

McIDAS-V Tutorial
An Introduction to Jython Scripting
updated June 2012 (software version 1.2)

McIDAS-V is a free, open source, visualization and data analysis software package that is the next generation in SSEC's 35-year history of

sophisticated McIDAS software packages. McIDAS-V displays weather satellite (including hyperspectral) and other geophysical data in 2- and 3-

dimensions. McIDAS-V can also analyze and manipulate the data with its powerful mathematical functions. McIDAS-V is built on SSEC's VisAD

and Unidata's IDV libraries, and contains "Bridge" software that enables McIDAS-X users to run their commands and tasks in the McIDAS-V

environment. The functionality of SSEC's HYDRA software package is also being integrated into McIDAS-V for viewing and analyzing

hyperspectral satellite data.

McIDAS-V version 1.2 includes the first release of a suite of fully supported scripting tools. Running scripts with McIDAS-V allows the user to

automatically process data and generate displays for web pages and other environments. Scripting in McIDAS-V is provided in Jython. Jython was

chosen because it is a common coding language that follows Python syntax and can access Java. The system library of Jython tools is still under

development and new tools will be added with future releases of McIDAS-V. You will be notified at the start-up of McIDAS-V when new versions

are available on the McIDAS-V webpage - http://www.ssec.wisc.edu/mcidas/software/v/.

If you encounter any errors or would like to request an enhancement, please post questions to the McIDAS-V Support Forums -

http://www.ssec.wisc.edu/mcidas/forums/. The forums also provide the opportunity to share information with other users.

This tutorial assumes that you have McIDAS-V installed on your machine, and that you know how to start McIDAS-V. If you cannot start McIDAS-

V on your machine, you should follow the instructions in the document entitled McIDAS-V Tutorial – Installation and Introduction. More training

materials are available on the McIDAS-V webpage and in the “Getting Started” chapter of the McIDAS-V User’s Guide, which is available from the

Help menu within McIDAS-V.

Terminology

There are two windows displayed when McIDAS-V first starts, the McIDAS-V Main Display (hereafter Main Display) and the McIDAS-V

Data Explorer (hereafter Data Explorer).

The Data Explorer contains three tabs that appear in bold italics throughout this document: Data Sources, Field Selector, and Layer Controls.

Data is selected in the Data Sources tab, loaded into the Field Selector, displayed in the Main Display, and output is formatted in the Layer

Controls.

Menu trees will be listed as a series (e.g., Edit ->Remove ->All Layers and Data Sources). Mouse clicks will be listed as combinations (e.g.,

Shift+Left Click+Drag).

http://www.ssec.wisc.edu/mcidas/software/v/
http://www.ssec.wisc.edu/mcidas/forums/

Page 2 of 20

McIDAS-V Tutorial – An Introduction to Jython Scripting June 2012 – McIDAS-V version 1.2

Using the Jython Shell

The Jython Shell consists of an output window on top and an input field on the bottom. The user enters Jython into the input field. When the Enter

key or "Evaluate" is pressed, the Jython input is evaluated and output is shown in the output window. The Jython Shell is a great tool to begin

writing scripts that can be run from the background.

1. Using the Jython Shell, create a window with a single panel Map Display.

a. In Main Display, select Tools->Formulas->Jython Shell to open the Jython Shell.

b. In input field, type:

panel=buildWindow()

 Click Evaluate.

buildWindow is the function used to create an object that contains an array of panels. This creates a

window as you would using GUI with File->New Display Window….

2. Now create another window, this time with a Globe Display. Using the same Jython Shell, in

the input field, type:

globePanel=buildWindow(height=600,width=600,panelTypes=GLOBE)

 Click Evaluate.

You now have two single paneled displays, each of which can be modified.

3. Turn off the wire frame box on the Map Display and then rotate the Globe Display.

a. In input field, type:

 panel[0].setWireframe(False)

 Click Evaluate.

b. In input field, type:

globePanel[0].setAutoRotate(True)

 Click Evaluate

setWireframe and setAutoRotate are methods which operate on an object. In these examples, the objects are panel and globePanel.

