

Jordan Gerth Cooperative Institute for Meteorological Satellite Studies (CIMSS), University of Wisconsin

Webinar, 16 May 2018 Virtual Alaska Weather Symposia, Alaska Center for Climate Assessment and Policy (ACCAP)

E-mail: <u>Jordan.Gerth@noaa.gov</u> Twitter: @jjgerth

New capabilities, opportunities, and challenges using GOES-17 in Alaska

Source: goes-r.gov

Future GOES-R/S constellation

GOES WESTGOES EAST137° West75° West

GOES Launch / Checkout – 90° West Storage Position – 105° West

-90

60

30

120

30

Advanced Baseline Imager (ABI)

Approximate Pixel Area (Nominally 1km at Nadir) from -137.0 West

Fig. 3. Left: LZA by latitude. Right: pixel size by latitude along the longitude line of satellite nadir.

	Approximate 0.64 μm Resolution	Approximate 10.3 μm Resolution
Anchorage, AK	2 km	7 km
Fairbanks, AK	2 km	8 km
Juneau, AK	1.5 km	5 km

GOES-R (16) as GOES-East GOES-15 as GOES-West

The spatial resolution from the GOES-R ABI is better than current GOES for Puerto Rico and the eastern contiguous United States to 120 degrees West.

GOES-S (17) as GOES-West

GOES-West (137W) Proposed CONUS (Centered at 30N,137W)

Alaska Benefits of GOES-17

- Higher spatial resolution compared to legacy GOES (GOES-15)
- More spectral bands (from 5 to 16)
- Consistent fifteen-minute full disk ABI imagery (at least) will include Alaska and adjacent areas
- Potential for one-minute imagery with configurable mesoscale sectors (generally NWS only)
- Position of satellite at 137 W is ideal for Alaska

10–Apr–2017 17:15:00 UTC GOES–15 Imager Infrared Window

10-Apr-2017 17:15:26 UTC GOES-16 ABI Infrared Window

Alaska Challenges for GOES-17

- Significant parallax, high zenith angles
- No Geostationary Lightning Mapper (GLM) coverage of Alaska (south of 52 N only)
- No five-minute "CONUS" coverage from ABI
- Solar avoidance zones
- Limited coverage from most ABI derived products
- Limited use of visible and near-infrared bands during winter months due to solar illumination

Solar Avoidance Zone

- Lost imagery due to solar contamination.
- Previously known as "Keep Out Zone", occurs when satellite is in Earth's shadow.
- Current ABI processing causes downstream users to see unusual imagery artifacts when data from one or more spectral bands are missing.

Parallax in Alaska

Parallax distance of 10000-foot clouds

Parallax distance of 50000-foot clouds

Correspondence between colors and distance is different between the two images

MTSAT vs. Himawari-8 Visible

30-minute refresh vs. 2.5-minute refresh over Kamchatka Peninsula, 25 March 2015

 $\overline{\lambda}$

Advanced Baseline Imager Spectral Bands														
Approx. Central Wavelength (μm)	Band	Туре	Nickname	Best Spatial Res.	AWIPS Min	AWIPS (/ ABI) Max*	Bit Depth	Scale Factor	Worst SNR or NEdT (300 K)					
0.47	1	Visible	Blue	Blue 1 0 1.3 12										
0.64	2	Visible	Red	Red 0.5 0 1.3 12										
0.86	3	Near-Infrared	Veggie	1	0	1.3	12	2.4x10 ⁻⁴	0.0015					
1.4	4	Near-Infrared	Cirrus	2	0	0.5/1.3	12	2.4x10 ⁻⁴	0.0010					
1.6	5	Near-Infrared	F Snow/Ice	Snow/Ice 1 0 1.3 12		2.4x10 ⁻⁴	0.0017							
2.2	6	Near-Infrared	R Cloud Particle Size	2	0	1.3	12	2.4x10 ⁻⁴	0.0009					
3.9	7	Infrared	E Shortwave Window	2	-100 °C	127 °C/138 °C	14	0.0138	0.064					
6.2	8	Infrared	Upper-level Water Vapor	2	-100 °C	61/38 °C	12	0.0393	0.016					
6.9	9	Infrared	Mid-level Water Vapor	2	-100 °C	61/38 °C	12	0.0393	0.015					
7.3	10	Infrared	Lower-level Water Vapor	2	-100 °C	61/58 °C	12	0.0393	0.023					
8.4	11	Infrared	Cloud-Top Phase	2	-100 °C	61/68 °C	12	0.0393	0.022					
9.6	12	Infrared	Ozone	2	-100 °C	61/38 °C	12	0.0393	0.021					
10.3	13	Infrared	"Clean" Longwave Window	2	-100 °C	61/68 °C	12	0.0393	0.032					
11.2	14	Infrared	Longwave Window	2	-100 °C	61/68 °C	12	0.0393	0.022					
12.3	15	Infrared	"Dirty" Longwave Window	2	-100 °C	61/68 °C	12	0.0393	0.031					
13.3	16	Infrared	CO ₂ Longwave	2	-100 °C	61/45 °C	12	0.0393	0.068					

