

 Hard copies uncontrolled. Verify effective date prior to use.

Advanced Weather Interactive Processing System II
(AWIPS II): Software System Design Description

Document No. AWP.DSN.A2.SSDD-05.00

21 November 2014

Prepared Under

Contract DG133W-05-CQ-1067

Advanced Weather Interactive Processing System (AWIPS)

Operations and Maintenance

Submitted to:

Mr. Kenneth Brumfiel

Contracting Officer

U.S. Department of Commerce

National Oceanic and Atmospheric Administration

Eastern Region Acquisition Division

Room 815

200 Granby Street

Norfolk, Virginia 23510

By:

Raytheon Technical Services Company LLC

8401 Colesville Road, Suite 800

Silver Spring, MD 20910

AWIPS II
Software System Design Description (Ver. 5)

 ii
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

REVISION HISTORY

Document No. Publication Date Section(s) Affected
Description of

Change(s)

AWP.DSN.A2.SSDD-01.00 13 April 2012 N/A (Release 1) N/A (Release 1)

AWP.DSN.A2.SSDD-02.00 30 April 2013 Section 1: Overview

E. Adding COTS Projects

Updated text

Section 2: Common

M. Python Job Coordinator

New

Section 4: CAVE

C. How to Write Dialogs for
CAVE Classes

New

AWP.DSN.A2.SSDD-03.00 1 November 2013 Front Matter Newly updated

 Preface Updated text

 Section 1. Overview Updated text

 Section 2. Common

N. Data Access Framework

Updated text.

Includes new

Section 2.N

 Section 5. Data Flow New

 Appendix A New

AWP.DSN.A2.SSDD-04.00 12 May 2014 Cover Page Updated

 Preface:

SSDD Motivation,

Assumptions, Content

Added text

 Section 1:Overview

Common RPM Commands

Updated text

 Acronyms and Abbreviations Updated

AWP.DSN.A2.SSDD-05.00 21 November 2014 N/A Bi-Annual Review

AWIPS II
Software System Design Description (Ver. 5)

 iii
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

TABLE OF CONTENTS

 Page

PREFACE ... x

SSDD Motivation, Assumptions, Contents .. x

Motivation ... x

Assumptions .. x

SSDD Contents ... x

AWIPS II Environment, Development Approach, Driving Requirements.............................. xi

System Operational Environment .. xi

Approach to Development ... xi

Driving Requirements of AWIPS II .. xi

1. OVERVIEW ... 1

A. AWIPS II Architecture ... 1

1. EDEX Architecture ... 1

2. CAVE Architecture ... 1

3. Layering and Interfaces... 2

B. Plug-ins ... 3

1. Core Plug-ins .. 3

2. Plug-in Structuring .. 4

3. Plug-in Naming ... 5

C. Use of ADE ... 6

1. Plug-in Creation .. 6

2. Plug-in Dependency Management .. 13

3. Helpful Eclipse Shortcuts ... 15

4. Setup of Code Formatters and Save Actions .. 18

D. RPM Overview ... 21

1. Common RPM Commands ... 21

2. Building RPMs.. 22

3. Using YUM ... 23

4. The AWIPS II RPMs .. 24

2. COMMON... 25

A. EDEX, Common, and Viz (Visualization) Plug-Ins ... 25

1. EDEX Plug-ins.. 25

AWIPS II
Software System Design Description (Ver. 5)

 iv
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

2. Common Plug-ins ... 27

3. Viz Plug-ins .. 30

B. UFStatus .. 36

C. Localization... 37

1. Localization Levels ... 38

2. Localization Types .. 38

3. Localization Context ... 39

4. Localization Code ... 39

5. Adding New Directories to the Localization Perspective ... 40

D. Dynamic Serialization ... 42

1. Serialization Adapters ... 43

2. Using Dynamic Serialize with Python .. 44

3. Caveats on the Python Interface ... 44

4. Converting Java Classes to Python ... 45

5. Python Serialization Adapters ... 45

E. JAXB Serialization ... 46

F. TopoAccess ... 49

G. JMS/QPID ... 49

H. Creating a New PlugInDataObject Derived Class .. 50

1. Description of the PluginDataObject Base Class .. 50

2. Description of a Minimally Derived PluginDataObject ... 51

3. Common Usage ... 54

4. Creating Derived Class ... 55

I. Point Data.. 57

1. PointDataContainer ... 58

2. Dao .. 58

3. Descriptions .. 58

5. Decoder ... 60

6. Requesting Data on CAVE ... 60

7. PlotResource2 ... 60

J. GeoTools/JTS Use – Best Practices .. 61

K. Python ... 62

1. Gotchas ... 63

2. Python/Java Code.. 63

AWIPS II
Software System Design Description (Ver. 5)

 v
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

3. Transforming Between Java Arrays and Numpy Arrays .. 63

L. IDataStore ... 64

1. PyPIES .. 64

M. Python Job Coordinator .. 66

N. Data Access Framework ... 68

1. Writing a New Factory.. 68

2. Registering the Factory with the Framework.. 69

3. Retrieving Data Using the Factory : ... 70

3. EDEX .. 72

A. EDEX Camel Spring ... 72

1. EDEX Modes .. 72

2. Spring XML Files ... 73

B. Camel EDEX Adapters ... 74

1. Important Camel-EDEX Classes .. 74

2. DataUriAggregator ... 74

3. FileToBytesConverter ... 75

4. FileToString .. 75

5. MessageProducer .. 75

6. NotifySeparator ... 76

7. ProcessUtil .. 76

8. SetIngestHeaderFields .. 77

9. StringToFile .. 77

10. ToDataURI .. 78

11. UUIDGenerator... 78

C. Thread Pools: Usage of Generic Decoder ... 78

D. EDEX Data Routing ... 79

1. indexAlert Route ... 79

E. Persistence, Hibernate, Postgres, and CoreDao .. 80

1. Postgres Database (v9.2.4) .. 80

2. Hibernate ... 82

F. EDEX Decoder Plug-ins ... 86

1. Generic Decoder ... 86

2. Camel-Spring Configuration xml ... 90

G. PluginRegistry... 93

AWIPS II
Software System Design Description (Ver. 5)

 vi
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

1. Properties Exposed by PluginProperties ... 94

2. Plug-in Startup .. 95

H. AWIPS II Data Purging .. 98

1. Configuration .. 98

2. Purge Execution Flow ... 99

3. Default Purge Behavior... 99

4. Purge Rules ... 102

I. Request JVM ... 102

1. Thrift Request and Handler API ... 102

2. Creating a Request .. 102

3. Creating a Request Handler .. 103

4. Sending the Request with Java from CAVE ... 104

5. Sending the Request with Python ... 105

J. Clustering .. 105

K. AWIPS II deploy-install.xml .. 106

L. Logging Configuration.. 107

1. Configured Via XML Files ... 107

2. Appenders ... 107

3. XML Entries Explained .. 108

M. Uframe feature.xml ... 110

4. CAVE .. 111

A. RCP Framework.. 111

1. Views .. 111

2. Perspectives... 111

3. Editors ... 112

4. Extension Points.. 112

5. Plug-ins ... 114

6. SWT/JFace .. 114

B. SWT .. 114

1. Display Object .. 114

2. Shell Object ... 115

3. Disposing of Widgets/Objects .. 115

4. Layout Overview .. 116

5. Composite/Group Overview ... 118

AWIPS II
Software System Design Description (Ver. 5)

 vii
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

6. Widget/Control Overview ... 118

7. Menu & MenuItem ... 124

8. Events & Listeners .. 125

9. Font Overview .. 125

10. Color Overview ... 126

11. Built-in SWT Dialogs ... 126

12. CaveSWTDialog ... 127

13. Gotchas ... 128

14. SWT References ... 128

C. How to Write Dialogs for CAVE Classes... 128

1. Problems with Blocking Dialogs .. 128

2. Converting to CAVESWTDialog ... 129

3. Converting to CaveJFACEDDialog .. 133

4. Get Results from a Dialog Using the ICloseCallback Interface 134

5. Making a Non-blocking Dialog a Standalone Blocking Dialog 135

D. Menu Customization ... 137

1. index.xml .. 137

2. Using the Localization Perspective ... 137

3. Command Menu Items .. 137

4. Bundle Menu Items ... 137

5. Title Menu Items ... 137

6. Separators .. 138

7. Submenus .. 138

8. Including Other Menu Files .. 138

9. Variable Substitution .. 138

10. Automatically Customized Menus .. 139

E. CAVE Resources .. 139

1. AbstractVizResource .. 139

2. AbstractResourceData vs. AbstractRequestableResourceData 140

F. CAVE Alert Observer ... 142

G. CAVE Features ... 145

1. Creating ... 145

2. Modifying ... 146

3. Building/Deploying... 146

AWIPS II
Software System Design Description (Ver. 5)

 viii
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

H. CAVE Maps .. 147

1. Importing Shapefiles ... 147

2. How to Query Maps Database .. 147

I. CAVE: Right-Clicking In Editor .. 148

1. AbstractRightClickAction... 149

2. D2DPerspectiveManager .. 149

J. CAVE: Right-Clicking on the Legends .. 150

1. Adding Menu Items .. 150

K. Derived Parameters ... 151

1. The XML Files .. 151

2. The Python Files ... 152

3. Advanced XML .. 152

4. The Derived Parameter Tree and Inventory .. 154

L. CAVE Graphics Tips .. 155

5. DATA FLOW .. 158

A. Standard AWIPS Data and Notification Flow .. 158

B. How Does Ingested Data Get Into CAVE?... 159

C. Special Case Ingest Using Manual Dropped-in Files ... 160

APPENDIX A. ACRONYMS AND ABBREVIATIONS ... A-1

LIST OF TABLES

Page

Table 1-1. Tags Commonly Used in Building RPMs ... 22

LIST OF FIGURES

Page

Figure 1-1. Dependency Structure .. 5

Figure 1-2. Plug-in Development/Plug-in Project .. 8

Figure 1-3. Plug-in Project/Naming .. 9

Figure 1-4. Plug-in Project / Content .. 10

AWIPS II
Software System Design Description (Ver. 5)

 ix
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

Figure 1-5. JAR Selection ... 11

Figure 1-6. Plug-in Project Properties .. 12

Figure 1-7. Manifest Dependencies Tab ... 13

Figure 1-8. Runtime Tab ... 14

Figure 1-9. Type Hierarchy... 15

Figure 1-10. Shortcut List ... 16

Figure 1-11. Example Open Type Dialog ... 17

Figure 1-12. Example of Open Resource .. 18

Figure 1-13. Code Templates .. 19

Figure 1-14. Formatter .. 20

Figure 1-15. Save Actions... 20

Figure 2-1. Extension Point Selection .. 40

Figure 2-2. List of Extensions .. 41

Figure 2-3. ClimateDataFTPArgs.java Tab .. 47

Figure 2-4. GenScriptsDig.java Tab ... 48

Figure 2-5. PluginDataObject Class Hierarchy .. 51

Figure 2-6. Import Dialog: Select ... 56

Figure 2-7. Import Dialog: Import Projects .. 57

Figure 3-1. indexAlert Route .. 80

Figure 3-2. Parser Classes ... 88

Figure 3-3. Typical Sequence of Events During Lifetime of a Decoder Class............................. 89

Figure 3-4. Plug-in Registry ... 94

Figure 3-5. Plug-in Startup: System Initialization and Plug-in Initialization 96

Figure 4-1. Example: CAVE Alert Observer .. 143

Figure 4-2. Spring Configuration File (bufrmos-common.xml) ... 143

Figure 4-3. GFS Monitor Observer ... 144

Figure 4-4. Geospatial Data Generator ... 148

Figure 5-1. Standard AWIPS Data and Notification Flow ... 158

Figure 5-2. CAVE to EDEX Interface Through Thrift ... 160

Figure 5-3. Manual Ingest Data Flow Using Distribution Server ... 161

file:///C:/Users/isizemore/Documents/SSDD%203/AWP.DSN.A2.SSDD-03.00_30Oct2013_revu.docx%23_Toc370897342
file:///C:/Users/isizemore/Documents/SSDD%203/AWP.DSN.A2.SSDD-03.00_30Oct2013_revu.docx%23_Toc370897344
file:///C:/Users/isizemore/Documents/SSDD%203/AWP.DSN.A2.SSDD-03.00_30Oct2013_revu.docx%23_Toc370897345
file:///C:/Users/isizemore/Documents/SSDD%203/AWP.DSN.A2.SSDD-03.00_30Oct2013_revu.docx%23_Toc370897346
file:///C:/Users/isizemore/Documents/SSDD%203/AWP.DSN.A2.SSDD-03.00_30Oct2013_revu.docx%23_Toc370897347

AWIPS II
Software System Design Description (Ver. 5)

Preface x
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

PREFACE

This Software System Design Description (SSDD) provides AWIPS II software

developers with a reference of key information when developing code in the AWIPS

II environment. The document is topically organized, simple, and straightforward;

using the Table of Contents is an easy way to find a topic of interest.