Page 3 of 20

McIDAS-V Tutorial – An Introduction to Jython Scripting June 2012 – McIDAS-V version 1.2

Basic Jython Terminology

The terminology used by Jython programmers can sometimes be confusing. In the above examples we introduced the terms function, method and

object. In most general terms, an object is returned from a function and a method operates on an object and may return a new object.

In steps 1 and 2, the buildWindow function is used to create an object, in this case an array of panels. Objects can have one or more attributes and

these attributes are defined by a class. In later examples of this tutorial, you will see the importance of knowing these attributes. Methods are used to

operate on an object. In step 3, setWireframe operates on the panel object by turning off the wireframe box.

It is important to know the input parameters for each of the functions and methods. All of the McIDAS-V Jython functions and methods are

documented in the scripting section of the McIDAS-V User’s Guide -

http://www.ssec.wisc.edu/mcidas/doc/mcv_guide/current/index.php?page=misc/Scripting.html

Note that when you are scripting in Jython, you are using the Python syntax. The syntax is case sensitive and adheres to strict indentation practices. A

good source of information on Python scripting is “Learn Python the Hard Way” - http://learnpythonthehardway.org/book/

Using the Jython Shell (continued)

4. For the rest of the examples we will use the Map Display, so at this time, close out the Globe Display.

5. Change the projection and center point of the display.

a. In input field, type:

 panel[0].setProjection('US>States>Midwest>Wisconsin')

Click Evaluate.

b. In input field, type:

panel[0].setCenter(43.0,-89.0)

 Click Evaluate.

setProjection changes the projection of a panel. The syntax for input projection is similar to what you see when you change the projection using

the GUI. Note, Jython is a case sensitive language, and you must type things exactly as documented here.

http://learnpythonthehardway.org/book/

Page 4 of 20

McIDAS-V Tutorial – An Introduction to Jython Scripting June 2012 – McIDAS-V version 1.2

6. Add some annotations to the display.

a. Click the Expand Input Field icon to the right of the input field, so that you can type multiple lines into the Jython Shell.

b. Determine the available fonts for your OS. In input field, type (the 4 spaces before print are necessary):

for fontname in allFontNames():

 print fontname

c. Click Evaluate and from the results in the Output Window, choose a font for the next commands. In these examples, SansSerif is used.

d. In input field, type:

panel[0].annotate('You Are Here', size=20, font='SansSerif’, lat=43.0, lon=-89.0, color='Red')

The bottom left corner of the text is located at the specified coordinates. In some cases you might want to use a line and element coordinate

system. In this example we also specify a color using R,G and B values. Note that we used html tags to make the font bold.

e. In input field, type:

panel[0].annotate('+', size=20, font='SansSerif’, line=225, element=295,color=[1.0,0.0,1.0])

f. When you are through adding annotations to the display, close the window created with buildWindow.

Add A Function to the Jython Library

It is also possible to add user functions to the Jython Library that are accessible from the Jython Shell. In this example, you will add a getDescriptor

function that will be used in all of the following examples of Jython scripting.

7. Using the Jython Library, add a getDescriptor function to the User’s Local Jython Library.

a. In Main Display, select Tools->Formulas->Jython Library to open the Jython Library.

b. In the left panel, select Local Jython->User’s library.

c. Cut and paste the lines from the <local path>/Scripting/getDescriptor.txt file into the right panel under User’s library.

d. Click Save.

Page 5 of 20

McIDAS-V Tutorial – An Introduction to Jython Scripting June 2012 – McIDAS-V version 1.2

Creating A Simple ADDE Request

Up until now we have been concentrating on customizing panel attributes. Next we will request data using ADDE and create data layers. For this part

of the tutorial, we will be using data from the ‘Storm of the Century’ from 1993.

Note: If you have not already done so, create two datasets in the local ADDE Data Manager with BLIZZARD/G7-IR-4K and

BLIZZARD/G7-VIS-4K using <local path>/Scripting/blizzard-areas/IR and <local path>/Scripting/blizzard-areas/VIS.

getADDEImage is the function used to request imagery from an ADDE server. The inputs to getADDEImage are in the form of keyword=

parameter. getADDEImage returns two objects, a list of metadata and an array of data. The following example makes a simple ADDE request.