ABI FM1 v2 (Jan2014) Visible SRFs & Atmospheric Transmittance

ABIVisible Bands

- Current GOES imager: one band at 1 km resolution
- GOES-R ABI: one band at 0.5 km resolution, one band at 1 km resolution
- Benefits to the operational meteorologist:
 - Better resolution of cloud features and cloudenhanced boundaries
 - Easier monitoring of smoke and aerosols
 - Ability to produce pseudo-true color imagery

09-Apr-2018 12:00:41 UTC

ABI Visible band

- 12:00:41 Antarctica, Local Zenith Angle ≅ 75 degrees, similar to interior Alaska from GOES-17

UTC

- 09-APR-2018

NOAA ASPB

GOES-16:

BAND=2 0.64

ABI/AHI Band 1 (0.47 μm) Example from the Advanced Himawari Imager

Smoke over Siberia

ABI Band 2 (0.64 µm)

Example from the Advanced Himawari Imager (AHI)

ABI Near-Infrared Bands

- Current GOES imager: No near-infrared bands
- GOES-R ABI: Four near-infrared bands, two at 1 km resolution, two at 2 km resolution
- Benefits to the operational meteorologist:
 - Depiction of vegetation health/coverage
 - Sharper coastlines and easier detection of inland river flooding
 - **7** Easier cirrus cloud and cloud-phase discrimination
 - Nocturnal fire detection

ABI FM1 v2 (Jan2014) Visible SRFs & Various ASTER Reflectance Spectra

California Rim Fire

VIIRS M7 band (0.865 μ m) on 13 August 2013 (left) compared to 30 August 2013 (right) Similar imagery will be provided from ABI Band 3 (0.86 μ m)

ABI Band 4 (1.4 μ m)

Example from the Visible Infrared Imaging Radiometer Suite (VIIRS)

In dry environments, the ABI Band 4 is useful for identifying areas of dust, compared to traditional visible imagery.

ABI/AHI Band 5 (1.6 μm) Example from the Advanced Himawari Imager

Water clouds Ice clouds

HIMAWARI-8 1.60 UM 29 MAR 15 22:00 UTC UW SSEC CIMSS

0.65 micron reflectance

MODIS 1.6 μm

Figure from A. Heidinger, ASPB

GOES-16 BAND=5 (1.61 UM) (NEAR-IR) 02-APR-2018 (2018092) 12:00:39UTC

GOES-16 BAND=2 (0.64 UM) (VISIBLE) 02-APR-2018 (2018092) 12:00:39UTC

2.5

Wavelength (um)

HIMAWARI-8

3.0

23 MAR 15

3.5

4ñ

14:20UTC

Why can we observe hot fires in the near-infrared bands?

14:20UTC

HIMAWARI-8

HIMAWARI-8

23 MAR 15

 Max Temp=387K
 Max Albedo=16%
 Max Albedo=50%

 3.9 μm
 1.6 μm
 2.2 μm

23 MAR 15

1.0

1.5

14:20UTC

2.0

Himawari images over Australia on 23 March 2015 of bands 3.9 μ m, 1.6 μ m, and 2.2 μ m depict "hot spot" fires. The AHI 1.6 μ m is nominally 2 km, while that ABI band is 1 km.