This Preface provides a bit of background on the purpose and scope of the SSDD,

assumptions made about its users and uses, and the AWIPS II operational and

development environments. [Note: For a list of acronyms and abbreviations used in

the SSDD, see Appendix A.]

SSDD Motivation, Assumptions, Contents

Motivation

 Maintain the integrity of the AWIPS II Architecture.

 Leverage inherent capability of AWIPS II Architecture.

 Minimize cost while meeting need.

Assumptions

 Software Developer is the intended reader.

 Software Developer knows how to program using Java, understands Object

Oriented concepts, and has at least an intermediate understanding of Eclipse

IDE/Plug-in Framework, but may be new to AWIPS II.

 Knowledge in the following areas are helpful:

SWT, Python, ESB concepts, JMS, XML, SQL, Hibernate, and Spring.

SSDD Contents

 References are used in lieu of replicating information that exists elsewhere to

minimize maintenance. Information on AWIPS hardware design,

communications networks, configuration management, etc., is readily

available elsewhere (i.e., System Manager’s Manual).

 Many examples provided throughout the document are readily available in the

Eclipse/AWIPS Development Environment (ADE).

AWIPS II
Software System Design Description (Ver. 5)

Preface xi
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

AWIPS II Environment, Development Approach, Driving Requirements

System Operational Environment

 Large, dispersed organization, Conterminous/Contiguous/Commercial United

States (CONUS) and Outside Conterminous/Contiguous/Commercial United

States (OCONUS).

 24/7 operations.

 Continuously changing.

 Meteorologist and Hydrologist users.

 Common and varied functions across sites.

 Uniform products with unique details.

 Unique products at some sites.

 Limited resources.

Approach to Development

 The AWIPS II architecture was a clean-sheet design.

 Development was done off-line while Legacy AWIPS continued to support

the mission.

 Legacy AWIPS applications were reengineered for the new environment

while maintaining the existing user interface (e.g., black box).

Driving Requirements of AWIPS II

 Maximize adaptability.

 Maximize affordability (e.g., provide best value).

 While meeting “ility” requirements.

Affordability is defined herein by the organization’s multi-year budget forecast that is

available for the system’s development, maintenance, and support costs (e.g., Total

Cost of Ownership). Although the forecast will vary from year to year and might

increase, or decrease, it must be – and was considered as – an immutable system

design constraint to meet or beat, management reserve notwithstanding. Of course,

the system must still meet all functional and operational requirements, or otherwise

design in the facility to be tailored to the local environment.

Adaptability is the ability to change to fit current circumstances. The degree of

adaptability is the ease with which this is done. The design goal is to achieve the

highest degree of adaptability possible within the affordability constraint.

Affordability and adaptability are affected by decisions made in the design and

maintenance of the system.

AWIPS II
Software System Design Description (Ver. 5)

Overview 1
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

1. OVERVIEW

A. AWIPS II Architecture

AWIPS II is a client/server plug-in based architecture. It consists of a server

application named Enterprise Data Exchange (EDEX) and multiple client

applications, the main one being the desktop application referred to as Common

AWIPS Visualization Environment (CAVE). Client applications are designed to

interact with EDEX through generic services. These services utilize Hypertext

Transfer Protocol (HTTP) and Java Messaging Service (JMS) for communication.

Both services remove dependencies between EDEX and the client applications. The

entire AWIPS II design, both EDEX and CAVE, is based on a Service Oriented

Architecture (SOA) where the applications utilizing services have no knowledge of

where or how they will be executed.

1. EDEX Architecture

EDEX is built from a Staged Event Driven Architecture (SEDA) through the use of

Apache Camel and Spring. This type of architecture is event driven, where code is

executed when certain types of events are detected. Events include JMS messages,

HTTP messages, file arrival messages, and cron-based events that occur periodically

on a timer.

EDEX is inherently a concurrent architecture as well. It is multi-threaded and

clusterable. An instance of EDEX is started in a specific mode. A mode indicates a

set of tasks that it will be performing. This is done through Spring file filtering. The

main two modes are ‘ingest’ and ‘request.’ An ingest EDEX is responsible for

decoding/storing data, and a request EDEX is responsible for providing access to the

ingested data through service requests. All EDEX instances are able to communicate

and interact within a cluster to maintain integrity.

2. CAVE Architecture

CAVE is an Open Services Gateway initiative (OSGi) plug-in based architecture built

on top of the Eclipse Rich Client Platform (RCP). It consists of multiple applications

that are separated into Eclipse ‘Perspectives.’ A perspective consists of a unique

interface and a core functionality. Examples of perspectives are Display Two

Dimensional (D2D), Graphical Forecast Editor (GFE), Hydro, and Localization. Each

perspective provides a different User Interface (UI) and functionality, but they are all

able to share similar code and resources.

AWIPS II
Software System Design Description (Ver. 5)

Overview 2
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

In addition to the entire Eclipse RCP architecture, CAVE provides a set of

Application Program Interfaces (API) for many common tasks. These tasks include

data/graphics rendering, dialog creation/management, menu/UI customization,

derived parameter generation, and server/application configuration.

3. Layering and Interfaces

The AWIPS II architecture follows a layered approach. This means that each piece of

code has knowledge of the interfaces it needs but not of the implementation details.

Code should not be dependent on specific implementations to work.

Examples:

 Rendering code in CAVE uses the interface, IGraphicsTarget, not the

implementation, GLTarget. There should be no OpenGL specific code in a

plug-in unless the plug-in name has “gl” in it.

 Connections to JMS Broker go through the established JMS interface. The

knowledge that Queue Processor Interface Daemon (QPID) is the JMS Broker

implementation used, and that QPID is built on the Advanced Messaging

Queuing Protocol (AMQP) is hidden or segregated from clients.

 Accessing the database in EDEX goes through CoreDao and

DbQueryRequests in CAVE. How the CoreDao or the handler of

DbQueryRequests works is not important to the code that is using them. The

fact that postgres is currently the database of choice and that it is Structured

Query Language (SQL) based is not important. For this reason, SQL should

never directly be used in code; hibernate equivalents should be used instead.

Accessing raw data records goes through the IDataStore interface. Knowledge

that Hierarchical Data Format 5-multi-object file format for the transfer of

graphical and numerical data between computers (HDF5) is the underlying

storage format for the raw data is hidden.

Using this type of layered approach makes the software more adaptable. For example,

if at some point in the future QPID is replaced by another JMS provider, only the

JMS layer would need to be updated, instead of changing all the code that makes use

of JMS in general. Similarly, if HDF5 were to be swapped out for a new storage

format, only a new implementation of the IDataStore interface would have to be

written, and all code that uses IDataStore would automatically work with the new

implementation.

This layering concept can be applied throughout all parts of software development.

For example, java.util.List can be used for a variable declaration instead of

java.util.ArrayList.

AWIPS II
Software System Design Description (Ver. 5)

Overview 3
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 List<Object> list = new ArrayList<Object>();

Because the variable is declared of type List, List implementations can be swapped

easily by changing a single line of code. Care should be taken to maintain

layerings and the use of interfaces over implementations.

B. Plug-ins

AWIPS II is designed as a plug-in based architecture modeled after the Eclipse RCP

project. The basic concept of this architecture is that a core set of API and utility

plug-ins is provided and plug-ins are added either to make use of or to extend these

core plug-ins to provide functionality. All plug-ins are autodiscovered by the

applications through configuration files, spring injection/registration, and custom java

annotations. Plug-ins are considered to be created for use in CAVE, EDEX, or

Common.

1. Core Plug-ins

a. Common Core

The core plug-ins that are common to both CAVE and EDEX are considered to be

the Common Core. These plug-ins provide various core utilities for both

applications including serialization, file access, geospatial operations,

metadata/data access, and http services to name a few.

 All plug-ins considered Common Core are defined in the feature.xml file in

com.raytheon.uf.common.base.feature.

 All AWIPS II plug-ins will be built from and utilize these plug-ins in some

fashion.

b. EDEX Core

EDEX Core plug-ins are those that provide the basic functionality of the EDEX

server application.

These plug-ins include Apache Camel configuration, sbn/file endpoint data

distribution, data decoding/storage, data type registration, and many others. Only

plug-ins that are designed to be used inside EDEX can depend on these plug-ins.

This includes data ingest plug-ins such as grib/grid, radar, and satellite as well as

post processing plug-ins such as the decision assistance tools that post process

data after it has been ingested by an ingest plug-in.

 All plug-ins considered EDEX Core plug-ins are defined in the feature.xml

file com.raytheon.uf.edex.base.feature.

AWIPS II
Software System Design Description (Ver. 5)

Overview 4
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

c. CAVE Core

CAVE Core plug-ins are those that provide the basic functionality of a

CAVE/Visualization-based client application. The CAVE Core includes the

entirety of the Eclipse RCP Framework, graphics rendering APIs, request service

APIs for data access, and many user interface utilities. Plug-ins that are designed

for client applications may depend on the CAVE Core even if they are not

intended to be run inside the CAVE application. AlertViz is an example of an

application that utilizes CAVE Core and yet runs outside of CAVE. The plug-ins

that define the CAVE core are in com.raytheon.uf.viz.base.feature.

Note: Because the CAVE Core is built from the Eclipse RCP Framework,

anything that can be done in an Eclipse RCP application can be used within a

CAVE Core application. Many tutorials on Eclipse RCP can be applied within

CAVE.

It should also be noted that the Core Plug-ins are all designed in such a way that

they have minimal dependencies. The CAVE Core plug-ins only have

dependencies on other CAVE Core plug-ins as well as Common Core plug-ins.

The same goes for the EDEX Core. They are all designed in such a way that

functionality can be injected or extended by other plug-ins outside of the Core.

The design is considered to be plug-in agnostic (without knowledge of plug-ins).

Injection through the Spring Framework as well as the Eclipse RCP Framework

help achieve this design. Plug-in writers should be aware of this type of design

and strive to mimic it for their own applications to allow for maximum

extendability.

2. Plug-in Structuring

General plug-in development follows the same dependency format the Core plug-ins

follow. Plug-ins developed for use in both CAVE and EDEX are considered Common

and must only depend on other Common plug-ins. Plug-ins developed for use in

CAVE/Client applications may only depend on other CAVE/Client application plug-ins

and vice versa for EDEX plug-ins. This allows a clear separation of client/server

structuring. The CAVE Clients should have no knowledge of where data is accessed but

instead know that it is done via clearly defined services. A visual of this dependency

structure is shown in Figure 1-1.

AWIPS II
Software System Design Description (Ver. 5)

Overview 5
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 Figure 1-1. Dependency Structure

3. Plug-in Naming

Plug-in names are always in lowercase and are based on three parts:

1. The organization that developed the plug-in.

 com.raytheon/gov.noaa.nws. The organization name and whether it is

Government or commercial.

2. The part of the system the plug-in is developed for.

 uf.(common|edex|viz). The ‘uf’ stands for uFrame and applies to any code

developed for AWIPS II. The ‘uf’ is followed by the part of the system the

plug-in was developed for: common, edex, or viz (CAVE).

Note: Because Commercial off the Shelf (COTS) and Free and Open Source

Software (FOSS) are not designed for AWIPS II but are instead used by it, this

section is skipped during plug-in naming.

3. The functionality the plug-in provides.

 This is up to the developer to be descriptive. Examples include d2d.ui, gfe,

radar, satellite, and geospatial.

 Plug-in names that do not contain the ‘uf’ component, like com.raytheon.viz

and com.raytheon.edex, are deprecated and should not be used.

AWIPS II
Software System Design Description (Ver. 5)

Overview 6
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

Raytheon examples:

 com.raytheon.uf.common.site. A common plug-in that can be used by both

CAVE and EDEX for site utilities.

 com.raytheon.uf.common.dataplugin.radar. A plug-in that defines a

metadata object structure for radar data.

 com.raytheon.uf.edex.plugin.radar. A plug-in that is used for decoding

radar data into the metadata structure defined in the common dataplugin.

 com.raytheon.uf.viz.radar. A plug-in that contains code for displaying and

interacting with radar data in CAVE.

 com.raytheon.rcm.server. A plug-in that contains code for use in the radar

server.

NWS examples:

 gov.noaa.nws.ncep.common.dataplugin

 gov.noaa.nws.ncep.common.log

 gov.noaa.nws.ncep.edex.plugin

 gov.noaa.nws.ncep.viz

Other examples:

 org.postgres

 javax.media.opengl

 meteolib.jni

C. Use of ADE

The ADE is the Eclipse/AWIPS Development Environment. It is Eclipse RCP

packaged with the AWIPS II baseline plug-ins. It is where plug-in development

occurs. Documentation on how to use the Eclipse in general can be found on the

Eclipse documentation websites. How to install and set up the ADE is provided in the

ADE setup guide. This section covers certain aspects of the ADE that will help with

development.

1. Plug-in Creation

The following subsections provide the steps required to create each type of plug-in.