8. Build a new window using buildWindow. In the input field, type: panel=buildWindow(height=600,width=900,panelTypes=MAP)

9. Request data using getADDEImage. In input field, type:

desc = getDescriptor('BLIZZARD', 'G7-IR-4K')

myMetaData, myData = getADDEImage(server='localhost:8112', dataset='BLIZZARD', descriptor=desc, unit='BRIT')

10. Display the image by creating a layer. The method createLayer uses the object myData returned from getADDEImage. In input field, type:

dataLayer = panel[0].createLayer('Image Display', myData)

11. Use the method captureImage to save the display to a file - replace {user} with your user name. In input field, type:

panel[0].captureImage('/Users/{user}/McIDAS-V/IR-Image.jpg')

Because McIDAS-V does a screen capture on some platforms, be sure that the entire window is showing and is not blocked by other windows, or

your resulting image will not be complete.

12. After viewing IR-Image.jpg in a browser, close the image window.

Page 6 of 20

McIDAS-V Tutorial – An Introduction to Jython Scripting June 2012 – McIDAS-V version 1.2

Using Dictionaries and Metadata to Formulate an ADDE Request

Most ADDE requests need many more parameters than the previous example. Specifying long lists of keyword parameters can be cumbersome and

create code that is difficult to read. To avoid these problems, you can take advantage of a Python dictionary. Using a Python dictionary, you can

specify all of the keyword=parameter pairs or include just a few and add the extra ones directly to the getADDEImage function call. The next few

steps require a lot of typing. If you’d like, you can cut and paste the lines from the <local path>/Scripting/ADDE-dictionary.txt file into the Jython

shell and then skip to step 16. All of the files used in this tutorial are also printed at the end of the document.

13. Create a dictionary to be use local data with getADDEImage. To use data from a remote server, skip to step 15. In input field, type (the 4 space

indentation is required):

addeParms = dict(

 debug=True,

 server='localhost:8112',

 dataset='BLIZZARD',

 size='ALL',

 mag=(1, 1),

 time=('18:01:00', '18:01:00'),

 day=('1993072'),

 unit='BRIT',

)

14. Make an ADDE request for infrared and visible data using keyword=parameter pairs and a dictionary. The ** before the dictionary tells Python

to evaluate the dictionary’s contents and include the keyword=parameter pairs in getADDEImage. Note, the dictionary must be last in the list.

a. In input field, type:

desc = getDescriptor('BLIZZARD', 'G7-IR-4K')

irMetadata, irData = getADDEImage(descriptor=desc, band=8, **addeParms)

b. In input field, type:

desc = getDescriptor('BLIZZARD', 'G7-VIS-4K')

visMetadata, visData = getADDEImage(descriptor=desc, band=1, **addeParms)

Page 7 of 20

McIDAS-V Tutorial – An Introduction to Jython Scripting June 2012 – McIDAS-V version 1.2

15. To load data from a remote server, follow these steps. If you have already loaded the local data, proceed to the next step. Create a dictionary to

be used with getADDEImage. In input field, type (the 4 space indentation is required):

 addeParms = dict(

 debug=True,

 server='pappy.ssec.wisc.edu’,

 dataset='BLIZZARD',

 size='ALL',

 mag=(1, 1),

 time=('18:01:00', '18:01:00'),

 day=('1993072'),

 unit='BRIT',

)

 Make an ADDE request for infrared and visible data using keyword=parameter pairs and the dictionary.

a. In input field, type:

irMetadata, irData = getADDEImage(descriptor=’G7-IR-4K’, band=8, **addeParms)

b. In input field, type:

 visMetadata, visData = getADDEImage(descriptor=’G7-IR-4K’, band=1, **addeParms)

