 (Moderate)
	NA
	0.560214

	3 (Low)
	0.489362
	0.415020

	4 (Poor)
	0.952020
	0.769231


Table 4-6: False Alarm Rate for coincident ASOS and ABI first guess and multiple regression fog/low cloud visibility during 2007-2008. 

Following the same procedure used to construct the blended aerosol visibility retrieval we construct a “blended” fog/low cloud visibility retrieval using a weighted combination of the first guess and multiple regression fog/low cloud visibility estimates. Optimal weighting for the blended fog/low cloud visibility retrieval is determined based on assessment of Heidke Skill Score and False Alarm Rates. 

Heidke Skill Score and False Alarm Rates were calculated for each visibility category using the 2007-2008 coincident pairs. Weightings between the first guess and multiple regression fog/low cloud visibility estimates varied by 10% from 0% to 100% multiple regression visibilities. Figure 4-9 shows Heidke Skill Scores and Figure 4-10 shows False Alarm Rates versus the percentage of the multiple regression fog/low cloud visibility for each visibility class. Results of Heidke Skill Scores showed that a 70% multiple regression weighting resulted in the largest improvement relative to chance for both Moderate and Low visibilities. False Alarm Rates show that 70% multiple regression minimizes false detections for Clear visibility.  Based on these tests, the Version 3.0 ABI fog/low cloud visibility blended retrieval uses a 30/70% weighting of the first guess and multiple regression fog/low cloud visibility estimates. 
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Figure 4-9: Results of Heidke Skill Score tests for fog/low cloud visibility as a function of the percentage multiple regression for each visibility class.

[image: image11.png]O CLASS

2007-2008 ABI.WMO.(ﬁOT vs AS?S Visibility Statistics

False Alarm Rate

1.00

08

Clear T
Noderate e
[ Low -
2 Poor [\\/
/
//
./ ]
20 40 60 80 100

Percentage bias Corrected



Figure 4-10: Results of False Alarm Rate tests for fog/low cloud visibility as a function of the percentage multiple regression for each visibility class.

Figure 4-11 shows categorical histograms of the coincident ASOS and blended ABI fog/low cloud visibilities. The blended ABI fog/low cloud visibility improves the estimates of Moderate and Low visibility but underestimates the frequency of Clear and Poor visibility classes. The categorical success rate of the blended fog visibility estimates is 47% for 2007-2008 ASOS coincident pairs. 
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Figure 4-11: Categorical Histogram of blended ABI (red) and ASOS (green) fog/low cloud visibility for 2007-2008 coincident pairs. 
4.4.3 Merged Aerosol and Fog/Low Cloud Product
The union of blended aerosol and blended fog visibility estimates is referred to as the “merged” visibility product. Figure 4-12 shows categorical histograms of the coincident ASOS and merged ABI aerosol and fog/low cloud blended visibilities. A 20%/80% first guess/multiple regression  weighting is used for blended aerosol visibility and a 30/70% first guess/multiple regression  weighting is used for blended fog/low cloud visibility estimates. The merged aerosol and low-cloud/fog visibility retrieval results in a 67% categorical success rate for 2007-2008 coincident pairs. The merged aerosol and low-cloud/fog visibility retrieval results capture the frequency of ASOS visibility relatively well but tends to overestimate the frequency of Clear visibility and underestimate the frequency of Moderate, Low, and Poor visibility.  
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Figure 4-12: Categorical Histogram of Merged ABI (red) and ASOS (green) aerosol plus fog/low cloud visibility for 2007-2008 coincident pairs. 

Heidke Skill Scores and False Alarm Rates were calculated for the merged aerosol and  fog/low cloud visibility for each visibility category using 2007-2008 coincident pairs. Results are summarized in Tables 4-7 and 4-8. The GOES-R ABI merged visibility retrieval shows lower skill and increased False Alarm Rates as visibility degrades from Clear to Poor. 
Heidke Skill Score (Hit Rate) for merged aerosol plus fog/low cloud visibility
	Visibility Category
	Merged retrieval

	1 (Clear)
	0.416761

	2 (Moderate)
	0.324422

	3 (Low)
	0.371395

	4 (Poor)
	0.00884924


Table 4-7: Heidke Skill Scores for coincident ASOS and merged ABI aerosol and fog/low cloud visibility during 2007-2008. 
False Alarm Rate for merged aerosol plus fog/low cloud visibility
	Visibility Category
	Merged retrieval

	1 (Clear)
	0.274996

	2 (Moderate)
	0.390108

	3 (Low)
	0.522545

	4 (Poor)
	0.978947


Table 4-8: False Alarm Rate for coincident ASOS and merged ABI aerosol and fog/low cloud visibility during 2007-2008. 