There are different steps for creating Common/EDEX, CAVE, and COTS/FOSS

plug-ins.

a. Common/EDEX

1. File->New->Project…

AWIPS II
Software System Design Description (Ver. 5)

Overview 7
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

2. Select Plug-in Development/Plug-in Project and click “Next” as shown in

Figure 1-2.

3. Provide project name based on Plug-in Naming section as shown in Figure

1-3.

4. If default location of the plug-in to be created is incorrect, replace with correct

path. THIS PATH MUST INCLUDE THE PLUG-IN NAME.

5. If remaining default settings are sufficient, select “Next.”

6. Replace “Name:” section with a more descriptive name as shown in

Figure 1-4.

7. UN-check “Generate an activator” and “This plug-in will make contributions

to the UI.”

8. Select “Finish.”

b. CAVE

1. File->New->Project…

2. Select Plug-in Development/Plug-in Project and click “Next,” as shown in

Figure 1-2.

3. Provide project name based on Plug-in Naming section as shown in Figure

1-3. If default location of plug-in to be created is incorrect, replace with

correct path. THIS PATH MUST INCLUDE THE PLUG-IN NAME.

4. If remaining default settings are sufficient, select “Next.”

5. Replace “Name:” section with a more descriptive name as shown in

Figure 1-4.

6. CHECK “Generate an activator” and “This plug-in will make contributions

to the UI.”

7. Select “Finish.”

COTS/FOSS

1. File->New->Project…

2. Select Plug-in Development/Plug-in from existing Java Archive (JAR)

archives and click “Next” as shown in Figure 1-2.

3. Click “Add External…” and browse to the folder the COTS JARs are in,

select them, and click “Open” as shown in Figure 1-5.

4. Once all JARs are added, click “Next.”

5. Provide project name based on Plug-in Naming section as shown in Figure

1-6.

6. If default location of plug-in to be created is incorrect, replace with correct

path. THIS PATH MUST INCLUDE THE PROJECT NAME FROM

STEP 5.

AWIPS II
Software System Design Description (Ver. 5)

Overview 8
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

7. Replace “Plug-in Name:” section with more descriptive name.

8. Uncheck “Unzip the JAR archives into the project.”

9. Select “Finish.”

Figure 1-2. Plug-in Development/Plug-in Project

AWIPS II
Software System Design Description (Ver. 5)

Overview 9
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

Figure 1-3. Plug-in Project/Naming

AWIPS II
Software System Design Description (Ver. 5)

Overview 10
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

Figure 1-4. Plug-in Project / Content

AWIPS II
Software System Design Description (Ver. 5)

Overview 11
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 Figure 1-5. JAR Selection

AWIPS II
Software System Design Description (Ver. 5)

Overview 12
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 Figure 1-6. Plug-in Project Properties

AWIPS II
Software System Design Description (Ver. 5)

Overview 13
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

2. Plug-in Dependency Management

Plug-in dependencies are managed through the Eclipse MANIFEST Editor. It can be

accessed by opening the project file: META-INF/MANIFEST.MF. This editor

controls many plug-in configuration settings, one being dependency management. To

modify plug-in dependencies, the MANIFEST file should be opened and the

“Dependencies” tab should be selected as shown in Figure 1-7.

The “Required Plug-ins” column on the left is the manifest’s Required-Bundle:

statement, and the “Imported Packages” column on the right is the Import-Package:

statement, when viewing manifest, the source in the MANIFEST.MF editor tab. With

an Imported-Package: there is no control over what plug-in the package comes from.

This can cause problems when plug-in dependencies are automatically determined for

builds/installation. For this reason, it is recommended that only “Required Plug-

ins” be used and “Import Packages” be ignored in most cases. Exceptions

include: javax.servlet, org.apache.commons.logging, org.apache.log4j where

there are multiple possible COTS/FOSS providing implementations of them.

Figure 1-7. Manifest Dependencies Tab

AWIPS II
Software System Design Description (Ver. 5)

Overview 14
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

When developing a plug-in that will be used by other plug-ins, it is important to

ensure the proper packages are visible to those plug-ins. This is controlled through the

“Runtime” tab in the manifest editor as shown in Figure 1-8.

Figure 1-8. Runtime Tab

The “Exported Packages” column on the left is the manifest's Exported-Packages:

statement when viewing manifest the source in the MANIFEST.MF editor tab. The

packages listed in this section are those that can be imported into another plug-in’s

code when depending on the developed plug-in. Not all packages need to be

imported; there are certain circumstances where packages may be deliberately hidden

from other plug-ins and only used internally. The “Package Visibility” and

“Classpath” sections should not be modified in any way. Note: When a COTS/FOSS

plug-in is created, the “Classpath” section will be prepopulated with the JARs

selected during creation.

AWIPS II
Software System Design Description (Ver. 5)

Overview 15
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

3. Helpful Eclipse Shortcuts

The following is a list of useful Eclipse shortcuts. The list is in no particular order,

and it is not exhaustive. The list assumes the key bindings have not been changed

from the default.

 Ctrl+L. Opens a dialog to enter a line number to jump to in the current editor.

 Ctrl+G. Places in the Search tab all references in the workspace to the

selected element.

 Ctrl+T. Displays the type hierarchy of the selected element. If a class is

selected, it shows the full type hierarchy; if a class method is selected, it

shows the hierarchy of classes that extend/implement that method from the

class type hierarchy as shown in Figure 1-9.

 F3. In the editor: Opens an edit window displaying the definition of the

selected element. In Package Explorer: Opens the selected file in the editor.

 Shift+Ctrl+L. Opens a list of the commands and shortcuts for quick

execution. Repeating the key command while this list is open brings up a

preference window where all commands and key bindings can be edited.

Figure 1-10 displays the Shortcut List.

Figure 1-9. Type Hierarchy

AWIPS II
Software System Design Description (Ver. 5)

Overview 16
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 Shift+Ctrl+T. When editing a Java file, this shortcut pops up a dialog with

“Open Type” selected. Pressing the Enter key brings up the “Open Type”

dialog. From there, a case-insensitive search using wild cards for

classes/interfaces can be performed. If a python editor is active when

performing the key binding, the “Pydev: Globals Browser” will be opened; it

performs a similar function on python files. Figure 1-11 provides an example

of finding classes with avn in the name.

Figure 1-10. Shortcut List

AWIPS II
Software System Design Description (Ver. 5)

Overview 17
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 Shift+Ctrl+R. This shortcut displays the “Open Resource” dialog, which

allows for case-insensitive wildcard searches of all files in the workspace. The

example in Figure 1-12 shows files with config in the name that end with

xml.

Figure 1-11. Example Open Type Dialog

AWIPS II
Software System Design Description (Ver. 5)

Overview 18
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 Ctrl+H. Pops up the Search dialog with selected text populating the search

text fields for the various tabs.

 Shift+Ctrl+F. Formats the selected text. (Save Action will perform this for

the whole file when code formatting is enabled in the section “Setup of Code

Formatters and Save Actions.”)

 Shift+Ctrl+O. Organizes Imports. (Save Action will perform this if enabled.)

 Ctrl+S. Saves the changes made in the file in the active edit. When it contains

a Java file, the save action is performed. (See the next section, Setup of Code

Formatters and Save Action, which follows.)

4. Setup of Code Formatters and Save Actions

It is important to maintain consistent code formatting/styling for the entire AWIPS II

baseline. It aids in keeping the code in compliance with Raytheon’s AWIPS II coding

standards, and it allows developers across organizations to compare changes made to

files easily. For this reason, an eclipse template and code formatting file are provided

in the baseline and should be imported for use.

Follow these steps to import the AWIPS II Code Template and Formatter:

1. In the ADE, select the menu item Window --> Preferences.

2. Select Java/Code Style/Code Templates on the left and select “Import…” on the

right.

Figure 1-12. Example of Open Resource

AWIPS II
Software System Design Description (Ver. 5)

Overview 19
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

3. In the import browser, browse to the AWIPS II EDEX plug-in directory path

(e.g., /home/user/AWIPSII/edexOsgi/). From there, browse to

build.edex/opt/eclipse/ and select the codeTemplate.xml file and select “Apply.”

4. Select the “Formatter” section on the left and import the formatter.xml file from

the same location as codeTemplate.xml and select “Apply.”

5. On the left, select Java/Editor/Save Actions.

6. To enable formatting on Save, make sure the following are selected/checked:

 Perform the selected actions on save

 Format source code

 Format all lines

 Organize Imports

See Figures 1-13, 1-14, and 1-15.

7. Select “Apply” and then “OK.”

 Figure 1-13. Code Templates

AWIPS II
Software System Design Description (Ver. 5)

Overview 20
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 Figure 1-14. Formatter

 Figure 1-15. Save Actions

AWIPS II
Software System Design Description (Ver. 5)

Overview 21
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

D. RPM Overview

Redhat Package Manager (RPM) is the package manager. It is a program designed to

build and manage packages of software including the source and binaries. It is

portable and can be run on different platforms.

RPMs (*.rpm) typically include the compiled programs and/or libraries needed for the

package, documentation, install, verify, and uninstall scripts, and cryptographic

signatures for each file in the package. This makes it easy to verify the integrity of the

package. It also includes a list of packages that it depends on, and a list of services

that are provided by the package.

RPM maintains a database of all installed packages in /var/lib/rpm/*. Included in the

database is a list of files installed by the RPM and which package they belong to. This

makes it a very powerful tool for finding out more about each package.

Sources are often provided in source RPMs (*.src.rpm or *.spm). These sources

include the pristine developer source code, any patches applied by the package

builder, and a SPEC file that is used to tell RPM how to compile the package.

Note: Root privileges are required to install, upgrade, or remove RPM packages.

RPM queries can be run as any user.

Most major Linux distributions utilize RPM Package Manager format, including Red

Hat (which is the primary AWIPS II Linux distribution), SuSE, and Caldera. Any

Linux distribution considered Linux Standards Base (LSB) compliant must supply

applications either packaged in the RPM packaging format as defined in the LSB

specification, or supply an installer which is LSB conforming (for example, calls LSB

commands and utilities).

1. Common RPM Commands

To interact with RPMs, use the rpm executable (/bin/rpm). The rpm command is

standard on most Linux distributions. The rpm executable is used to install, update,

and remove packages as well as to execute queries for information about packages.

To install an RPM, use: rpm –ivh ${RPM}

To update / upgrade an RPM, use: rpm –Uvh ${RPM}

To remove an RPM, use: rpm –e ${RPM}

To execute an RPM query, use: rpm –q … (there are multiple query types that can

be executed utilizing the “-q” argument).

AWIPS II
Software System Design Description (Ver. 5)

Overview 22
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

2. Building RPMs

A specs file is used to create an RPM. A specs file essentially consists of a header

with basic information about the RPM, one or multiple scriptlets that are run during

various phases of the build / install, and a list of files included in the RPM.

The commonly used tags and descriptions of each tag are provided in Table 1-1. Note

that some tags are required. These are designated in the table.

Table 1-1. Tags Commonly Used in Building RPMs

Tag Required Tag Description

Name: The name of the package.

Summary: A basic summary of what the package is and its purpose.

Version: The package version. The version is in the format X.Y.Z where
it is the major release, Y is the minor release, and Z is the
revision.

Release: The package release. The package release is generally an
integer.

Group: Group is used to specify the package type.

BuildRoot: A temporary directory that will be used to assemble the
package. The buildroot makes it possible to assemble the
package without compromising / altering your root file system.

URL: A link to a website about the package or etc.

License: The license associated with the RPM package.

Distribution:

Vendor: The company and/or group that created the package.

Packager: The package author.

provides: The packages and/or services the RPM provides. Every
individual package or service requires a separate “provides”
tag.

requires: A list of the packages and/or services that are required by the
RPM. Every individual package or service requires a separate
“requires” tag.

%description A description of the RPM package.

%prep This scriptlet is executed during the RPM build. This scriptlet
contains instructions for the first phase of the build. The first
phase is generally used to gather and unpack source and other
dependencies that are required to build the RPM.

%build This scriptlet is executed during the RPM build. This scriptlet
contains instructions for the second phase of the build. The
second phase is generally used to build the source code
(running configure and/or make, etc.).

%install This scriptlet is also executed during the RPM build. This
scriptlet contains instructions for the third and final phase of the
build.

AWIPS II
Software System Design Description (Ver. 5)

Overview 23
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

Tag Required Tag Description

%pre This scriptlet is executed during installation. This scriptlet is run
before the package files are placed on the filesystem.

%post This scriptlet is also executed during installation. This scriptlet
is run after the package files are placed on the filesystem.

%preun This scriptlet is executed during uninstallation. This scriptlet is
run before the package files are removed from the filesystem.

%postun This scriptlet is also executed during uninstallation. This
scriptlet is run after the package files are removed from the
filesystem.

%files A list of the files that are included in the package. File attributes
including owner, group, and file permissions can also be
specified as part of this tag.

Once a specs file has been created, the rpmbuild application (/usr/bin/rpmbuild) can

be used to actually build an RPM. The rpmbuild application is not installed by default

on every Linux distribution and must be installed before it can be used.