16. Earlier in this tutorial we mentioned the importance of knowing the attributes of an object. The metadata object returned from getADDEImage

contains useful information that we can use with other functions and methods. List out the keyword names and their values. In input field, type:

for key,value in irMetadata.items():

 print key,' = ',value

17. The previous ADDE request was for all the lines and elements (size=’ALL’). Creating a window to show the entire image would probably go

beyond the extents of your desktop. To avoid this problem, use the metadata to create a window with dimensions for half the number of lines and

elements. In input field, type:

bwLines = irMetadata['lines'] / 2

bwEles = irMetadata['elements'] / 2

panel=buildWindow(height=bwLines, width=bwEles)

Page 8 of 20

McIDAS-V Tutorial – An Introduction to Jython Scripting June 2012 – McIDAS-V version 1.2

18. Now create layer objects for both the visible and infrared data. Using createLayer with the objects irData and visData.

a. In input field, type:

irLayer = panel[0].createLayer('Image Display', irData)

b. In input field, type:

visLayer = panel[0].createLayer('Image Display', visData)

19. Previously, we used the method setProjection to operate on a panel object. Now we will look at some methods to operate on a layer object. For

example, turn off the visible layer. In input field, type:

visLayer.setLayerVisible(False)

20. Apply the 'Longwave Infrared Deep Convection' color table to the infrared layer. Since there is a unique name for each color table, the syntax

is a little different than used with setProjection, and the entire naming structure is not necessary here. In input field, type:

irLayer.setEnhancement('Longwave Infrared Deep Convection')

21. Using the values from the keywords ‘sensor-type’ and ‘nominal time’ from the metadata object irMetadata, create a string to use with

setLayerLayer (remember that the 4 spaces of indentation are mandatory).

a. In input field, type:

irLabel = '%s %s' % (

 irMetadata['sensor-type'],

 irMetadata['nominal-time']

)

b. In input field, type:

irLayer.setLayerLabel(label=irLabel, size=16, color='White', font='SansSerif.bold')

22. After checking the new layer label in the Main Display, exit your McIDAS-V session. The next steps in the tutorial will concentrate on creating

and running scripts from a command prompt.

Page 9 of 20

McIDAS-V Tutorial – An Introduction to Jython Scripting June 2012 – McIDAS-V version 1.2

Running Scripts from a Command Prompt

23. Navigate to the file <local path>/Scripting/example.py.

24. Open a text editor (e.g., gedit, vi, Wordpad), and edit the file to run in your environment.

a. Find the following line: myuser='username', and change ‘username’ to the name of your user.

b. Find the line for your appropriate OS, uncomment the line and update if necessary.

c. View the example.py file and see that it contains the exact commands that were run from the Jython Shell in the previous example.

25. Run the McIDAS-V script using the –script flag.

a. Open a terminal and change directory to the directory where McIDAS-V is installed.

b. Run the example.py script.

For Unix, type:

./runMcV –script <local path>/Scripting/example.py

For Windows type:

runMcV.bat –script <local path>/Scripting/example.py

c. From your browser, view the file <local path>/Scripting/IR-Blizzard.jpg that was created from example.py.

Applying Formulas in a McIDAS-V Script

Scripts are also useful for applying formulas to data. The file <local path>/Scripting/formula.py is an example script showing the use of formulas

in McIDAS-V scripting. For this part of the tutorial, we will be using data from the Joplin, Missouri tornado case from 2011.

Note: If you have not already done so, create the Joplin GOES 13 dataset in the local ADDE Data Manager with JOPLIN/GOES13 using

<local path>/Scripting/joplin-areas.

Page 10 of 20

McIDAS-V Tutorial – An Introduction to Jython Scripting June 2012 – McIDAS-V version 1.2

26. Open a text editor (e.g., gedit, vi, Wordpad), and edit the file to run in your environment.

a. Find the following line: myuser='username', and change ‘username’ to the name of your user.

b. Find the line for your appropriate OS, uncomment the line and update if necessary.

c. View the formula.py file. There are five lines that load the data, subtract the IR data from the Water Vapor data, and create the product

irMetadata, irData= getADDEImage(band=4, **parms)

- gets the IR meta data and data

wvMetadata, wvData= getADDEImage(band=3, **parms)

 - gets the Water Vapor meta data and data

productData= sub(wvData,irData)

 - subtracts the IR data from the Water Vapor data

import visad.meteorology.NavigatedImage as NavigatedImage

navigatedProduct= NavigatedImage(productData, wvData.getStartTime(), "wvData minus irData")

 - creates a new product to include the start time and a title

27. Run the McIDAS-V script using the –script flag.

a. Open a terminal and change directory to the directory where McIDAS-V is installed.

b. Run the formula.py script.