ABI Infrared Bands

- Current GOES imager: four bands at 4 km resolution
- **♂** GOES-R ABI: ten bands at 2 km resolution
- Benefits to the operational meteorologist:
 - **7** Fire detection with better thermal signal
 - Resolution of middle and upper tropospheric water vapor features
 - Detection of sulfur dioxide and upper-atmosphere ozone
 - Several window channels for discerning low-level water vapor gradients

Pyrocumulonimbus near Lake Baikal (southern Russia)

15 July 2015 Local zenith angle ≅ 70 degrees from Himawari-8/9, similar to southern Alaska from GOES-17

Himawari-8 view of transiting mid-latitude cyclones East of Japan, 14 March 2016, Starting 12:00 UTC

Source: CIMSS Satellite Blog (http://cimss.ssec.wisc.edu/goes/blog/)

Himawari-8 view of Mount Pavlof eruption Alaska Peninsula, 28 March 2016, Starting 0:00 UTC

Source: CIMSS Satellite Blog (http://cimss.ssec.wisc.edu/goes/blog/)

View Angle Considerations

Depends on the absorptive molecular species in each band

ABI Bands of Interest

to Marine and Arctic Weather Community

Reflectance: ABI Bands 2 (0.64 μm), 3 (0.86 μm), and 5 (1.6 μm)

Brightness Temperature: ABI Bands 13 (10.3 μm), 14 (11.2 μm), and 15 (12.3 μm)

New ABI bands collectively enable better discrimination between land, sea, ice, water cloud, and ice cloud.

Source: http://www.icess.ucsb.edu/modis/EMIS/html/em.html

Advanced Baseline Imager Spectral Bands

AHI Band	AHI Approximate Central Wavelength (μm)	ABI Approximate Central Wavelength (μm)	ABI Band	Туре	Nickname
1	0.47	0.47	1	Visible	Blue
2	0.51			Visible	Green
3	0.64	0.64	2	Visible	Red
4	0.86	0.86	3	Near-Infrared	Veggie
		1.4	4	Near-Infrared	Cirrus
5	1.6	F 1.6	5	Near-Infrared	Snow/Ice
6	2.3	R 2.2	6	Near-Infrared	Cloud Particle Size
7	3.9	E 3.9	7	Infrared	Shortwave Window
8	6.2	6.2	8	Infrared	Upper-level Water Vapor
9	6.9	6.9	9	Infrared	Mid-level Water Vapor
10	7.3	7.3	10	Infrared	Lower-level Water Vapor
11	8.6	8.4	11	Infrared	Cloud-Top Phase
12	9.6	9.6	12	Infrared	Ozone
13	10.4	10.3	13	Infrared	"Clean" Longwave Window
14	11.2	11.2	14	Infrared	Longwave Window
15	12.4	12.3	15	Infrared	"Dirty" Longwave Window
16	13.3	13.3	16	Infrared	CO ₂ Longwave

Rows in bold are similar bands to current GOES

Imagery Bit Depths

- Bit depth establishes the precision of the data. The higher the bit depth, the higher the precision.
- Previously, all imagery was displayed in AWIPS as eight bits (2⁸ = 256 discrete values).
- New imagery is primarily 12 bits:
 - ↗ 14 bits (16,384 discrete values)
 - Band 7 (for fires, greater range)
 - **7** 12 bits (4,096 discrete values)
 - All other bands
- Be aware of observable minimum and maximum values.

DOE-4 Simulated ABI Derived/Baseline Products in AWIPS II Only certain baseline products are shown. This is not the complete set. Credit: CIMSS/ASPB

Defined Extent of Derived Products

No Alaska Coverage (Max LZA < 65 degrees only)

- Aerosol Detection
- Aerosol Optical Depth
- Volcanic Ash: Detection and Height
- Cloud Top Height
- Cloud Top Pressure
- Atmospheric Profiles
- Derived Stability Indices
- Total Precipitable Water
- Derived Motion Winds
- Snow Cover

 Cloud Optical Depth Cloud Particle Size Distribution

Portion of southeastern

Alaska Only (65 \leq Max LZA <

• Cloud Top Phase

70 degrees)

- Cloud Top Temperature
- Fire / Hot Spot Characterization
- Sea Surface Temperature

• Rainfall Rate/QPE

Southeastern Alaska and

Partial Aleutian Arc (Max

Clear Sky Masks

LZA = 70 degrees)

 Land Surface Temperature

Probable Extent of Derived Products

Pc Al de	ortion of southeastern aska Only (Max LZA < 70 egrees)	Southeastern Alaska and Partial Aleutian Arc (Max LZA = 70 degrees)	Most of Alaska (Max LZA = 80 degrees)							
•	Cloud Optical Depth Cloud Particle Size Distribution Sea Surface Temperature	 Cloud Top Height Cloud Top Pressure Cloud Top Temperature Clear Sky Masks Rainfall Rate / QPE Land Surface Temperature Derived Stability Indices Total Precipitable Water 	 Aerosol Detection Volcanic Ash: Detection and Height Cloud Top Phase Fire / Hot Spot Characterization (Fire Power only) 							

