
McIDAS-X Scripting in Python

McIDAS Training Workshop
Madison, WI

June 11, 2015

McIDAS-X can be used interactively using the McIDAS-X text window, or scripts can be written to run McIDAS-X commands. These scripts can

take several forms including McBASI scripts, batch files, or shell scripts. This workshop will introduce you to using McIDAS-X commands in a

Python script.

This workshop assumes that you have some knowledge of McIDAS-X commands and basic Python syntax. This workshop assumes that both Python

2.6 and McIDAS-X 2015.1 are installed.

Why Run McIDAS-X in a Python Environment?

The advantages of running McIDAS-X in a Python environment include but are not limited to:

 Setting up the “mcenv” environment is simpler and less kludgy.

 Users can take advantage of Python’s superior text handling capabilities.

 Users can take advantage of Python’s superior date/time functionality.

 Python has many libraries for doing math, image manipulation and other data transformations.

 Python is more like a programming language than other traditional McIDAS scripting languages.

Setting up the Environment

1. Open a terminal window (Applications menu -> System Tools -> Terminal).

2. Download and install the mcidasx-python module using the following commands:

wget ftp://ftp.ssec.wisc.edu/pub/mug/mug_meeting/2015/python/mcidasx-python_0.4dev.tar.gz

pip install --user mcidasx-python_0.4dev.tar.gz

Alternative installation methods:

easy_install mcidasx-python_0.4dev.tar.gz

or

 Page 2 of 8

McIDAS-X Scripting in Python June 2015

tar zxvf mcidasx-python_0.4dev.tar.gz

cd mcidasx

python setup.py install

How mcidasx-python Works

The Python 'subprocess' module is used to spawn an instance of the “mcenv shell” as a background process. “mcenv” shell commands are run in that

mcenv session using Python functions, with any command line parameters passed as a single string. For example:

mcenv.logon('DEMO 1234')

mcenv.dataloc('ADD DATASET SERVER.DOMAIN')

Neither logon() nor dataloc() are explicitly defined functions. When an implicit function mccmd(‘arg1 arg2 arg3’) is called, the mcenv instance

searches the PATH environment variable for a mccmd.k McIDAS command/program (which corresponds to the “MCCMD” McIDAS-X command),

and then runs mccmd.k arg1 arg2 arg3 in the mcenv shell subprocess.

Syntax Rules and Examples

1. To use a Python module in a Python program/script, the module must be “imported”:

import mcidasx

2. To begin using the mcidasx module’s mcenv “session”, create an instance of the mcenv() object and assign it to a local variable (“mc” in this

example):

mc = mcidasx.mcidas.mcenv()

3. The -f (frame size), -i (image colors), and -g (graphics colors) mcenv options can be passed as arguments to the mcenv() object’s

instantiation:

mc = mcidasx.mcidas.mcenv(f=['3@1000x2000', '4@500x500'], i=150, g=16)

 Page 3 of 8

McIDAS-X Scripting in Python June 2015

The argument passed to f= can be either a list of strings (above), or just an individual string:

mc = mcidasx.mcidas.mcenv(f='10@480x640'])

4. To run the mcenv command logon.k DEMO 1234 (equivalent to LOGON DEMO 1234 in McIDAS-X), call the logon() method of our

mcenv() instance “mc”, passing the entire set of parameters (“arguments and keywords”) “DEMO 1234” as a single string:

mc.logon('DEMO 1234')

Oddities

The mcenv executable must be found in the PATH environment variable, otherwise the mcenv() instantiation will fail.

Existing PATH and MCPATH environment variables may be sufficient for some uses, but defining these explicitly within a script may be desirable:

import os

os.environ['PATH'] = '/path/to/mcidas/dir/bin:%s' % os.environ['PATH']

os.environ['MCPATH'] = '/path/to/project/data/dir:/path/to/mcidas/data'

McIDAS-X and mcenv generally write files to the first writeable path in MCPATH, although certain situations may arise where this does not occur.

This behavior is maintained in mcidasx-python.