For Unix, type:

./runMcV –script <local path>/Scripting/formula.py

For Windows type:

runMcV.bat –script <local path>/Scripting/formula.py

c. From your browser, view the file <local path>/Scripting/product-image.gif that was created from formula.py.

Page 11 of 20

McIDAS-V Tutorial – An Introduction to Jython Scripting June 2012 – McIDAS-V version 1.2

Creating Movies in a McIDAS-V Script

28. In previous examples, you have created a single image. You can also create movies that contain loops of images. The file

<local path>/Scripting/movie.py is an example script showing the creation of movie loops in McIDAS-V scripting.

29. Open a text editor (e.g., gedit, vi, Wordpad), and edit the file to run in your environment.

a. Find the following line: myuser='username', and change ‘username’ to the name of your user.

b. Find the line for your appropriate OS, uncomment the line and update if necessary.

c. View the movie.py file. To create a loop of images, load them one at a time with separate getADDEImage calls.

myLoop=[]

- initializes the python list, allowing the list to grow with added images

for pos in range(-4,1):

 irMetadata, myImages=getADDEImage(position=(pos),band=4,unit='BRIT',**parms)

 myLoop.append(myImages)

- loops through the five dataset positions from -4 to 0. When the incrementing gets to 1, it exits the loop.

irLayer=panel[0].createLayer('Image Sequence Display', myLoop)

 - creates a layer as an Image Sequence Display, which creates a loop of images instead of a single image as before with Image Display

30. Run the McIDAS-V script using the –script flag.

a. Open a terminal and change directory to the directory where McIDAS-V is installed. Run the movie.py script.

For Unix, type:

./runMcV –script <local path>/Scripting/movie.py

For Windows type:

runMcV.bat –script <local path>/Scripting/movie.py

b. From your browser, view the file <local path>/Scripting/ir-loop.gif that was created from movie.py.

Page 12 of 20

McIDAS-V Tutorial – An Introduction to Jython Scripting June 2012 – McIDAS-V version 1.2

Calculating Statistics in a McIDAS-V Script

31. Calculating statistics for data is also important. McIDAS-V uses the visAD statistics package to calculate statistics. The file

<local path>/Scripting/stats.py is an example script showing statistics calculations in McIDAS-V scripting.

32. Open a text editor (e.g., gedit, vi, Wordpad), and edit the file to run in your environment.

a. Find the following line: myuser='username', and change ‘username’ to the name of your user.

b. Find the line for your appropriate OS, uncomment the line and update if necessary.

c. View the stats.py file. To calculate statistics on your data, you’ll need to pass the data into the statistics package. To do this, set the

output files, loop through the images, pass the data into the statistics package, and output the statistics to a file.

outputFile = open(fileDir+"stats.txt", "w")

csvFile = open(fileDir+"stats.csv", "w")

 - open a text file and a csv file

csvFile.write("Time,latitude,longitude,geometricMean,min,median,max,kurtosis,skewness,stdDev,variance\n")

 - writes a header line to the csv file

csvData = csv.writer(csvFile, delimiter=",")

 - defines how to delimit the data going to the csv file

stats=Statistics(irData)

 - passes the data to the statistics package

outputFile.write(" std dev: %s \n" % (stats.standardDeviation()))

 - writes the statistic to the output text file

csvData.writerow([theTime, "43.0", "-89.0", stats.geometricMean(), stats.min(), stats.median(), stats.max(), stats.kurtosis(),

 stats.numPoints(), stats.skewness(), stats.standardDeviation(), stats.variance()])

 - writes the statistics to the csv file

Page 13 of 20

McIDAS-V Tutorial – An Introduction to Jython Scripting June 2012 – McIDAS-V version 1.2

33. Run the McIDAS-V script using the –script flag.

a. Open a terminal and change directory to the directory where McIDAS-V is installed.

b. Run the stats.py script.