To build an RPM using rpmbuild: rpmbuild –ba ${SPECS}

If the rpmbuild is successful, the RPM that was built can be found within one of the

architecture-specific directories {generally one of: [i386, noarch, x86_64]} in:

/usr/src/redhat/RPMS.

3. Using YUM

When the RPM executable is used to install one or multiple rpms, it is the

responsibility of the user to ensure that the RPMs are installed in the correct order

when installing multiple RPMs, as well as accounting for all dependencies. This is

not a difficult task when there are just a few RPMs; however, if there are dozens of

RPMs (and there are close to 100 AWIPS II RPMs) installing all of the RPMs can

become a time-consuming task that requires multiple commands. One solution to

managing multiple package installations is Yellowdog Updater Modified (YUM).

YUM is an open-source command-line package-management utility for RPM-

compatible Linux operating systems and has been release under the GNUs Not Unix

(GNU) General Public License.

YUM is capable of installing one or multiple RPMs from a YUM repository or

directly from the filesystem. Unlike RPM, YUM is capable of determining

dependencies between RPMs and will install the RPMs in the correct order based on

the dependencies. So, instead of using multiple rpm commands to install two or more

RPMs, a single YUM command can be used.

AWIPS II
Software System Design Description (Ver. 5)

Overview 24
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

4. The AWIPS II RPMs

There are more than 100 AWIPS II RPMs including 32-bit (i386), any architecture

(noarch), and 64-bit (x86_64) RPMs. The AWIPS II RPMs have been divided into

four “classes”: core RPMs, EDEX RPMs, CAVE RPMs, and python extension (site-

package) RPMs.

The core RPMs are RPMs that every other type of RPM is dependent on in some

way. The following AWIPS II RPMs are included in the set of core RPMs: awips2-

java, awips2-python, awips2-postgresql, awips2-database, and several others.

The EDEX RPMs include the edex-base RPM (consists of the EDEX directory

structure as well as the edex configuration and scripts) and the edex component

RPMs. The EDEX component RPMs divide the EDEX plug-ins into functional

subsets: there is an EDEX component RPM that contains core plug-ins and another

edex component RPM that contains radar plug-ins. The component RPMs make it

possible to apply a patch or an enhancement to a single portion of edex to avoid the

need for a complete reinstall.

The CAVE RPMs include the CAVE RPM (consisting of the CAVE RCP executable,

cave scripts, and the cave directory structure) and CAVE p2 repository RPMs. The

CAVE p2 repository RPMs extend the cave rcp executable and contribute

functionality. Similar to the EDEX component RPMs, the CAVE p2 repository RPMs

make it possible to apply a patch or an enhancement to a single functional portion of

cave to avoid the need for a complete reinstall.

The python extension RPMs extend the functionality and capability of python when

installed. Examples of the python site-package RPMs include awips2-python-numpy,

awips2-python-ufpy, and awips2-python-nose.

AWIPS II
Software System Design Description (Ver. 5)

Common 25
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

2. COMMON

A. EDEX, Common, and Viz (Visualization) Plug-Ins

1. EDEX Plug-ins

From a developer’s standpoint, what you are doing here is creating “Common”

objects (data) that will be serialized using thrift and written to HDF5. This is the job

of the “EDEX” plug-ins. This process takes place in EDEX using one of the Camel

server instances. This process can be a direct ingest path, monitoring a drop directory,

or by using a Uniform Resource Identifier (URI) filter and extending the Composite

Product Generator pattern. Any one will suffice. Because EDEX plug-ins work within

the Camel Enterprise Service Bus (ESB), some knowledge of how Camel works is

essential. To that end there are two eXtensible Markup Language (XML) files that

describe the deployable options and the nature of the “Common” plug-in to be

produced.

1. A common XML file ~ $pluginname-common.xml

2. An ingest config XML file ~ $pluginname-ingest.xml

Example: We’ll call our plug-in “example”; this is the “common” file.

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:amq="http://activemq.apache.org/schema/core"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd

 http://activemq.apache.org/schema/core http://activemq.apache.org/schema/core/activemq-core.xsd

 http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-spring.xsd">

 <bean id="examplePluginName" class="java.lang.String">

 <constructor-arg type="java.lang.String" value="example" />

 </bean>

 <bean id="exampleProperties" class="com.raytheon.uf.common.dataplugin.PluginProperties">

 <property name="pluginName" ref="examplePluginName" />

 <property name="pluginFQN" value="com.raytheon.uf.common.dataplugin.example" />

 <property name="dao"

value="com.raytheon.uf.common.dataplugin.example.dao.ExampleDao" />

 <property name="record"

value="com.raytheon.uf.common.dataplugin.example.ExampleRecord" />

 <property name="dependencyFQNs">

 <list>

 <value>com.raytheon.uf.common.dataplugin.radar</value>

 </list>

 </property>

AWIPS II
Software System Design Description (Ver. 5)

Common 26
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 </bean>

 <bean factory-bean="pluginRegistry" factory-method="register" depends-on="radarRegistered">

 <constructor-arg value="example"/>

 <constructor-arg ref="exampleProperties"/>

 </bean>

</beans>

The key things to note from this file example are the definitions for the “Common”

plug-in that this “EDEX” plug-in will be creating. In the <bean> tag, the <property>

attributes that describe the “pluginName,” “dao,” and the “record” classes are key.

These are pointers to the JAVA classes that describe the Data Access Object (DAO)

and the “Record” class of this plug-in.

Example: This is the “ingest” file. This example shows an EDEX plug-in

implementing the “Composite Product Generator” pattern.

<beans

 xmlns="http://www.springframework.org/schema/beans"

 xmlns:amq="http://activemq.apache.org/schema/core"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd

 http://activemq.apache.org/schema/core http://activemq.apache.org/schema/core/activemq-core.xsd

 http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-spring.xsd">

 <bean factory-bean="cpgSrvDispatcher" factory-method="register">

 <constructor-arg ref="exampleGenerator"/>

 </bean>

 <camelContext id="example-camel" xmlns="http://camel.apache.org/schema/spring"

errorHandlerRef="errorHandler">

 <route id="ExampleGenerate">

 <from uri="jms-

generic:queue:exampleGenerate?destinationResolver=#qpidDurableResolver" />

 <doTry>

 <bean ref="serializationUtil" method="transformFromThrift" />

 <bean ref="exampleGenerator" method="generate" />

 <doCatch>

 <exception>java.lang.Throwable</exception>

 <to

uri="log:ffmp?level=ERROR&showBody=false&showCaughtException=true&showSt

ackTrace=true"/>

 </doCatch>

 </doTry>

 </route>

 </camelContext>

</beans>

AWIPS II
Software System Design Description (Ver. 5)

Common 27
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

The key things to note from this are: 1) the use of the “SerializationUtil,” which

deserializes URI messages that are placed on the product generation queue described

in the <from> tag; and 2) that the name and method to be used by your generator are

described in the <bean> tag named after your “ExampleGenerator” reference. The

key thing to understand about the “EDEX” plug-ins is that they function for the

purpose of creating, analyzing, and distributing the data objects (Common plug-ins)

that are needed for display in CAVE by the Visualization (Viz) plug-ins.

2. Common Plug-ins

The “Common” data plug-ins in AWIPS II are the heart of the AWIPS II system.

They are the data transport layer of the triad. They function for one purpose and one

purpose alone. To thrift serialize data to HDF5 when created/ingested on EDEX.

Then, deserialize and make that data available on the CAVE side. The majority of this

work is done for you as a developer simply by extending one class and implementing

the interface from another. The PersistablePluginDataObject is the Abstract class you

will extend and the IPersistable interface is the one you will implement.

Example “Common” plug-in class: ExampleRecord.java

@Entity

@Table(name = "example", uniqueConstraints = { @UniqueConstraint(columnNames = { "dataURI"

}) })

@XmlRootElement

@XmlAccessorType(XmlAccessType.NONE)

@DynamicSerialize

public class ExampleRecord extends PersistablePluginDataObject implements

 IPersistable {

 private static final long serialVersionUID = 76774564365671L;

 @Column(length = 7)

 @DataURI(position = 1)

 @DynamicSerializeElement

 @XmlElement(nillable = false)

 private String wfo;

 @Column(length = 32)

 @DataURI(position = 2)

 @DynamicSerializeElement

 @XmlElement(nillable = false)

 private String sourceName;

 @Column(length = 32)

 @DataURI(position = 3)

 @DynamicSerializeElement

 @XmlElement(nillable = false)

 private String dataKey;

AWIPS II
Software System Design Description (Ver. 5)

Common 28
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 @Column(length = 32)

 @DataURI(position = 4)

 @DynamicSerializeElement

 @XmlElement(nillable = false)

 private String siteKey;

 /**

 * Default Constructor

 */

 public ExampleRecord() {

 }

 /**

 * Constructs a record from a dataURI

 *

 * @param uri

 * The dataURI

 */

 public ExampleRecord(String uri) {

 super(uri);

 }

The preceding example shows the basic serialization annotations that are used to

identify a particular Plug-in Data Object (PDO) and its URI. Notice that they describe

the length and the position of each field in the URI. The position is measured starting

from position 2 in actuality. So, something described in your class as position 4 is in

actuality at position 6 in the real URI. The reason for this is that positions 0 and 1 are

designated for the “pluginName” and “dataTime.” The manipulation of these is

handled by the super class. In our example that would yield this....

Example: /example/11:23:2011 15:23:04:123/wfo/sourceName/dataKey/siteKey

This URI is essential to both writing the record to HDF5 and reading it back out. It is

used as a multi-dimensional unique key, uniquely describing an AWIPS II data

record.

The writing of the data to HDF5 is handled by another class that is mentioned in the

“EDEX” common XML file in the DAO (Data Access Object). In the writing and

reading of data in AWIPS II, this is where the rubber meets the road. The DAO is

responsible for writing and populating PDO records from HDF5.

Example: common “DAO” class. ExampleDAO.java

public class ExampleDao extends PluginDao {

 public ExampleDao(String pluginName) throws PluginException {

 super(pluginName);

 }

 @Override

AWIPS II
Software System Design Description (Ver. 5)

Common 29
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 protected IDataStore populateDataStore(IDataStore dataStore,

 IPersistable obj) throws Exception {

 ExampleRecord record = (ExampleRecord) obj;

 // Do something to write the record into your HDF5

 This method is intended to write the transient object that is used to

 hold the data and convert it into HDF5 Data Records. Note URI is the key

 IDataRecord rec = new FloatDataRecord(huc,

 record.getDataURI(), dataRec, 1,

 new long[] { size });

 dataStore.addDataRecord(rec);

 }

 @Override

 public List<IDataRecord[]> getHDF5Data(List<PluginDataObject> objects,

 int tileSet) throws PluginException {

 List<IDataRecord[]> retVal = new ArrayList<IDataRecord[]>();

 for (PluginDataObject obj : objects) {

 IDataRecord[] record = null;

 if (obj instanceof IPersistable) {

 /* connect to the data store and retrieve the data */

 try {

 record = getDataStore((IPersistable) obj).retrieve(

 obj.getDataURI());

 } catch (Exception e) {

 throw new PluginException(

 "Error retrieving Example HDF5 data", e);

 }

 retVal.add(record);

 }

 }

 return retVal;

 }

}

The majority of the work here is again done for you by the super class you are

extending. In this case the PluginDao class. Since the “Common” plug-ins are the

only ones that are accessed from both sides of the dependency triad. They are by far

the most important link in the chain. Having a well written and swiftly executing

“Common” plug-ins will aid in both construction and display of your data on the

EDEX and CAVE (Viz) sides.

One last piece of instruction on the “Common” plug-ins regards the fact that they are

frequently serialized. In AWIPS II most objects are serialized using Facebook’s Thrift

AWIPS II
Software System Design Description (Ver. 5)

Common 30
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

serialization. In the “Common” plug-ins META-INF/services directory, you must add

a file called “com.raytheon.uf.common.serialization.ISerializableObject”. The

reason for this is that when Thrift seeks to serialize and de-serialize a class. It uses

this entry in the META-INF as a lookup. So, any classes you wish to serialize must be

listed using Fully Qualified Domain Name (FQDN) in the ISerializableObject file.

In our example here using ExampleRecord, we would have:

com.raytheon.uf.common.dataplugin.example.ExampleRecord

This class would have to be listed at a minimum in order for the Record to be

recognized. If you have sub-objects that your record contains, they must also be listed

in the file.

3. Viz Plug-ins

The last and most visible category of AWIPS II plug-ins is the “Viz” or CAVE plug-

in. CAVE plug-ins are generally used in the display of data created by the “EDEX”

plug-ins and serialized and transported by the “Common” plug-ins. In General, they

follow a pattern by which they have what is known as a “Resource” class and a

“ResourceData” class. The purpose of the Resource class is to interact directly with

the Graphical User Interface (GUI) changing the display parameters of the data. Here

is an example Resource class.