Quotation marks (" and ') are not handled well when passed to the mcenv shell subprocess. Curly brackets should be used for comments in

DSSERVE commands, for example:

mc.dsserve(“ADD A/A AREA 1 9999 {comment}”)

 Page 4 of 8

McIDAS-X Scripting in Python June 2015

Stdout, Stderr, and Return Codes

When a mcenv command is run, a named tuple containing values for “stdout”, “stderr”, and “retcode” is returned. It is not necessary to capture this

tuple unless one of these values is needed.

For example, we might want to add a new remote dataset using dataloc(), and then print the output of an imglist() call if the dataloc() command was

successful:

dataloc_result = mc.dataloc('ADD GROUP server.domain')

if dataloc_result.retcode == 0:

 imglist_result = mc.imglist('GROUP/DESCRIPTOR FORM=ALL')

 print imglist_result.stdout

Some commands might not produce meaningful output, and thus there is no need to capture the output:

mc.logon('DEMO 1234')

mc.eg('1')

IMGLIST Example

The following is a simple example of the use of the command IMGLIST. This script can be found in <local-path>/Data/mcidasx/

python_examples/imglist_example.py.

#!/usr/bin/env python

import mcidasx

import os

os.environ['PATH'] = '/home/mcidas/bin:%s' % os.environ['PATH']

os.environ['MCPATH'] = '%s/mcidas/data:/home/mcidas/data' % os.environ['HOME']

mcenv = mcidasx.mcidas.mcenv()

mcenv.logon('DEMO 1234')

mcenv.dataloc('ADD BLIZZARD arcserv2.ssec.wisc.edu')

result = mcenv.imglist('BLIZZARD/IMAGES')

 Page 5 of 8

McIDAS-X Scripting in Python June 2015

print result.stdout

print result.stderr

print result.retcode

In this example MCPATH is still set as it is in other McIDAS-X scripts. Initializing the McIDAS environment is done differently than in other

scripts. Rather than starting a mcenv subshell, and then running commands in that subshell, the McIDAS environment is started with the command:

mcenv = mcidasx.mcidas.mcenv()

Also note that standard out is captured in the variable result and needs to be explicitly written to standard out.

The next example is a slightly more advanced version of the previous IMGLIST example that takes advantage of Python text handling and date

manipulation capabilities. This script can be found in <local-path>/Data/mcidasx/python_examples/imglist_advanced.py.

#!/usr/bin/env python

import datetime

import mcidasx

import os

user = 'DEMO'

proj = 1234

group = 'BLIZZARD'

descriptor = 'IMAGES'

server = 'arcserv2.ssec.wisc.edu'

os.environ['PATH'] = '/home/mcidas/bin:%s' % os.environ['PATH']

os.environ['MCPATH'] = '%s/mcidas/data:/home/mcidas/data' % os.environ['HOME']

mcenv = mcidasx.mcidas.mcenv()

mcenv.logon('%s %d' % (user, proj))

mcenv.dataloc('ADD %s %s' % (group, server))

img_date = datetime.date(1993, 3, 13)

result = mcenv.imglist('%s/%s DAY=%s TIME=%s FORM=ALL' % (group, descriptor, img_date.strftime('%y%j'), '12 18'))

print result.stdout

 Page 6 of 8

McIDAS-X Scripting in Python June 2015

Exercise 1: Write a short Python script that displays data in a background McIDAS-X window and saves the image as a GIF image.

 Please use dataset BLIZZARD/GE-IR-4K on ARCSERV2.SSEC.WISC.EDU.

 Please use logon DEMO and project number 1234.

 An example solution is available on page 8 as well as in the <local-path>/Data/mcidasx/python_examples/bash_vs_python.py script.

However, before checking the solution, it is recommended that you try to complete the exercise on your own.