No Alaska Coverage (Max LZA < 65 degrees only): Aerosol Optical Depth **Unknown:** Atmospheric Profiles, Derived Motion Winds, Snow Cover

ABI Quick Reference Guides

Also available on AWIPS

Band Central.	Bans, Mavelence	IDe NUMBER 301	Band Wichname	Burn	Cirr. Scars	Clour and co	Cloi. heights	Cloud hase	Cloud (Walton)	Clouds over 1, over 1, ice	Conic over und	Con Con	Dure Chion	Extre New Cells	Fired Dical	Eloc.	Foong	(ce,	Satricer	Skin aled Soil	Smort temperat	Show whe	Tron: Coller	Trong Cyclo	Turbause for	Volca Ulance	Warie eruns	War Vapor (emic	Wate Vapor, Low trop	er Vapor Mid top
0.47	1	Visible	Blue																		x									
0.64	2	Visible	Red						x			x	x								x	х				х				
0.86	3	Near-Infrared	Veggie	x						х		x				x														
1.4	4	Near-Infrared	Cirrus		x	x							x																	
1.6	5	Near-Infrared	Snow/Ice				х	x							x							х								
2.2	6	Near-Infrared	Cloud Particle Size				х	x							x															
3.9	7	Infrared	Shortwave Window												x		x													
6.2	8	Infrared	Upper-level Water Vapor											x										х	x			x	х	
6.9	9	Infrared	Mid-level Water Vapor																						х			х	х	
7.3	10	Infrared	Lower-level Water Vapor			x								x										х	х	х	х	х		
8.4	11	Infrared	Cloud-Top Phase										x													х				
9.6	12	Infrared	Ozone																					?	?					
10.3	13	Infrared	"Clean" Longwave Window				x	x		х	х	x	x	x			x	x	x	x			х				х			
11.2	14	Infrared	Longwave Window				↑	↑		↑	♠	↑	↑	↑			↑	↑	↑	↑			♠				↑			
12.3	15	Infrared	"Dirty" Longwave Window				x						x					x									х			
13.3	16	Infrared	CO ₂ Longwave		x	x																								

Satellite Information Familiarization Tool (SIFT)

Open Source Software from the Cooperative Institute for Meteorological Satellite Studies

- Free downloads and installers available for Windows, Mac, and Linux operating systems
- Can display imagery from ABI (downloadable from CLASS) and AHI
- Creates differences and RGBs
- Supports training for the NWS currently, with increasing international interest
- Accolades from early users
- https://sift.ssec.wisc.edu/

SIFT Features and Functions

Point Probe Results

Tools Pan/Zoom Point Probe Area Selector

Map Display

Powered by OpenGL/VisPy Panning and Zooming **Dynamic Resolution Configurable Outline Colors**

Concluding Remarks

- GOES-17 should reach "West" position by November 2018. Length of the transition period is unknown.
- **Beginning:** Improvements to imagery are only the start.
- Continuity: The same visible and infrared window imagery that has been a staple of the short-term weather analysis will remain predominant in use.
- Opportunity: Use specialized knowledge to apply the remaining bands in an as-needed basis based on local analysis/forecast challenges and decision support needs.

GOES-R ABI "First Light"

Visible

Near-Infrared

NIR/Phase

IR/WV

IR/WV

IR/Ozone

Infrared/Window

GOES-17 Post-Launch Science Product Validation Schedule

Note: All dates are coordinated with Flight/MOST PLT SOE group and are subject to change.

Contributors

- Tim Schmit
 - NOAA Advanced Satellite Products Branch
- Mat Gunshor
 - Cooperative Institute for Meteorological Satellite Studies
- James Nelson III
 - Cooperative Institute for Meteorological Satellite Studies
- Others

 \leftarrow

🗋 Arctic « CIMSS Satellite Blog 🛛 🗙

C i cimss.ssec.wisc.edu/goes/blog/archives/category/arctic

Himawari-8 Lower-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images

☆ 👇 🖸 🗄

» Convective Initiation

CIMSS Satellite Blog: http://cimss.ssec.wisc.edu/goes/blog/

0

Questions? Comments?

Send me an e-mail:

Jordan.Gerth@noaa.gov