For Unix, type:

./runMcV –script <local path>/Scripting/stats.py

For Windows type:

runMcV.bat –script <local path>/Scripting/stats.py

34. You can use the statistics created by McIDAS-V in other software packages, or you can plot the statistics values on your McIDAS-V images.

a. Using Excel, open the csv file <local path>/Scripting/stats.csv, and do something like create a line graph of your statistics.

b. Using your text editor, open the text file <local path>/Scripting/stats.txt, and view the file.

Creating Your Own McIDAS-V Script

35. You now have all the tools necessary to write a script that creates a movie of product images. For this exercise, create a script that does the tasks

listed below:

a. uses the local ADDE JOPLIN GOES13 data

b. uses the exact size of the image

c. creates a movie that spans position numbers -4 to 0

d. subtracts band 4 temperature from band 3 temperatures

e. applies the color enhancement ‘Longwave Infrared Deep Convection'

f. stretches the data range to span from -2 to 2

g. sets the projection to the US state Missouri

h. changes the center point to 37N 94.5W

i. adds a layer label that includes the sensor type and time stamp

j. saves the movie

An example solution is available at <local path>/Scripting/formula-movie.py. However, before using it we recommend that you try to complete the

tasks on your own.

Page 14 of 20

McIDAS-V Tutorial – An Introduction to Jython Scripting June 2012 – McIDAS-V version 1.2

Files Used In This Tutorial

ADDE-dictionary.txt

Create a dictionary to be used with getADDEImage.

(remember the 4 space indentation is required)

addeParms = dict(

 debug=True,

 server='localhost:8112',

 dataset='BLIZZARD',

 size='ALL',

 mag=(1, 1),

 time=('18:01:00', '18:01:00'),

 day=('1993072'),

 unit='BRIT',

)

Make an ADDE request for infrared and visible data using keyword=parameter

pairs and the dictionary.

This assumes that BLIZZARD/G7-IR-4K and BLIZZARD/G7-VIS-4K are already

defined on your workstation in the local ADDE Data Manager

<local path>/Scripting/blizzard-areas/IR

and

<local path>/Scripting/blizzard-areas/VIS

desc = getDescriptor('BLIZZARD', 'G7-IR-4K')

irMetadata, irData = getADDEImage(descriptor=desc, band=8, **addeParms)

desc = getDescriptor('BLIZZARD', 'G7-VIS-4K')

visMetadata, visData = getADDEImage(descriptor=desc, band=1, **addeParms)

The ** before the dictionary tells python to evaluate the contents of the

dictionary and include the keyword=parameter pairs with the request to

getADDEImage. Note, the dictionary must be the last parameter specified.

Page 15 of 20

McIDAS-V Tutorial – An Introduction to Jython Scripting June 2012 – McIDAS-V version 1.2

example.py

Here is an example of a McIDAS-V script that does the following:

sets up parameters for an ADDE request

makes an ADDE request

creates a window with one panel

displays the data

changes the projection

applies an enhancement table

changes the center point

adds a layer label

annotates the image with an "L" for a Low pressure symbol

saves an output file

Setting up a variable to specify the location of your final images

makes your script easier to read and more portable when you share it

with other users.

myuser='username'

Windows XP example

imageDir=('C:\\Documents and Settings\\'+myuser+'\\McIDAS-V\\')

Windows 7 example

#imageDir=('C:\\Users\\'+myuser+'\\McIDAS-V\\')

UNIX example

#imageDir=('/home/'+myuser+'/McIDAS-V/')

OS X example

#imageDir=('/Users/'+myuser+'/Documents/McIDAS-V/')

The easiest way to make an ADDE request is to create a dictionary

that defines your parameters. Here we have a generic request:

adde_parms = dict(

 debug=True,

 server='localhost:8112',

 dataset='BLIZZARD',

 size='ALL',

 mag=(1, 1),

 time=('18:01:00', '18:01:00'),

 day=('1993072'),

 unit='BRIT',

)

Page 16 of 20

McIDAS-V Tutorial – An Introduction to Jython Scripting June 2012 – McIDAS-V version 1.2

Now make the request using the function getADDEImage.