4.5 Algorithm Output

The primary output of the algorithm is an estimate of the visibility class indicated by an integer ranging from 1-4 for a given 10km pixel along with Quality Flags and meta-data.Three sets of Quality Flags are included that are based on the statistics of the aggregation of the 1km visibility retrieval to 10km. The first quality flag provides an overall Quality indicator and is based on a threshold percentage of the possible 1km retrievals that are used in the 10km aggregation. The Percentage Quality Flag provides an indication of “bad”, “good”, or “very good” based on the percentage of 1km retrievals used in the 10km aggregation.  The Standard Deviation Quality Flag provides an estimate of “low” or “high” confidence in the retrieved visibility class based on whether the mean visibility falls within (+/-) one standard deviation of the limits of the visibility class. Output Meta Data provides mean and standard deviations of the aggregate merged visibility (km) as well as the percentage of the aggregate that has the same visibility category as the mean category. Meta Data also includes the percentage of the aggregate that is aerosol or fog, or missing and mean first guess and blended aerosol and fog visibilities. 
	Output Name
	Description

	Visibility_Class
	The estimated visibility Class: 
1=Clear (vis ≥ 30 km)

2=Moderate (10 km ≤ Vis < 30 km)

3=Low (2 km ≤ vis < 10 km);

4=Poor (vis < 2 km)

	Overall_Quality _Flag_Vis
	0= Don’t use (less than 50% of 1km pixels used in 10km aggregate) 

1=Use (greater than or equal to 50% of 1km pixels used in 10km aggregate)

	Percentage_Quality_Flag_Vis
	0=Bad (less than 50% of 1km pixels used in 10km aggregate)

1=Good (between 50% and 74% of 1km pixels used in 10km aggregate)
2=Very Good (between 75% and 100% of 1km pixels used in 10km aggregate) 

	Standard_Deviation_Quality_Flag_Vis
	0=Low confidence (mean visibility +/- 1 standard deviation of 10km aggregate falls outside estimated visibility class)
1=High confidence (mean visibility +/- 1 standard deviation of 10km aggregate falls inside estimated visibility class)

	Mean_Vis

Std_Vis

Prc_Fog_Vis

Prc_Aerosol_Vis

Mean_Blend_Aerosol_Vis

Mean_Fguess_Aerosol_Vis

Mean_Blend_Fog_Vis

Mean_Fguess_Fog_Vis
	Meta Data
Mean  of aggregate merged visibility (km)

Standard deviation of aggregate merged visibility (km)

Percent Fog retrieval in aggregate
Percent Aerosol retrieval in aggregate
Mean blended aerosol visibility (km)

Mean first guess aerosol visibility (km)

Mean blended  fog visibility (km)

Mean first guesss  fog visibility (km)


Table 4‑9 Fields in visibility output.
5 TEST DATA SETS AND OUTPUTS

5.1 Simulated/Proxy Input Data Sets

5.1.1 MODIS
The capabilities offered by ABI onboard GOES-R are similar to the multispectral observations currently provided by the Moderate Resolution Imaging Spectroradiometer (MODIS) flown on the NASA Earth Observing System (EOS) satellites Terra and Aqua and therefore MODIS radiances are used as proxy data to generate the Version 5.0 aerosol and fog/low cloud visibility LUT. Figure 5-1 shows a composite of MODIS AOD (MOD04) and COT (MOD06) retrievals over the Continental US on August 31, 2009. Heavy aerosol loading (AOD> .5) extends throughout eastern Colorado, western Kansas and western Nebraska northward into eastern parts of Wyoming and central Montana due to transport of smoke from the Station Fire, near Los Angeles, CA. 
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Figure 5-1:  MODIS/Terra on August 31, 2009. AOD: aerosol optical depth at 550nm, COT cloud optical thickness at 650 nm
5.1.2 Current GOES data