Example: ExampleResource.java

public class ExampleResource extends

AbstractVizResource<ExampleResourceData, MapDescriptor> implements

 IResourceDataChanged {

 public String icao;

 public String fieldName;

 public String fieldUnitString;

 public ExampleRecord record;

 private HashMap<DataTime, GriddedImageDisplay2> griddedDisplayMap;

 public DataTime displayedDataTime;

 public DataTime previousDataTime;

 private String colormapfile = null;

 /* The font used */

 public IFont font = null;

 public ExampleResource(ExampleResourceData data, LoadProperties props) {

AWIPS II
Software System Design Description (Ver. 5)

Common 31
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

super(data, props);

data.addChangeListener(this);

this.dataTimes = new ArrayList<DataTime>();

 griddedDisplayMap = new HashMap<DataTime, GriddedImageDisplay2>();

 }

 /*

 * (non-Javadoc)

 *

 * @see com.raytheon.viz.core.rsc.IVizResource#getName()

 */

 @Override

 public String getName() {

 ExampleRecord record = null;

 for (ExampleRecord rec : resourceData.dataObjectMap.values()) {

 record = rec;

 break;

 }

 if (record == null) {

 return "";

 }

 StringBuilder prefix = new StringBuilder();

 prefix.append(record.getIcao());

 prefix.append(" ");

 prefix.append(record.getParameterName());

 return prefix.toString();

 }

 @Override

 public void resourceChanged(ChangeType type, Object object) {

 if (type.equals(ChangeType.DATA_UPDATE)) {

 PluginDataObject[] pdos = (PluginDataObject[]) object;

 for (PluginDataObject pdo : pdos) {

 try {

 ExampleRecord example = (ExampleRecord) pdo;

 resourceData.dataObjectMap.put(example.getDataTime(),

 example);

 record = example;

 } catch (Exception e) {

 statusHandler.handle(Priority.PROBLEM,

 "Error updating Example resource", e);

 }

 }

 issueRefresh();

 }

 }

 @Override

 protected void disposeInternal() {

AWIPS II
Software System Design Description (Ver. 5)

Common 32
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 for (DataTime key : griddedDisplayMap.keySet()) {

 GriddedImageDisplay2 gDisplay = griddedDisplayMap.get(key);

 if (gDisplay != null) {

 gDisplay.dispose();

 }

 }

 griddedDisplayMap.clear();

 if (font != null) {

 font.dispose();

 }

 }

 @Override

 protected void initInternal(IGraphicsTarget target) throws VizException {

 if (this.font == null) {

 this.font = target.initializeFont("Dialog", 11, null);

 }

 init = true;

 }

 @Override

 protected void paintInternal(IGraphicsTarget target,

 PaintProperties paintProps) throws VizException {

 this.displayedDataTime = paintProps.getDataTime();

 // Pull the record out

 this.record = resourceData.dataObjectMap.get(this.displayedDataTime);

 if (record == null) {

 // Don't have data for this frame

 return;

 }

 GriddedImageDisplay2 gridDisplay = griddedDisplayMap

 .get(displayedDataTime);

 if (record.getDataArray() == null) {

 record = resourceData.populateRecord(record);

 }

 if (gridDisplay == null) {

 gridDisplay = new GriddedImageDisplay2(ShortBuffer.wrap(record

 .getDataArray()), record.getGridGeometry(), this,

 target.getViewType());

 gridDisplay.init(target);

 this.previousDataTime = displayedDataTime;

 griddedDisplayMap.put(displayedDataTime, gridDisplay);

 }

 ColorMapParameters colorMapParameters = getCapability(

AWIPS II
Software System Design Description (Ver. 5)

Common 33
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 ColorMapCapability.class).getColorMapParameters();

 if (record != null && init) {

 StyleRule sr = StyleManager.getInstance().getStyleRule(

 StyleManager.StyleType.IMAGERY, getMatchCriteria());

 this.colormapfile = ((ImagePreferences) sr.getPreferences())

 .getDefaultColormap();

 IColorMap cxml = ColorMapLoader.loadColorMap(colormapfile);

 ColorMap colorMap = new ColorMap(colormapfile, (ColorMap) cxml);

 colorMapParameters.setColorMap(colorMap);

 colorMapParameters.setDataMapping(((ImagePreferences) sr

 .getPreferences()).getDataMapping());

 cwatmax = colorMapParameters

 .getDataMapping()

 .getEntries()

 .get(colorMapParameters.getDataMapping().getEntries()

 .size() - 1).getDisplayValue().floatValue();

 cwatmin = colorMapParameters.getDataMapping().getEntries().get(0)

 .getDisplayValue().floatValue();

 colorMapParameters.setDataMax(Short.MAX_VALUE);

 colorMapParameters.setDataMin(Short.MIN_VALUE);

 colorMapParameters.setColorMapMax(cwatmax);

 colorMapParameters.setColorMapMin(cwatmin);

 init = false;

 }

 gridDisplay.paint(target, paintProps);

 }

 /*

 * (non-Javadoc)

 *

 * @see

 * com.raytheon.viz.core.rsc.capabilities.IInspectableResource#inspect(com

 * .vividsolutions.jts.geom.Coordinate)

 */

 @Override

 public String inspect(ReferencedCoordinate latLon) throws VizException {

 String inspect = "NO DATA";

 if (record != null) {

 if (record.getDataArray() == null) {

 record = resourceData.populateRecord(record);

 }

 Coordinate coor = null;

 try {

 if (record.getDataArray() != null) {

 coor = latLon.asGridCell(record.getGridGeometry(),

AWIPS II
Software System Design Description (Ver. 5)

Common 34
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 PixelInCell.CELL_CENTER);

 int index = (int) ((record.getNx() * Math.round(coor.y)) +

 Math.round(coor.x));

 int value = 0;

 if (index < record.getDataArray().length && index > -1) {

 value = record.getDataArray()[index];

 if (value >= 10) {

 inspect = value + ": "

 + SCTI.getSCTImessage(value);

 }

 }

 }

 } catch (TransformException e) {

 e.printStackTrace();

 } catch (FactoryException e) {

 e.printStackTrace();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 return inspect;

 }

 @Override

 public void project(CoordinateReferenceSystem crs) throws VizException {

 for (DataTime dTime : griddedDisplayMap.keySet()) {

 GriddedImageDisplay2 gDisplay = griddedDisplayMap.get(dTime);

 if (gDisplay != null) {

 gDisplay.reproject();

 }

 }

 }

 @Override
 public void remove(DataTime dataTime) {

 this.dataTimes.remove(dataTime);

 GriddedImageDisplay2 display = this.griddedDisplayMap.remove(dataTime);

 if (display != null) {

 display.dispose();

 }

 }

 }

Note that the Resource class implements and extends specific classes. Resources will

in most cases extend the AbstractVizResource class. Note also that the Resource’s

ResourceData class is a parameter passed to the public constructor for the Resource

class. This is not by accident. It is the ResourceData that gives the Resource class the

PDOs (“Common”) plug-ins it will display. All of the methods listed in this

ExampleResource are methods required to implement or otherwise override. The

AWIPS II
Software System Design Description (Ver. 5)

Common 35
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

IResourceDataChanged interface allows the Resource to receive updates of new

PDOs when new ones are created by EDEX. There are many other interfaces you can

implement for specific needs if your Resource requires them.

The other class that most CAVE (“Viz”) plug-ins have is the ResourceData class. The

ResourceData class serves to gather and store “Common” data plug-ins that the

Resource will display.

 @XmlAccessorType(XmlAccessType.NONE)

@XmlType(name = "exampleResourceData")

public class ExampleResourceData extends AbstractRequestableResourceData {

@XmlAttribute

 public String sourceName;

@XmlAttribute

public String huc;

@XmlAttribute

public String dataKey;

@XmlAttribute

public String siteKey;

public String wfo;

public ExampleRecord[] records;

 public Map<DataTime, ExampleRecord> dataObjectMap;

public ExampleResourceData() {

super();

 this.nameGenerator = new AbstractNameGenerator() {

@Override

public String getName(AbstractVizResource<?, ?> resource) {

 return mapName;

 }

 };

 }

 @Override

 protected AbstractVizResource<?, ?> constructResource(

 LoadProperties loadProperties, PluginDataObject[] objects) {

 records = new CWATRecord[objects.length];

 dataObjectMap = new HashMap<DataTime, ExampleRecord>();

 for (int i = 0; i < objects.length; i++) {

AWIPS II
Software System Design Description (Ver. 5)

Common 36
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 records[i] = (ExampleRecord) objects[i];

 dataObjectMap.put(records[i].getDataTime(), records[i]);

 }

 return new Exampleesource(this, loadProperties);

 }

 /**

 * @return the records

 */

 public ExampleRecord[] getRecords() {

 return records;

 }

 }

There are a couple of things to note in this example of ResourceData class. Notice the

@XmlAttribute annotations that are placed on some of the public variables. The

reason for this is that these are used to filter which URI’s of a plug-in type you will

see in your Resource. This is the reason that the ResourceData class itself is annotated

for serialization. This magic is all done in the Bundle/Procedure XML files that

reference the ResourceData objects. That discussion however is outside the scope of

this one. The basic reason for the ResourceData class is to package and deliver the

PDO’s (“Common”) plug-ins that the Resource will then display. Again like other

examples, most of the work here is actually done in the super class or through

implemented interfaces. In this and most cases, our ExampleResourceData class

extends the AbstractRequestableResourceData super class.

B. UFStatus

The UFStatus class allows for the logging of a message associating it with an

AlertViz source, category, and priority. The following code snippets are from the

Java class AvnConfigFileUtil. Perform the following steps in using UFStatus:

1. Import the following:

import com.raytheon.uf.common.status.IUFStatusHandler;

import com.raytheon.uf.common.status.UFStatus;

import com.raytheon.uf.common.status.UFStatus.Priority;

The last import simplifies the handle method’s arguments.

2. Get a status handler:

public class AvnConfigFileUtil {

private static final transient IUFStatusHandler statusHandler =

 UFStatus.getHandler(AvnConfigFileUtil.class);

AWIPS II
Software System Design Description (Ver. 5)

Common 37
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

The same handler can be used for all instances of the class. Since there is

overhead in getting the handler it is best to limit the calls to getHandler. There are

other getHandler method calls that allow you to specify the category and source to

use. Normally you will want it to default which is WORKSTATION and CAVE.

3. Example of a message:

public static LocalizationFile getStaticLocalizationFile(String

configFile) {

 IPathManager pm = PathManagerFactory.getPathManager();

LocalizationFile lFile =

pm.getStaticLocalizationFile(configFile);

 if (lFile == null) {

 String site =

LocalizationManager.getInstance().getCurrentSite();

statusHandler.handle(Priority.CRITICAL, "Unable to find \""

+ configFile + "\" under the directory for site " + site + ".",

null);

The first argument is the Priority enum. It has six values that correspond to the

AlertViz priorities 0-5: CRITICAL, SIGNIFICANT, PROBLEM, EVENTA,

EVENTB, VERBOSE. The second is the message to log message, and the third (null)

can be a caught exception that is the reason for the log. When not null it will generate

a stacktrace.

The UFStatus can also be used inside Python scripts. This example is from

SmartScript.py:

def statusBarMsg(self, message, status, category="GFE"):

 from com.raytheon.uf.common.status import UFStatus

from com.raytheon.uf.common.status import UFStatus_Priority as

Priority

 if "A" == status:

 importance = Priority.PROBLEM

 elif "R" == status:

 importance = Priority.EVENTA

 elif "U" == status:

 importance = Priority.CRITICAL

 else:

 importance = Priority.SIGNIFICANT

 if category not in self._handlers:

 self._handlers[category] = UFStatus.getHandler("GFE",

category, 'GFE')

 self._handlers[category].handle(importance, message);

C. Localization

Localization serves two primary purposes:

1. To allow site and user-specific customizations of the software.

AWIPS II
Software System Design Description (Ver. 5)

Common 38
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

2. To back up and share these customizations to different workstations.

All changes to localization files are dynamically read in when made via the

Localization Perspective in CAVE. This is accomplished via Observer classes in the

com.raytheon.uf.common.localization package. The Localization Perspective is the

preferred method of editing localization files. This lets the AWIPS software manage

the files and ensures the files do not get out of sync.

1. Localization Levels

There are currently five defined localization levels (as defined in

com.raytheon.uf.common.localization.LocalizationContext.LocalizationLevel):

1. Base. Files that should never be changed by users and are applicable to all sites.

2. Configured. Files that should never be changed by users but are site-specific files

generated from configuration files that are shared by all users configured for that

site.

3. Site. Files that contain site-specific information and are shared by all users

configured for that site.

4. Workstation. Files specific to a workstation (based on hostname).

5. User. Files specific to the user.

These levels are hierarchical, so there is a set order of precedence that should be used.

If a user version of a file exists, it takes precedence over the site, configured and base

versions. If a site version of the file exists, it takes precedence over the configured

and base versions. If a configured version of the file exists, it takes precedence over

the base version. Hence, the order is user > workstation > site > configured > base.

Typically the base version of the file is either a file that should never be changed or

provides defaults if there are no site and user preferences.