 Hint: here is a bash script that does this:

#!/bin/bash

PATH=$PATH:/home/mcidas/bin

MCPATH=$HOME/mcidas/data:/home/mcidas/data

export PATH MCPATH

mcenv << 'EOF'

logon.k DEMO 1234

dataloc.k ADD BLIZZARD ARCSERV2.SSEC.WISC.EDU

imgdisp.k BLIZZARD/IMAGES.-1 1 LAT=38 78

frmsave.k 1 storm_ir_bash.gif

exit 0

EOF

exit

Advanced Example

Now for a more advanced example. In this example, we will IMGCOPY an archived Meteosat-9 image to a local netcdf dataset, then use netCDF4

and numpy to perform a Normalized Difference Vegetation Index (NDVI) calculation, display the NDVI imagery using matplotlib.pyplot, and finally

save the output to a PNG file. This script can be found in <local-path>/Data/mcidasx/python_examples/ndvi.py.

#!/usr/bin/env python

import matplotlib.pyplot as pyplot

import mcidasx

import netCDF4

import numpy

import os

import sys

mcidas_dir = os.path.expanduser('~mcidas')

path = [os.environ['PATH'],

 Page 7 of 8

McIDAS-X Scripting in Python June 2015

 os.path.join(mcidas_dir, 'bin')]

mcpath = [os.path.dirname(__file__),

 os.path.join(os.environ['HOME'], 'mcidas/data'),

 os.path.join(mcidas_dir, 'data')]

os.environ['PATH'] = ':'.join(path)

os.environ['MCPATH'] = ':'.join(mcpath)

mcenv = mcidasx.mcidas.mcenv()

mcenv.logon('DEMO 1234')

result1 = mcenv.dataloc('ADD MUG2015 arcserv2.ssec.wisc.edu')

if result1.retcode != 0:

 sys.exit(result1.stdout)

mcenv.dsserve('ADD N/A NCDF 1 9999 TYPE=IMAGE')

msg_ndvi_bands = [1, 2]

imgcopy_string = 'MUG2015/NDVI N/A.{band} SIZE=SAME BAND={band} MAG=-8 DAY=2011/08/31 TIME=12 UNIT=REFL'

for band in msg_ndvi_bands:

 imgcopy_result = mcenv.imgcopy(imgcopy_string.format(band=band))

 print imgcopy_result.stdout

try:

 # open the NetCDF files

 redBand = netCDF4.Dataset('A0001.nc', 'r')

 nirBand = netCDF4.Dataset('A0002.nc', 'r')

 # read data into numpy arrays

 redData = numpy.array(redBand.variables['data'][0])

 nirData = numpy.array(nirBand.variables['data'][0])

 check = numpy.logical_and(redData != 0, nirData != 0)

 ndvi = numpy.where(check, (nirData - redData) / (nirData + redData), 0)

 pyplot.imshow(ndvi, cmap=pyplot.get_cmap('PRGn'), vmin=-1, vmax=1)

 pyplot.savefig('ndvi.png')

 pyplot.show()

except:

 sys.exit('An error occurred.')

 Page 8 of 8

McIDAS-X Scripting in Python June 2015

Other Python Modules

These Python modules may offer interesting possibilities in combination with McIDAS-X:

 numpy - package for scientific computing

 netCDF4 - python/numpy interface to netCDF

 basemap - library for plotting 2D data on maps

 cartopy - cartographic tools

 gdal - Geospatial Data Abstraction Library bindings

Integrating McIDAS-X into an existing script or workflow involving any of these modules is now very straight-forward.

Disclaimers and Afterthoughts

This package is NOT supported by MUG, McIDAS-X, or any group within SSEC. The software is currently used internally by the SSEC Data

Center for experimental use, with operational usage planned for the near future. Hopefully this workshop has inspired you to use McIDAS-X and

Python scripting in creative new ways!

Exercise 1: A Python Solution

#!/usr/bin/env python

import mcidasx

import os

os.environ['PATH'] = "%s:/home/mcidas/bin" % os.environ['PATH']

os.environ['MCPATH'] = "%s/mcidas/data:/home/mcidas/data" % os.environ['HOME']

mc = mcidasx.mcidas.mcenv()

mc.logon('DEMO 1234')

mc.dataloc('ADD BLIZZARD ARCSERV2.SSEC.WISC.EDU')

mc.imgdisp('BLIZZARD/IMAGES.-1 1 LAT= LAT=38 78’)

frmsave_result = mc.frmsave('1 storm_python.gif')

print frmsave_result.stdout