The fog product will be produced for each pixel observed by the ABI.    The fog algorithm is designed to work when only a sub-set of the expected channels is provided. When running on GOES 12, the fog algorithm is able to utilize non-ABI cloud algorithms and account for the lack of Channel 11 (8.5 m). Figure 5-2 shows an example of the fog probability product derived using GOES proxy data compared to ASOS surface visibility for 7:45 UTC December, 12, 2009. During early morning on December 13, 2009 a plane crashed while attempting to land at the Alva Municipal Airport in Alva, OK. Dense fog was reported limiting visibility to ~200 feet. The GOES-R fog algorithm shows with greater detail areas with the greatest threat for low visibility due to fog.
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 Figure 5-2: RGB image (R = 3.9 (m emissivity, G = 11 (m BT, B = 11 (m BT) of the US on December 13, 2009 at 7:45 UTC (1:45 am CST) with fog probability from the GOES-R fog algorithm contoured on top. (Figure provided by Corey Calvert, CIMSS - UW Madison and Michael Pavolonis, NOAA/NESDIS/STAR)
5.1.3 Simulated GOES-R ABI data

Currently extensive efforts are underway to develop, demonstrate, recommend and set standards for a broad range of capabilities designed to make optimal use of the GOES-R data when it becomes available.  One of these efforts involves the generation of high temporal and spatial resolution Advanced Baseline Imager (ABI) proxy datasets to be used by a variety of GOES-R team members for algorithm development and demonstration activities. High resolution aerosol and ozone data sets have been created over the continental US to augment the current GOES-R Algorithm Working Group Weather Research and Forecast (WRF) model [(Skamarock et al. 2001, 2005)] ABI proxy data capabilities [Schaack et al, 2009]. These data sets have been generated with WRF-Chem [Grell et al., 2005] air quality simulations coupled to global chemical and aerosol analyses from the Real-time Air Quality Modeling System (RAQMS)  [Pierce et al., 2007].  Both WRF-Chem and RAQMS include on-line aerosol modules from the Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model [Chin et al., 2002]. The addition of aerosol and ozone distributions into the WRF proxy data set allows generation of more realistic synthetic (proxy) radiances for all ABI bands, using the forward visible and infrared radiance modeling capabilities from the Joint Center for Satellite Data Assimilation (JCSDA) Community Radiative Transfer Model (CRTM) [Han et al., 2006]. Synthetic WRF-CHEM radiances have been used as input into the GOES-R AOD algorithm to generate high horizontal and temporal resolution GOES-R ABI AOD retrievals for algorithm development. Figure 5-3 shows GOES-R ABI AOD retrievals based on WRF-CHEM/CRTM radiances at 15:30 UTC on August 24, 2006. The GOES-R ABI AOD retrieval is dominated by heavy aerosol loading associated with smoke in Northern Rocky Mountain states and regional haze in Mid-Atlantic, Southeast, and Mississippi Valley Regions
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Figure 5-3: Simulated GOES-R ABI AOD 15:30 UTC August 24, 2006 (CONUS)

5.2 Output from Simulated/Proxy Inputs Data Sets

5.2.1 Visibility
August 04th, 2007 Version 5.0 visibility retrievals based on MODIS AOD and COT measurements are shown in Figure 5-4. A broad area of reduced visibility extends throughout eastern Montana and into northwestern North Dakota due to heavy aerosol loading from wild fires in Idaho and western Montana.  Figure 5-5 shows a map of ASOS measurements at 18:12Z on August 4th, 2007. This time corresponds to the MODIS Montana overpass time. ASOS measurements show a similar broad region of reduced visibilities in Montana but do not indicate reduced visibilities in northwestern North Dakota. CALIPSO aerosol backscatter measurements over Northwestern North Dakota show that the aerosols were aloft in this portion of the smoke plume (not shown).  
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 Figure 5-4: GOES-R ABI aerosol visibility (km) using MODIS Version 5.1 AOD and COT retrievals on August, 04th, 2007. ABI cloud emissivity is indicated by the grey scale. 
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Figure 5-5: ASOS visibility (km) at 18:12Z on August, 04th, 2007. 

Figure 5-6 shows a timeseries of ASOS visibility measurements at Miles City – Frank Wiley Field (KMLS) in Custer, MT where the lowest ASOS visibility was observed. Visibility was abruptly reduced from above 20km to less than 10km at 17:00Z and remained below 10 km due to smoke from the wildfires (Figures 5-4, 5-5).  ABI visibility estimates (9.08km) are higher than ASOS harmonic mean visibility (6.77 km) at KMLS at the MODIS overpass but fall within the same Low visibility category.
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Figure 5-6: ASOS aerosol visibility (km) at Miles City – Frank Wiley Field (KMLS) in Custer, MT on August 04, 2007. The MODIS overpass time at KMLS  is indicated by the red line. 
6 PRACTICAL CONSIDERATIONS

6.1 Numerical Computation Considerations

The Visibility algorithm is implemented sequentially. Because it relies on the results of other algorithms, the cloud mask, cloud optical properties, the aerosol optical depth, and fog products must be run before the visibility algorithm. The computation time is very economic. 