2. Localization Types

Localization Types (defined in com.raytheon.uf.common.localization.

LocalizationContext.LocalizationType) provide a basic way to categorize

localization files based on which AWIPS2 component (the CAVE client or the EDEX

server) will be primarily using the file. There are currently four localization types:

1. CAVE_CONFIG. config.xml CAVE files tied to preference stores.

2. CAVE_STATIC. Files only used by CAVE.

3. COMMON_STATIC. Files that both CAVE and EDEX use.

4. EDEX_STATIC. Files only used by EDEX.

AWIPS II
Software System Design Description (Ver. 5)

Common 39
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

3. Localization Context

The localization context is an object that consists of a LocalizationType,

LocalizationLevel, and a context name. The LocalizationContext is used in some

methods of retrieving localization files.

4. Localization Code

The most commonly used java code for localization are these files:

com.raytheon.uf.common.localization.LocalizationContext.LocalizationLevel

com.raytheon.uf.common.localization.LocalizationContext.LocalizationType

com.raytheon.uf.common.localization.LocalizationContext

com.raytheon.uf.common.localization.PathManagerFactory

The following are methods of retrieving localization files in all localization contexts.

 List all xml files in a directory.

String[] extensions = new String[] { ".xml" };

String fileNamePath = “/path/to/file/”;

LocalizationFile[] locFiles =

PathManagerFactory.getPathManager().listStaticFiles(

 fileNamePath, extensions, false, true);

 Get a HashMap of all localization versions of a particular file.

IPathManager pm = PathManagerFactory.getPathManager();

Map<LocalizationLevel, LocalizationFile> shefIssueMap =

pm.getTieredLocalizationFile(LocalizationType.COMMON_STATIC,

"/path/to/file”);

 Retrieve a Site level file by name.

IPathManager pm = PathManagerFactory.getPathManager();

LocalizationContext lc =

pm.getContext(LocalizationType.COMMON_STATIC,

 LocalizationLevel.SITE);

LocalizationFile xmlLocalizationFile =

pm.getLocalizationFile(lc,

 "/path/to/file");

 Read/Write an XML file via Localization.

// Get the file from localization

IPathManager pm = PathManagerFactory.getPathManager();

LocalizationContext lc =

pm.getContext(LocalizationType.COMMON_STATIC,

 LocalizationLevel.SITE);

LocalizationFile xmlLocalizationFile =

pm.getLocalizationFile(lc,

 "/path/to/file");

AWIPS II
Software System Design Description (Ver. 5)

Common 40
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

// Read the xml contents into the XML data object

XMLObject xml = null;

if (xmlFile != null) {

 xml = (XMLObject) SerializationUtil

 .jaxbUnmarshalFromXmlFile(file.getFile().getAbso

lutePath());

} else {

 xml = new XMLObject();

}

// Save the xml object as an xml file

// Localization software takes care of the localization

updates

SerializationUtil.jaxbMarshalToXmlFile(xml,

xmlLocalizationFile getFile().getAbsolutePath());

5. Adding New Directories to the Localization Perspective

For directories and files to show up in the Localization Perspective, an entry must be

made in a plugin.xml file. These files are in the viz packages. The steps follow.

1. Open the plugin.xml file in Eclipse.

2. Select the Extensions tab.

3. Look in the list for the com.raytheon.uf.viz.localization.localizationpath.

4. If it does not exist, click the Add button.

5. In the Extension Point Filter dialog, type “*localization” as shown in Figure 2-1.

Figure 2-1. Extension Point Selection

AWIPS II
Software System Design Description (Ver. 5)

Common 41
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

6. Select the com.raytheon.uf.viz.localization.localizationpath item and click

Finish. The item will now be in the list of extensions as shown in Figure 2-2.

Figure 2-2. List of Extensions

7. Right-click on the localizationpath entry and select New->path menu item.

8. Enter a value: A unique identifier.

9. Enter a name: The name is the first-level subdirectory in the Localization

Perspective.

10. Enter the localizationType (CAVE_STATIC, COMMON_STATIC,

EDEX_STATIC).

AWIPS II
Software System Design Description (Ver. 5)

Common 42
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

11. Enter the Application where the entry will reside within the Localization

Perspective (which main folder). Enter D2D to be in the D2D folder, Hydro Apps

to be in the Hydro Apps folder, etc.

12. The recursive entry defaults to false. Set to true to recursively search for files

within the localization folder structure.

13. Enter an extension to filter by extension.

14. Enter a localizationAdapter if needed.

15. Save the file and restart CAVE.

The resulting xml entry in the file:

 <path

 application="Hydro Apps"

 localizationType="COMMON_STATIC"

 name="Hydro"

 value="hydro">

 </path>

D. Dynamic Serialization

Dynamic Serialize is a software layer built on top of Thrift (see

http://wiki.apache.org/thrift/ for more information). It is extremely fast, and it is the

recommended method of communication between client applications (such as CAVE)

and EDEX.

Dynamic Serialize uses getters and setters on a Java class and cglib (see

http://cglib.sourceforge.net/) to perform serialization and deserialization. To use

Dynamic Serialize, follow these steps:

1. Add the @DynamicSerialize annotation to the Java class.

2. Add the @DynamicSerializeElement annotation to the fields on the class you

wish to serialize.

3. Ensure each field annotated in the previous step has getters and setters that follow

the standard Java naming conventions. Eclipse can generate these for you; right-

click in the file, select Source -> Generate Getters and Setters.

4. Use SerializationUtil.transformToThrift() to serialize data and

SerializationUtil.transformFromThrift() to deserialize data.

http://wiki.apache.org/thrift/
http://cglib.sourceforge.net/

AWIPS II
Software System Design Description (Ver. 5)

Common 43
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

1. Serialization Adapters

To serialize complex or third-party classes, you will need to provide a serialization

adapter. Implement the ISerializationTypeAdapter interface (see

com.raytheon.uf.common.serialization.ISerializationTypeAdapter) and register

the adapter with the DynamicSerializationManager (see

com.raytheon.uf.common.serialization.DynamicSerializationManager).

Implementing a serialization adapter requires implementing a serialize() and

deserialize() method. The order in which you serialize data should be the opposite of

the order in which you deserialize data. See the BuiltInTypeSupport class

(com.raytheon.uf.common.serialization.BuiltInTypeSupport) for a number of

serialization adapter examples for classes from the Java standard library.

Registration can be done in either of two ways:

1. For in-house developed code: add a @DynamicSerializeTypeAdapter

annotation to the class.

// ExampleClass.java

@DynamicSerialize

@DynamicSerializeTypeAdapter(factory =

ExampleClassAdapter.class)

public class ExampleClass {

 // ... rest of class code omitted...

}

2. For third-party or Java standard library classes, modify the

DynamicSerializationManager’s static block to directly register the adapter. The

following code snippet registers the DateSerializer class to handle serialization

and deserialization of the standard Date class with the

DynamicSerializationManager:

// DynamicSerializationManager.java

public class DynamicSerializationManager {

 // ...skipping declaration of private fields, internal

classes

 static {

 SerializationMetadata md = new SerializationMetadata();

 md.serializationFactory = new DateSerializer();

 md.adapterStructName = Date.class.getName();

 serializedAttributes.put(Date.class.getName(), md);

 // ...skipping registration of other classes ...

 }

}

AWIPS II
Software System Design Description (Ver. 5)

Common 44
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

2. Using Dynamic Serialize with Python

Dynamic Serialize communicates using a Thrift byte stream, which allows cross

language communication using the serialized data. In the AWIPS II baseline, we have

provided the dynamicserialize Python package to enable Python to communicate with

EDEX using Dynamic Serialize. The following snippet of Python code explains how

to serialize and deserialize data using the dynamicserialize package:

DynamicSerializeSample.py

import dynamicserialize

bytes = dynamicserialize.serialize(obj)

send bytes somewhere, either a service or a file

response = dynamicserialize.deserialize(bytesResponse)

For more information on how to use the EDEX Request/Handler API to allow Python

code to communicate with EDEX, see the documentation on the Request/Handler

API.

3. Caveats on the Python Interface

Because there are Java language features not supported in Python (and vice versa),

there a number of complications and caveats you must be aware of:

1. When serializing Python objects to send to Java, the Python types must match the

Java types. For example if a Java field with @DynamicSerializeElement on it

is a primitive long, the Python type must be long. Using a Python int in that field

will cause an exception in Java. Python has no way of knowing the Java field’s

type, so it assumes you set the value to the matching type.

2. As Java enums have no Python equivalent, they are serialized as strings. In

Python enum fields should be assigned the name of the enum value. Take as an

example the GFE class GridParmInfo (see

com.raytheon.uf.common.dataplugin.gfe.db.objects.GridParmInfo). In Java,

the values for the gridType field would be GridType.SCALAR or

GridType.NONE. In Python, you would assign these fields “SCALAR” or

“NONE.”

3. The Python dynamicserialize.dstypes package must have knowledge of the classes

you wish to serialize or deserialize. These Python classes are equivalents to the

Java classes. Luckily you can auto-generate these Python modules if one does not

exist for your class yet. See the next section for more information.

4. If the Java objects are serialized with adapters, you must have equivalent adapters

in the dynamicserialize.adapters package.

AWIPS II
Software System Design Description (Ver. 5)

Common 45
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

4. Converting Java Classes to Python

The PythonFileGenerator is provided as a tool for generating Python modules and

classes for use with the Python dynamicserialize package. It is located in the plug-in

com.raytheon.uf.common.serialization. It has a Java main() that analyzes Java

@DynamicSerialize classes and produces an equivalent Python module and class.

We recommend you run it from Eclipse, and you may need to adjust the classpath on

the Run Configuration screen to include the Java plug-in project that you wish to

serialize.

The tool takes two arguments :

1. ‘-f filename’ where filename is the absolute path to a META-

INF/services/com.raytheon.uf.common.serialization.ISerializableObject file or

any file that lists the objects you want to be serialized by fully qualified class

name, one per line.

2. ‘-d outputDir’ where outputDir is your dynamicserialize.dstypes directory.

The tool will generate a Python class for each Java class it finds in the filename

argument, and it will generate the necessary directory structures and __init__.py files

for each subpackage so that the classes can be imported using ‘from

dynamicserialize.dstypes.packageName import *’ syntax.

5. Python Serialization Adapters

If the Java class utilized a serialization adapter, you must also create a serialization

adapter for the Python class. To create a serialization adapter in Python you must do

the following:

1. Create a Python module within the dynamicserialize.adapters package that

implements serialize and deserialize methods and has a global ClassAdapter that

calls out which class it handles.

2. Register the serialization adapter by altering the dynamicserialize.adapters

package’s __init__.py module.

The following is source code for a serialization adapter that handles the Java standard

library class Point (see java.awt.Point and

com.raytheon.uf.common.serialization.adapters.PointAdapter for Java

implementations):

AWIPS II
Software System Design Description (Ver. 5)

Common 46
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

PointAdapter.py:

Adapter for java.awt.Point

from dynamicserialize.dstypes.java.awt import Point

ClassAdapter = 'java.awt.Point'

def serialize(context, point):

 context.writeI32(point.getX())

 context.writeI32(point.getY())

def deserialize(context):

 x = context.readI32()

 y = context.readI32()

 point = Point()

 point.setX(x)

 point.setY(y)

 return point

As you can see, this module implements its serialize and deserialize

methods in ways very similar to its Java counterpart. The ClassAdapter global

calls out the fully-qualified name of the Java class that is handled by this serialization

adapter. If you have multiple classes that, for some reason, could be handled by the

same adapter, ClassAdapter could also be a list of class names.

Now to register this adapter so it can be used, we alter the dynamicserialize.adapters

package's __init__.py file to add an entry for PointAdapter to the global __all__. See

the following:

__init__.py for Dynamic Serialize adapters.

__all__ = [

 'PointAdapter',

 'StackTraceElementAdapter',

 # ... rest of list omitted for brevity

]

rest of module's code follows...

E. JAXB Serialization

Java Architecture for XML Binding (JAXB) is a set of Java classes in the javax.xml.*

packages. They are used to serialize data in xml format, maintain configuration data

for GUI displays, and send data to/from CAVE and the EDEX server. The following

is an example of how it is used.

The xml file to parse and place in a data class is the localized file

AvnFPS->Configuration->scripts->ClimateDataBase.xml:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

 <!-- comment removed

AWIPS II
Software System Design Description (Ver. 5)

Common 47
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 -->

<ClimateDataFTPArgs>

 <Site>ftp3.ncdc.noaa.gov</Site>

 <DataDir>pub///data/noaa</DataDir>

 <IshDir>/pub/data/noaa</IshDir>

 <User>anonymous</User>

 <Password>daniel.gilmore@noaa.gov</Password>

</ClimateDataFTPArgs>

In the package com.raytheon.viz.aviation.xml is the class ClimateDataFTPArgs,

which can be used to marshal / unmarshal the xml file as shown in Figure 2-3.

