

- Large spatial coverage
- Requires a priori profiles to calculate AMF

satellite remote sensing

- Large spatial coverage
- Requires a priori profiles to calculate AMF

in situ aircraft measurements

- Detailed, but relatively few data points
- Vertical profiles inform a priori
- Use for satellite validation

Effect of a priori profile on NO_x emissions from fires

• Scale a typical rural NO_2 profile to give a VCD equal to that observed over a typical biomass burning event by assuming all additional NO_2 would be in bottom I km

satellite remote sensing

- Large spatial coverage
- Requires a priori profiles to calculate AMF

ER-2 high-res columns

- What remote sensing spatial resolution is necessary to constrain NO₂ emissions from fires?
- Information on heterogeneous inputs to AMF calculation

Intermediate between *in situ* measurements and space-based remote sensing

Aerosol properties, aerosol height, surface reflectance, plume height

- in situ aircraft measurements
- Detailed, but relatively few data points
- Vertical profiles inform a priori
- Use for satellite validation

satellite remote sensing

- Large spatial coverage
- Requires a priori profiles to calculate AMF

ER-2 high-res columns

- What remote sensing spatial resolution is necessary to constrain NO₂ emissions from fires?
- Information on heterogeneous inputs to AMF calculation

in situ aircraft measurements

- Detailed, but relatively few data points
- Vertical profiles inform a priori
- Use for satellite validation

Inform our understanding of the lifetime and chemistry of NO_x in fire plumes