6.2   Programming and Procedural Considerations

The Visibility algorithm is run at the pixel level. Temporal information is not necessary.
6.3 Requirements
The GOES-R ABI visibility algorithm F&PS requirement is an 80% correct classification. 
6.4 Other Issues

The current V5.0 visibility algorithm produces a 66% correct classification and does not satisfy the F&PS requirement. 

6.5 Quality Assessment and Diagnostics

The following visibility quality flags will be produced based on the aggregate statistics of the 10km output (see Table 4-9). 
· Missing/No data
· Overall Quality Flag (0= Don’t use , 1=Use)

· Percentage Quality Flag (0=Bad, 1=Good, 2=Very Good)

· Standard Deviation Quality Flag (0=Low confidence, 1=High confidence)

These QA flags will be monitored to identify anomalies. The mean and standard deviation of aggregate merged visibility (km) (see Table 4-9 meta data) will be used to interpret any anomalies that are diagnosed and comparisons with coincident ASOS surface measurements will be conducted.     

6.6 Exception Handling

If the retrieval is not performed, the retrieved parameters are set to a missing value and the quality flags are set to the lowest quality value. If the AOD, COT, or Fog products are not available, the retrieval is not performed.
6.7 Algorithm Validation

Algorithm is validated using independent (not used in the LUT regression) ASOS visibility measurements and available ground, airborne, and space based cloud and aerosol extinction measurements. Merged GOES-R ABI visibility retrievals using MODIS proxy data have been validated against ASOS visibility measurements during May-June 2010. Figure 6-1 shows categorical histograms of the coincident ASOS and ABI merged visibilities. The merged aerosol and  low-cloud/fog visibility retrieval results in a 66.8% categorical success rate for 11,697  coincident ASOS/ABI measurement pairs during May-June 2010.The merged aerosol and fog/low cloud visibility retrieval overestimates the frequency of Clear visibility and underestimates the frequency of Moderate, Low and Poor visibility during this time period.  These results are consistent with those obtained from the 2007-2008 period used to generate the multiple regression coefficients. 
[image: image20.png]cant

ASOS vs Va 10km Maan Agosolsl OLDIFen ategarioa Visiity Staisics (Way-June 2010)
00:20%% PG ple Regression)
(ROR: 38% FE%% MUt Fegrasson

Vebily Catbosie.

ASOSMerged g

SPeor vckm

10

107

Gt - essan
Mean categoricalrror = 0.14%811
Gompuisd Preckion = 0571438

Vebitty Category



Figure 6-1: Categorical Histogram of Merged ABI (red) and ASOS (green) aerosol and fog/low cloud visibility for May-June 2010 coincident pairs. 

Heidke Skill Scores and False Alarm Rates were calculated for the merged aerosol and fog/low cloud visibility for each visibility category using May-June 2010 coincident pairs. Results are summarized in Tables 6-1 and 6-2. The GOES-R ABI merged visibility retrieval shows lower skill and increased False Alarm Rates as visibility degrades from Clear to Poor. These validation results show reductions in skill but similar False Alarm Rates relative to the 2007-2008 period used to generate the multiple regression coefficients.
Heidke Skill Score (Hit Rate) for merged aerosol plus fog/low cloud visibility
	Visibility Category
	Merged retrieval

	1 (Clear)
	0.253399

	2 (Moderate)
	0.248863

	3 (Low)
	0.0177014

	4 (Poor)
	0.00000


Table 6-1: Heidke Skill Scores for coincident ASOS and merged ABI aerosol and fog/low cloud visibility during May-June 2010. 

False Alarm Rate for merged aerosol plus fog/low cloud visibility
	Visibility Category
	Merged retrieval

	1 (Clear)
	0.308872

	2 (Moderate)
	0.402906

	3 (Low)
	0.750000

	4 (Poor)
	NA


Table 6-2: False Alarm Rate for coincident ASOS and merged ABI aerosol and fog/low cloud visibility during May-June 2010. 

7 ASSUMPTIONS AND LIMITATIONS

7.1 Assumed Performance

Algorithm performance requires accurate aerosol optical depth and cloud optical thickness retrievals and accurate fog probability and fog depth retrievals. The aerosol visibility performance requires accurate NWP estimates of PBL heights and assumes that all aerosols are located within the PBL

7.2 Pre-Planned Product Improvements

None.
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