Figure 2-3. ClimateDataFTPArgs.java Tab

The class on line 47 in the figure implements ISeralizableObject. Using this interface

indicates the class uses the JAXB annotations and in conjunction with adding the

class to the com.raytheon.uf.common.serialization.ISerializableObject file in the

META-INF/services directory will ensure the localized file is detected at run time.

Line 45 gives the name of the tag for the root element of the xml file. All other tags

for this data element need to be embedded in this tag, i.e., <ClimateDataFTPArgs>.

Lines 49 and 50 associate the string element site with tag <Site>. The other data

AWIPS II
Software System Design Description (Ver. 5)

Common 48
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

elements are associated with an element tags in a similar manner. The rest of a data

class is normally getter and setter methods.

In the package com.raytheon.viz.aviation is the class GenScriptsDlg. Its initFtpArgs

method gets the localized xml file and uses JAXB to unmarshal the file into an

instance of the ClimateDataFTPArgs class as shown in Figure 2-4.

Figure 2-4. GenScriptsDig.java Tab

For a more complex example, see the class

com.raytheon.uf.common.menus.AbstractMenuUtil’s toXml and fromXml

methods.

AWIPS II
Software System Design Description (Ver. 5)

Common 49
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

F. TopoAccess

In EDEX: Import com.raytheon.uf.edex.topo.TopoQuery.

In CAVE: import com.raytheon.uf.viz.core.topo.TopoQuery.

Get a TopoQuery instance by calling TopoQuery.getInstance().

To retrieve topo data for a single point: Call TopoQuery.getHeight(coordinate).

To retrieve topo data for a list of points (or along a path): Call

TopoQuery.getHeight(coordinateList).

To retrieve topo a grid of topo data: Call TopoQuery.getHeight(gridGeometry).

G. JMS/QPID

For information on JMS and messaging topology, see the following:

 JMS Overview: http://docs.oracle.com/javaee/5/tutorial/doc/bncdq.html

 JMS APIs – javax.jms: http://docs.oracle.com/javaee/5/api/

 Camel JMS configuration: http://camel.apache.org/jms.html

 Spring JMS Overview:

http://static.springsource.org/spring/docs/2.5.x/reference/jms.html

 EDEX: Connections pinned to threads. Each connection only has one session

and usually one consumer. If a thread/route sends to multiple other queues

(i.e., distribution) it will have a producer for each destination it sends to.

Pooling is setup for each of the JMS API objects. Camel/Spring will create

and close the resources for every message, so pooling was setup to reuse JMS

resources. These can be found at com.raytheon.uf.common.jms.

 CAVE:

 Receive: All pulls should go through

com.raytheon.uf.viz.core.notification.jobs.NotificationManagerJob.

NotificationManagerJob will only have one connection, with many

sessions. Each queue/topic is listened to async via MessageListener

interface. Each message is delivered async via Eclipse Job.

 Send: No standard framework. Look up

com.raytheon.uf.viz.core.comm.JMSConnection and use JMS calls

directly. See com.raytheon.fiz.warngen.comm.WarningSender.java

http://docs.oracle.com/javaee/5/tutorial/doc/bncdr.html
http://docs.oracle.com/javaee/5/api/
http://camel.apache.org/jms.html
http://static.springsource.org/spring/docs/2.5.x/reference/jms.html

AWIPS II
Software System Design Description (Ver. 5)

Common 50
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

H. Creating a New PlugInDataObject Derived Class

1. Description of the PluginDataObject Base Class

All data objects derive from the

com.raytheon.uf.common.dataplugin.PluginDataObject abstract base class. This

class defines the minimum functionality for any PluginDataObject (PDO) that may be

persisted to a database. In particular the class exposes the following attributes:

 Id. A unique record identifier automatically generated by the database.

 dataUri. A construction that uniquely identifies this data object within a plug-

in table. In the base PluginDataObject, the dataUri consists of the

pluginName and the dataTime.

 pluginName. Short name of the plug-in name. For example using the

following plug-in project name [com.raytheon.uf.edex.plugin.myplugin],

the plug-in short name is “myplugin”.

 dataTime. The time that should be associated with this data object. The most

common dataTime for point data is the time that the data was observed. A

validTime for forecast data is also common.

 insertTime. The time that the data object was inserted into the database.
1

 messageData. The raw data that was used to generate the data object. This

attribute value is not required and may be left null.

When examining the PluginDataOject class and its associated database fields the

developer may note that the id attribute is the only field indicated as NOT NULL.

Even so the pluginName is used explicitly as the base of the dataURI and the

dataTime attribute is declared as the first item in the dataURI. If these values are null

then no error will occur, however a useless dataURI of “/null/null” will be generated.

Figure 2-5 shows the class diagram showing the PluginDataObject, its ancestors, and

a possible descendant.

1
 Currently the insertTime, if set, will be overwritten with the current system time if the PDO is not an IPersistable.

If the instance is IPersistable, then the insertTime will remain as set.

AWIPS II
Software System Design Description (Ver. 5)

Common 51
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

Figure 2-5. PluginDataObject Class Hierarchy

2. Description of a Minimally Derived PluginDataObject

The PluginDataObject also exposes methods for constructing the dataUri, retrieving

dataUri fields by column identifier, as well as getter and setter methods for the above

attributes. The following assume a minimally derived PDO named FooRecord that

exposes a single Integer attribute, reportType.

01 @Entity
02 @Table(name = "foo", uniqueConstraints = { @UniqueConstraint(columnNames =

{ "dataURI" }) })

03 @XmlRootElement

04 @XmlAccessorType(XmlAccessType.NONE)

05 @DynamicSerialize

PluginDataObject

+PluginDataObject(String)]

+PluginDataObject()

-id : Integer

-dataUri:String

-pluginName:String

-messageData:Object

PersistablePluginDataObject

-id : Integer

-traceId:String

-overwriteAllowed:String

+constructDataURI()

+getDataURIFieldName()

+getDataURIFieldValue()

+getDecoderGettable()

+getHDFPathProvider()

+getDataURIFieldValue()

DataTime

IPersistableObjectIPersistableObject

Calendar

-dataTime

-insertTime

DerivedDataObject

Attributes specific to the data object

+DerivedDataObject()

+DerivedDataObject(String)]

AWIPS II
Software System Design Description (Ver. 5)

Common 52
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

06 public class FooRecord extends PluginDataObject {

07

08 private static final long serialVersionUID = 1L;

09

10 /**

11 * A report type that identifies this instance.

12 */

13 @DataURI(position = 1)

14 @Column

15 @DynamicSerializeElement

16 @XmlAttribute

17 private Integer reportType;

18

19 /**

20 * Construct an empty instance of this class.

21 */

22 public FooRecord() {

23 }

24

25 /**

26 * Constructor for DataURI construction through base class. This is used by

27 * the notification service.

28 * @param uri

29 * A dataURI applicable to this class.

30 */

31 public FooRecord(String uri) {

32 super(uri);

33 }

34

35 /**

36 * Get the report type that identifies this instance.

37 * @return The reportType identifying the instance.

38 */

39 public Integer getReportType() {

40 return reportType;

41 }

42

43 /**

44 * Set the report type to identify this instance.

45 * @param reportType

46 * The reportType to set. Any not-null Integer value.

47 */

48 public void setReportType(Integer reportType) {

49 this.reportType = reportType;

50 }

51

52 /**

53 * Get the IDecoderGettable reference for this record. This class returns

54 * a null reference indicating that the class does not implement the

55 * IdecoderGettable interface.

56 * @return The IDecoderGettable reference for this record.

57 */

58 @Override

59 public IDecoderGettable getDecoderGettable() {

AWIPS II
Software System Design Description (Ver. 5)

Common 53
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

60 return null;

61 }

62 }

Lines 1 through 5 are preamble that guide the persistence mechanism.

 @Entity. This annotation indicates that this class should be persisted to a

database. Any class marked with this annotation must expose an empty (no

argument) constructor, may not be final, and must define a primary key. Note

that the primary key id, for a class is implicit by extending the

PluginDataObject base class.

 @Table. Indicates that this is the primary table for this Entity. This annotation

is required so that the uniqueConstraint on dataURI may be declared.

 @XmlRootElement. Defines this class as the root element for an XML tree

containing this class’ data.

 @XmlAccessorType. This annotation provides control over the default

serialization of properties and fields in this class. The use of

XmlAccessType.NONE indicates that no fields or properties will be bound

unless they are specifically annotated.

 @DynamicSerialize. Indicates that this class should be serialized.

 Line 6 tells the compiler that we are extending the PluginDataObject base

class. All PDOs must extend this base class. Other functionality may be

exposed by implementing one or more of the following interfaces.

 IPersistable. PDOs implementing this interface indicate to the persistence

layer that the data in this class will be stored to an HDF repository. In addition

this interface exposes methods that allow clients to retrieve the persistence

time for this object as well as utility methods that aid in storing to the HDF

repository.

 IDecoderGettable. Exposes methods that allow class attribute values and

associated units to be read using parameter names.

 ISpatialEnabled. Exposes the “getSpatialObject” method which indicates

that this object is locatable in some reference frame.

 IPointData. Expose methods allow instance data to be stored using the

PointData functionality.

 Lines 13 through 17 declare an attribute that will be used to store a “report

type” as an Integer value. Several Java annotations are used in this declaration

as follows.

 @DataURI. This annotation flags an attribute so that it is used as part of the

datauri construction. This annotation takes two arguments;

AWIPS II
Software System Design Description (Ver. 5)

Common 54
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 “position” is mandatory and gives the attribute’s physical position within the

constructed datauri. Note that positions start at 1. Position 0 is reserved for the

DataTime contained in the PluginDataObject base class.

 “embedded” is optional and defaults to “false”. A value of “true” indicates

that this attribute is a composite object that will contribute its attributes to the

datauri being constructed.

 @Column. This annotation is used to specify that this attribute will be

mapped to a field within the table declared in line 2. All arguments are

optional with “length,” “nullable,” and “unique” being common.

 @DynamicSerializedElement. Flag that indicates that this attribute will be

serialized. An assumption is made that proper setter and getter methods exist

for the attribute. The annotation takes no arguments.

 @XmlAttribute

 @XmlElement. These annotations control the mapping of class attributes

to/from XML marshalling using the JAXB API.

The default no-argument constructor required by the @Entity annotation is defined

on line 22 and line 31 defines a constructor which takes a dataURI as an argument.

The setter and getter methods for the class attribute are defined in lines 35 to 50 and

finally the getDecoderGettable method is defined for this class in lines 58 to 61.

3. Common Usage

The following code shows a common idiom for creating and using a PDO. Using the

derived PDO above:

 public PluginDataObject [] decode(String data) {

 PluginDataObject [] retData = null;

 // Create a new instance of the PluginDataObject

 FooRecord record = new FooRecord();

 // Assign data to the fields

 record.setPluginName(“foo”);

 record.setReportType(10);

 // Note that the DataTime constructor requires a java.util.Date

 record.setDataTime(new DataTime(new java.util.Date());

 // Now construct the dataURI

 try {

 record.constructDataURI();

 } catch(PluginException pe) {

 // do something with the invalid record, set it to null here

 record = null;

 }

 if(record != null) {

 // create an array containing the record.

AWIPS II
Software System Design Description (Ver. 5)

Common 55
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 retData = new PluginDataObject[] { record, };

 } else {

 // create an empty array

 retData = new PluginDataObject[0];

 }

 // And pass the return data to the caller.

 return retData;

 }

Also common is using a parser class to decode the data and pass back a populated

array of data objects, similar to the following

Parser p = new Parser(data);

PluginDataObject [] retData = p.parseData();

return retData;

There are of course many variations on the above themes. In the second case we

would expect that the PluginDataObject has been fully populated by the Parser class.

4. Creating Derived Class

There are currently two methods for creating a derived PDO class. The first is to copy

an existing class and then modify the class definition. This can be useful however the

entire process can be error prone. The second method is to use the “mkPlugin.sh”

shell script. This script will create a skeleton for all parts of a data plug-in using the

current coding standards and conventions.

 mkPlugin.sh pluginName PluginName

 for example

 mkPlugin.sh foo Foo

will generate the following

base decoder project directory

 com.raytheon.uf.edex.plugin.foo

created files

 com.raytheon.uf.edex.plugin.foo/.project

 com.raytheon.uf.edex.plugin.foo/.classpath

 com.raytheon.uf.edex.plugin.foo/.settings

 com.raytheon.uf.edex.plugin.foo/build.properties

 com.raytheon.uf.edex.plugin.foo/component-deploy.xml

 com.raytheon.uf.edex.plugin.foo/bin

 com.raytheon.uf.edex.plugin.foo/META-INF/MANIFEST.MF

com.raytheon.uf.edex.plugin.foo/src/com/raytheon/uf/edex/plugin/f

oo/FooDecoder.java

com.raytheon.uf.edex.plugin.foo/utility/edex_static/base/distribu

tion/foo.xml

 com.raytheon.uf.edex.plugin.foo/res/spring/foo-ingest.xml

AWIPS II
Software System Design Description (Ver. 5)

Common 56
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 com.raytheon.uf.edex.plugin.foo/res/spring/foo-common.xml

base dataplugin project directory

 com.raytheon.uf.common.dataplugin.foo

created files

 com.raytheon.uf.common.dataplugin.foo/.project

 com.raytheon.uf.common.dataplugin.foo/.classpath

 com.raytheon.uf.common.dataplugin.foo/.settings

 com.raytheon.uf.common.dataplugin.foo/build.properties

 com.raytheon.uf.common.dataplugin.foo/component-deploy.xml

 com.raytheon.uf.common.dataplugin.foo/bin

 com.raytheon.uf.common.dataplugin.foo/META-INF/MANIFEST.MF

com.raytheon.uf.common.dataplugin.foo/src/com/raytheon/uf/common/

dataplugin/foo/FooRecord.java

com.raytheon.uf.common.dataplugin.foo/META-

INF/services/com.raytheon.uf.common.serialization.ISerializ

ableObject

These generated project directories can be copied into the Eclipse workspace and

imported using the menu selection “File | Import” to display the Import dialog (see

Figure 2-6).