This returns metadata and data objects.

desc = getDescriptor('BLIZZARD', 'G7-IR-4K')

ir_metadata,ir_data = getADDEImage(descriptor=desc,

 band=8,

 **adde_parms)

Create some strings from the metadata object to make it

easier to build our window and label the image.

bw_lines = ir_metadata['lines']/2

bw_eles = ir_metadata['elements']/2

ir_label = '%s %s' % (

 ir_metadata['sensor-type'],

 ir_metadata['nominal-time']

)

Build a window with a single panel

panel = buildWindow(height=bw_lines,width=bw_eles)

Create a layer from the infrared data object

ir_layer = panel[0].createLayer('Image Display', ir_data)

When changing attributes, some are panel based and

others are layer based. In the following steps, they are:

Change the projection (panel)

Turn off the wire frame box (panel)

Change the center point (panel)

Add an L to pinpoint the Low (panel)

Add a layer label (layer)

Apply an enhancement (layer)

Save the output file (panel)

panel[0].setProjection('US>CONUS')

panel[0].setWireframe(False)

panel[0].setCenter(35.5,-75.5, scale=1.0)

panel[0].annotate('L', line=353,element=398, size=24, color='Black')

panel[0].annotate('L', line=351,element=396, size=24, color='Red')

ir_layer.setLayerLabel(label=ir_label, size=14)

ir_layer.setEnhancement('Longwave Infrared Deep Convection')

panel[0].captureImage(imageDir+'IR-Blizzard.jpg')

Page 17 of 20

McIDAS-V Tutorial – An Introduction to Jython Scripting June 2012 – McIDAS-V version 1.2

formula.py

import visad.meteorology.NavigatedImage as NavigatedImage

Setting up a variable to specify the location of your final images

makes your script easier to read and more portable when you share it

with other users

myuser='username'

Windows XP example

imageDir=('C:\\Documents and Settings\\'+myuser+'\\McIDAS-V\\')

Windows 7 example

#imageDir=('C:\\Users\\'+myuser+'\\McIDAS-V\\')

UNIX example

#imageDir=('/home/'+myuser+'/McIDAS-V/')

OS X example

#imageDir=('/Users/'+myuser+'/Documents/McIDAS-V/')

Create a dictionary for requesting images

desc = getDescriptor('JOPLIN', 'GOES13')

parms = dict(

 debug=True,

 server='localhost:8112',

 dataset='JOPLIN',

 descriptor=desc,

 coordinateSystem=CoordinateSystems.LATLON,

 location=(37.15,-94.5),

 time=('23:45','23:45'),

 place=Places.CENTER,

 size=(1000, 2000),

 unit=’TEMP’,

)

irMetadata,irData=getADDEImage(band=4,**parms)

wvMetadata,wvData=getADDEImage(band=3,**parms)

productData=sub(wvData,irData)

navigatedProduct=NavigatedImage(productData, wvData.getStartTime(), "wvData minus irData")

Build a window

productPanel = buildWindow(height=600,width=900)

productLayer = productPanel[0].createLayer('Image Display', navigatedProduct)

productLayer.setEnhancement('Longwave Infrared Deep Convection', range=(-2,2))

productPanel[0].setProjection('US>States>Midwest>Missouri')

productPanel[0].setCenter(37,-94.5,scale=1.0)

productPanel[0].captureImage(imageDir+'product-image.gif')

Page 18 of 20

McIDAS-V Tutorial – An Introduction to Jython Scripting June 2012 – McIDAS-V version 1.2

movie.py

Setting up a variable to specify the location of your final images

makes your script easier to read and more portable when you share it

with other users

myuser='username'

