

AUTOMATED VOLCANIC CLOUD IDENTIFICATION, TRACKING, AND CHARACTERIZATION USING NEXT GENERATION METEOROLOGICAL SATELLITES

MSS

Michael Pavolonis NOAA/NESDIS/STAR John Cintineo and Justin Sieglaff UW-CIMSS

EUMETSAT Conference - October 4. 2017

te Applicati

AND ATMOST

NOAA

PARTMENT OF

VOLcanic Cloud Analysis Toolkit (VOLCAT)

4). Volcanic Cloud Characterization

5). Dispersion Forecasting

1. Spectral

2. Spatial

3. Temporal

1.Spectral

2. Spatial

3. Temporal

Key Science Concept: Maximize the sensitivity to volcanic ash by utilizing multi-spectral metrics that account for background conditions

Impact of NextGen Satellites: More volcanic cloud relevant spectral channels

Measured BT's, BTD's and reflectance

Robust metrics such as β-ratios

1. Spectral

2. Spatial

3. Temporal

A). False Color Imagery (12–11μm, 11–8.5μm, 11μm) Terra MODIS (02/20/2001 – 08:45 UTC)

Weak <u>Ash</u> Signature

Strong Ash Signature

Weak Ash

Pavolonis et al. (2015a);Pavolonis et al. (2015b)

Key Science Concept: Humans rely heavily on spatial pattern recognition to identify volcanic clouds, so should automated algorithms

Impact of NextGen Satellites: Higher spatial resolution aids feature recognition

EUMETSAT Conference - October 4, 2017

Spatial Analysis: Cloud Objects volcanic clouds, spectral

metrics are used to estimate ash probability

Volcanic Cloud Alert Report

Date:	2017-08-21
Time:	12:52:30
Production Date and Time:	2017-08-21 12:58:15 UTC
Primary Instrument:	GOES-16 ABI

More details V

Auto-detected eruption of Fugeo (Guatemala) with GOES-16

Cloud object based volcanic ash detection allows for reliable generation of eruption alerts, which is critical in an era with very large satellite data volumes

EUMETSAT Conference - October 4, 2017

The VOLcanic Cloud Analysis Toolkit (VOLCAT)

Automated early detection of volcanic eruptions

FVXX21 KNES 071809 VA ADVISORY DTG: 20170707/18092

VAAC: WASHINGTON

VOLCANO: POPOCATEPETL 341090 PSN: N1901 W09837

AREA: MEXICO

SUMMIT ELEV: 17802 FT (5426 M)

ADVISORY NR: 2017/056

INFO SOURCE: NOAA CIMSS ALERT/CENAPRED

ERUPTION DETAILS: NEW VA EM AT 07/17192

Volcanic Cloud Alert Report

Date:	2017-07-07
Time:	17:37:30
Production Date and Time:	2017-07-07 17:44:35 UTC
Primary Instrument:	GOES-16 ABI
More details V	

RMK: WE HAVE RECEIVED INFORMATION SUGGESTING A POSSIBLE VA EMISSION. WE WILL GATHER FURTHER INFORMATION AND ISSUE A FULL ADVISORY AS SOON AS POSSIBLE.

Possible Volcanic Ash Cloud

NXT ADVISORY: AS SOON AS POSSIBLE

Basic Information	
Volcanic Region(s)	Mexico and Central America
Country/Countries	Mexico
Volcanic Subregion(s)	Mexico
VAAC Region(s) of Nearby Volcanoes	Washington
Identification Method	Puff
Mean Object Date/Time	2017-07-07 17:37:30UTC
Radiative Center (Lat, Lon):	19.100°, -98.680°
Nearby Volcanoes (meeting alert criteria):	Popocatepetl (2.80 km)
Maximum Height [AMSL]	9.20 km; 30184 ft
90th Percentile Height [AMSL]	9.10 km; 29856 ft
Mean Tropopause Height [AMSL]	16.50 km; 54134 ft
Show More	View all event imagery »

1. Spectral

2. Spatial

3. Temporal

Temporal – Cloud Vertical Growth

Key Science Concept: Volcanic clouds generally emerge from volcanic vents in a sudden manner

Impact of NextGen Satellites: More frequent images allows for better characterization of developing clouds

Pavolonis et al. (2017, in prep)

EUMETSAT Conference - October 4, 2017

How anomalous is vertical growth of Nabro cloud given the pixel area, time interval between the images, and background cloudiness?

Volcanic Cloud Alert Report

Date:	2017-08-08
Time:	22:10:30
Production Date and Time:	2017-08-08 22:20:16 UTC
Primary Instrument:	GOES-16 ABI

More details V

Possible Volcanic Cb

Cloud growth based auto-detection of Sabancaya (Peru) eruption with 5 minute GOES-16 data

The more frequent the images, the better the detection capabilities (accuracy and timeliness)

EUMETSAT Conference - October 4, 2017

Pavolonis et al. 2013

The time evolution of certain volcanic cloud properties (e.g. area) can be used to derive eruption source parameters required to constrain dispersion models

1. Spectral

2. Spatial

3. Temporal

Infrared (high spectral + high spatial)

Application to SO₂

Improved SO₂ Products SO₂ Probability, Loading, and Height

Key Science Concept: No single sensor is perfectly optimized to detect and characterize all types of volcanic clouds

Impact of NextGen Satellites: Hyperspectral UV and IR greatly aid in volcanic cloud (including SO₂) detection and characterization

Conclusions

- VOLCAT utilizes spectral, spatial, and temporal information to detect and characterize volcanic clouds captured by LEO and GEO satellites
- Much improved volcanic cloud detection and characterization is possible with next generation satellites
- Automated extraction of information is critical in this still evolving era of very large satellite data volumes
- VOLCAT products are generated at the University of Wisconsin and are not currently part of the planned operational GOES-R product suite

References

Pavolonis, M. J., W. F. Feltz, A. K. Heidinger, and G. M. Gallina, 2006: A daytime complement to the reverse absorption technique for improved automated detection of volcanic ash. J.Atmos.Ocean.Technol., 23, 1422-1444.

Pavolonis, M. J., 2010: Advances in Extracting Cloud Composition Information from Spaceborne Infrared Radiances-A Robust Alternative to Brightness Temperatures. Part I: Theory. Journal of Applied Meteorology and Climatology, **49**, 1992–2012, doi: 10.1175/2010JAMC2433.1 ER.

Pavolonis, M., A. Heidinger, and J. Sieglaff, 2013: Automated retrievals of volcanic ash and dust cloud properties from upwelling infrared measurements, J. Geophysical Research, **118(3)**, 1436-1458.

Pavolonis, M., J. Sieglaff, and J. Cintineo (2015a), Spectrally Enhanced Cloud Objects (SECO): A Generalized Framework for Automated Detection of Volcanic Ash and Dust Clouds using Passive Satellite Measurements, Part I: Multispectral Analysis, Journal Geophysical Research, **120**, 7813–7841.

Pavolonis, M., J. Sieglaff, and J. Cintineo (2015b) Spectrally Enhanced Cloud Objects (SECO): A Generalized Framework for Automated Detection of Volcanic Ash and Dust Clouds using Passive Satellite Measurements, Part II: Cloud Object Analysis and Global Application, Journal Geophysical Research, **120**, 7842–7870.

EXTRA SLIDES

Number of cloud objects processed per day: ~3 million Number of growing cloud objects processed per day: 1 million Average number of false alerts per day: 3-4