Windows XP example

imageDir=('C:\\Documents and Settings\\'+myuser+'\\McIDAS-V\\')

Windows 7 example

#imageDir=('C:\\Users\\'+myuser+'\\McIDAS-V\\')

UNIX example

#imageDir=('/home/'+myuser+'/McIDAS-V/')

OS X example

#imageDir=('/Users/'+myuser+'/Documents/McIDAS-V/')

Create a dictionary for requesting images

desc = getDescriptor('JOPLIN', 'GOES13')

parms = dict(

 debug=True,

 server='localhost:8112',

 dataset='JOPLIN',

 descriptor=desc,

 coordinateSystem=CoordinateSystems.LATLON,

 location=(37.15,-94.5),

 place=Places.CENTER,

 size=(1000, 2000),

)

Initialize a python list

myLoop=[]

Loop through 5 images in the Joplin dataset

for pos in range(-4,1):

 irMetadata, myImages=getADDEImage(position=(pos),band=4,unit='BRIT',**parms)

 myLoop.append(myImages)

Build a window

panel = buildWindow(height=600,width=900)

irLayer=panel[0].createLayer('Image Sequence Display', myLoop)

irLayer.setLayerLabel(label='%displayname% %timestamp%')

writeMovie(imageDir+'ir-loop.gif')

Page 19 of 20

McIDAS-V Tutorial – An Introduction to Jython Scripting June 2012 – McIDAS-V version 1.2

stats.py

Setting up a variable to specify the location of your final images

makes your script easier to read and more portable when you share it

with other users

import csv

myuser="user"

Windows XP

fileDir=("C:\\Documents and Settings\\"+myuser+"\\McIDAS-V\\")

Unix

#fileDir=("/home/"+myuser+"/McIDAS-V/")

OS X example

#imageDir=('/Users/'+myuser+'/Documents/McIDAS-V/')

The easiest way to make an ADDE request is to create a dictionary

That defines your parameters. Here we a generic request

desc = getDescriptor('JOPLIN', 'GOES13')

adde_parms = dict(

 debug=True,

 server="localhost:8112",

 dataset="JOPLIN",

 descriptor=desc,

 place=Places.CENTER,

 size=(100,200),

 coordinateSystem=CoordinateSystems.LATLON,

 location=(37.0,-94.5),

 mag=(1, 1),

 unit="TEMP",

)

outputFile = open(fileDir+"stats.txt", "w")

csvFile = open(fileDir+"stats.csv", "w")

csvFile.write("Time,latitude,longitude,geometricMean,min,median,max,kurtosis,numPoints,skewness,stdDev,variance\n")

csvData = csv.writer(csvFile, delimiter=",")

Page 20 of 20

McIDAS-V Tutorial – An Introduction to Jython Scripting June 2012 – McIDAS-V version 1.2

Now make the request using the function getADDEImage

This returns a data and metadata object

for pos in range(-4,1):

 irMetadata,irData = getADDEImage(position=(pos),band=4, **adde_parms)

pass the irData into the Statistics package

 stats=Statistics(irData)

open a file and write out the statistics data

 outputFile.write(" stat and value for: %s \n" % irMetadata["nominal-time"])

 outputFile.write(" std dev: %s \n" % (stats.standardDeviation()))

 outputFile.write(" geometric mean: %s \n" % stats.geometricMean())

 outputFile.write(" kurtosis: %s \n" % stats.kurtosis())

 outputFile.write(" num points: %s \n" % stats.numPoints())

 outputFile.write(" skewness: %s \n" % stats.skewness())

 outputFile.write(" std dev: %s \n" % stats.standardDeviation())

 outputFile.write(" variance: %s \n" % stats.variance())

 outputFile.write("\n")

import the cvs library for writing out the

statistics values

 theTime = str(irMetadata["nominal-time"])[11:16]

 csvData.writerow([theTime, "43.0", "-89.0", stats.geometricMean(), stats.min(), stats.median(), stats.max(),

 stats.kurtosis(), stats.numPoints(), stats.skewness(), stats.standardDeviation(), stats.variance()])

csvFile.close()

outputFile.close()