Figure 2-6. Import Dialog: Select

AWIPS II
Software System Design Description (Ver. 5)

Common 57
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

Selecting “Existing Projects into Workspace” will bring up the Import Project dialog,

which will require the user to select the Eclipse Workspace to import from. See

Figure 2-7.

Figure 2-7. Import Dialog: Import Projects

After these projects have been imported into the Eclipse workspace, an entry for each

project needs to be entered into the file “feature.xml” located in the

“com.raytheon.edex.feature.uframe” project. Note that the “...edex.plugin...”

project should only need to be mentioned in this feature.xml. The

“...common.dataplugin...” project will also need to be added anywhere else it is

referenced.

I. Point Data

Point data is used when each data record describes data at a single point (lon, lat).

Point data is designed to hold many parameters for each point with each point having

the exact same parameters. Often the parameters describe a single value such as

AWIPS II
Software System Design Description (Ver. 5)

Common 58
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

surface temperature, or humidity, but it can also be used to hold multiple values for

data throughout the atmosphere.

1. PointDataContainer

The primary way to interact with point data is through a PointDataContainer. A

PointDataContainer holds all the parameters for several different points. Most often,

when interacting with a PointDataContainer you will want to use a PointDataView. A

PointDataView provides a view into the container for a single record. On edex when

you decode you will use PointDataContainer.append to get a view which you will

populate with data. On CAVE you will request a container with the parameter you

use and you will use PointDataContainer.readRandom to iterate over the data records

in the container.

a. PluginDataObject

For point data plug-ins the PluginDataObject must implement IPointData. This

interface is just a getter and a setter for a PluginDataView. This view will be set

in the decoder and then retrieved by the Dao to store in HDF5. Usually a point

data object will also have a location object with a latitude and longitude that is

stored in the dataURI for querying. Everything else about the PluginDataObject

should be similar to other data plug-ins.

2. Dao

The Dao for a point data plug-in must extend PointDataPluginDao. This class handles

all of the storage and retrieval of point data to hdf5. The PointDataPluginDao also

provides a means for loading the default descriptions for your data.

3. Descriptions

There are two description files for each point data plug-in that describe what

parameters are stored.

a. HDF5 Data Description

The HDF5 data description for a point data plug-in is found in

res/pointdata/{pluginName}.xml. This file contains a description of each field

stored in hdf5 for the points in the data. Here is an example:

<pointDataDescription>

<parameter name="temperature" numDims="1" type="FLOAT" unit="K"

/>

 <parameter name="dewpoint" numDims="1" type="FLOAT" unit="K" />

<parameter name="windSpeed" numDims="1" type="FLOAT" unit="m/s"

/>

AWIPS II
Software System Design Description (Ver. 5)

Common 59
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

<parameter name="windDir" numDims="1" type="FLOAT" unit="degree"

/>

 <parameter name="windGust" numDims="1" type="FLOAT" unit="m/s" />

</pointDataDescription>

Each parameter has several fields.

 name. The name for the parameter, this is how it is referenced throughout the

system

 numDims. If there is one data value for each point this is one, if there are

multiple values(for instance for different elevations), then this can be 2.

 type. STRING,LONG,FLOAT,DOUBLE,INTEGER.

 unit. The data units for this data, these can be used for automatic conversion

later, this should be parseable by the javax.measure.units parser.

b. DB Data Description

The db data description for a point data plug-in is usually found in

res/pointdata/{pluginName}db.xml. This file contains a description of each field

stored in the database that can be requested through a point data query. Here is an

example:

<pointDataDbDescription>

<parameter name="latitude" queryName="location.latitude"

type="FLOAT" unit="°" />

<parameter name="longitude" queryName="location.longitude"

type="FLOAT" unit="°" />

<parameter name="elevation" queryName="location.elevation"

type="FLOAT" fillValue="-9999" unit="m" />

<parameter name="stationId" queryName="location.stationId"

type="STRING" />

<parameter name="reportType" queryName="reportType" type="INT"

/>

<parameter name="corIndicator" queryName="corIndicator"

type="STRING" />

 <parameter name="dataURI" queryName="dataURI" type="STRING" />

</pointDataDbDescription>

 Each parameter has several fields:

 name. The name for the parameter, this is how it is referenced throughout the

system

 queryName. The query string to use for hibernate when requesting this

parameter.

 type. STRING,LONG,FLOAT,DOUBLE,INTEGER

 unit. The data units for this data, these can be used for automatic conversion

later, this should be parseable by the javax.measure.units parser.

AWIPS II
Software System Design Description (Ver. 5)

Common 60
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 fillValue. This value can be used for numeric types which may store null in

the database, but null is invalid in the Point Data Container.

5. Decoder

The decoder for a point data plug-in is the same as for any other plug-in except it

stores data in a PointDataView. The decoder needs to create new

PointDataContainers to store the data in, this can be easily done using the description

which can be retrieved from the dao. Here is an example of how a PluginDataObject

is created within a decoder:

PluginDao pluginDao = PluginFactory.getInstance()

 .getPluginDao(pluginName);

PluginDataObject record = pluginDao.newObject();

PointDataContainer pdc = PointDataContainer.build(pluginDao

 getPointDataDescription(null));

PointDataView pdv = pdc.append();

record.setPointDataView(pdv);

/* populate metadata in record */

/* populate data in the pdv */

pdv.setFloat("temperature", sampleMethodToParseTemperature());

pdv.setFloat("dewpoint", sampleMethodToParseDewpoint());

6. Requesting Data on CAVE

The PointDataRequest class provides static methods for retrieving point data on

CAVE. The method most often used is requestPointDataAllLevels. The javadoc for

this method describes how to use this method and what to pass in. This method

returns a PointDataContainer. Processing of this container is usually done in a loop

similar to this:

PointDataContainer pdc = PointDataRequest

 .requestPointDataAllLevels(time, plugin, parameters,

 null, requestConstraints);

for (int uriCounter = 0; uriCounter <

pdc.getAllocatedSz(); uriCounter++) {

 PointDataView pdv = pdc.readRandom(uriCounter);

 float latitude = pdv.getFloat(“latitude”);

 float longitude = pdv.getFloat(“longitude”);

 // do something with the point data view here.

 }

7. PlotResource2

It is possible to display any point data type on CAVE in PlotResource2 with very

little java code. In order for a new plug-in to work with PlotResource2 there are a few

constraints on the PluginDataObject. The PluginDataObject must have a field called

location that contains a location object. An existing object such as

SurfaceObsLocation a custom object can be created to hold the location. This object

AWIPS II
Software System Design Description (Ver. 5)

Common 61
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

must contain a latitude, longitude, and stationId. Additionally, these fields must be

included in the dataURI for the pluginDataObject.

To display a plot an svg file is needed. This can be seen in the existing svg files in the

plotModels directory in the localization perspective. The most important thing to

understand is that the plotParam attribute on a text element specifies the name of a

parameter directly from the EDEX description files. The important part of a

plotModel file is what is within the symbol element. Here is a very simple example.

<symbol overflow="visible" id="plotData" class="info">

 <text id="lat" plotMode="null" class="text" plotParam="latitude"

x="0" y="0">0</text>

 <text id="lon" plotMode="null" class="text"

plotParam="longitude" x="0" y="0">0</text>

 <text id="myParam" plotMode="text" plotParam="myParam" x="0px"

y="0px">75</text>

</symbol>

This symbol element has three text elements. The first two are lat and lon. Notice that

these have a plotMode of null which means nothing will be displayed; these two are

just used so that PlotResource2 knows where to put the plot on a map. The third

element plots the value of the parameter myParam at the center of the plot. To display

other parameters, add more elements similar to the one for myParam. By changing

the x and y values this changes where the different parameters appear in the plot .

J. GeoTools/JTS Use – Best Practices

2D Coordinates are (lon, lat) not (lat, lon). This tends to trip up developers who are

new to geospatial computing because we always talk about lat/lon coordinates, but it

makes sense mathematically if you think about x/y coordinates, where x is the

horizontal coordinate and y is the vertical coordinate. On most maps longitude

changes in the horizontal (x) direction and latitude changes in the vertical (y)

direction.

 Point-in-Polygon queries. Can be sped up immensely by using

PreparedGeometry. See

com.raytheon.viz.gfe.ui.zoneselector.ZoneSelectorResource setGeometry

and contains methods.

 GridGeometry. AWIPS II uses a lot of gridded data. This data consists of a

rectangular array of data values normally at evenly spaced points in a

particular projection. The lat/lon of each sample is called a gridPoint. When

rendering this data as an image the data for a gridPoint is spread over a

rectangular area called a gridCell. The relationship between gridPoints and

AWIPS II
Software System Design Description (Ver. 5)

Common 62
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

gridCells is not well defined in most NWS documents (e.g., the Gridded

Binary (GRIB) specification). AWIPS II assumes that the gridPoint is at the

center of the gridCell. This seems to make the math work out to match that in

AWIPS I in most cases. The functions in

com.raytheon.uf.common.geospatial.MapUtil that transform coordinates

from grid coordinates to lat/lon and vice versa allow you to specify the

PixelOrientation as CENTER, LOWER_LEFT, LOWER_RIGHT,

UPPER_LEFT, or UPPER_RIGHT to allow you to get the appropriate value

for your use.

 ReferencedEnvelope. When working with spatial data we tend to think of

rectangular areas bounded by a lower left and upper right lat/lon. This is fine

as long as you work in a single map projection. However, when changing

projections (say, from unprojected lat/lon or mercator) to a conic projection

(like Lambert Conformal), that rectangle gets “curved” so now the bounding

lat/lon envelope must be expanded to include all the necessary points. The

org.geotools.geometry.jts.ReferencedEnvelope class can be used to help

with this problem. See com.raytheon.uf.common.geospatial.MapUtil

getBoundingEnvelope method to see how to convert an envelope in one

projection to another.

Note: This can cause a much larger area to be included depending on the

curvature of the projection. It can also cause the envelope to expand from -180 to

180 if the source envelope contains the dateline so use with caution. Sometimes

you will need to use a polygon that better tracks the shape of the area in the

desired projection rather than a rectangular envelope. See

com.raytheon.uf.common.geospatial.MapUtil getBoundingGeometry for an

example of this.

K. Python

Python can be used in two ways, either through Java or through the command line.

When using python from Java, it is a hybrid of Java and python objects; whereas from

the command line, it is purely python. This section will only cover the use through

Java.

The interface from Java to Python is built on Java Embedded Python (JEP). The best

way to call Python from Java is to use the class PythonScript or other derivatives of

the class PythonInterpreter. The javadoc explains the methods on those classes. Each

separate instance of a PythonInterpreter object results in a separate, mostly sandboxed

python interpreter.

AWIPS II
Software System Design Description (Ver. 5)

Common 63
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

1. Gotchas

 All access to a Python interpreter must be on the same thread that created the

interpreter.

 You should call dispose() when finished with an interpreter to free up

memory.

 Importing numpy in python leaks memory, so you should reuse interpreters

that import numpy instead of disposing them.

 Some Python extensions may not work well in multiple interpreters (e.g.

h5py).

2. Python/Java Code

Inside an interpreter, JEP will automatically convert primitives and Strings between

Java and Python, but otherwise every Java object is wrapped in a python object

known as a PyjObject. PyjObjects can be used throughout python code just like any

other python object. You can also call the Java methods on a PyjObject, however, any

arguments passed to them must be primitive objects or other PyjObjects.

To import a Java class, you use the from syntax:

from com.raytheon.uf.common.dataplugin.gfe.reference import ReferenceID,

ReferenceData

This imports the classes ReferenceID and ReferenceData as PyjClasses. PyjClasses

implement python’s __call__ method, so to create an instance and call the Java

constructor you just call the pyjclass, such as

instance = ReferenceID()

3. Transforming Between Java Arrays and Numpy Arrays

To send a primitive Java array to python, the best way is to implement the Java

interface INumpyable. The implementation should provide the x and y dimensions of

the numpy array, and then getNumPy() returns an Object[] of all the primitive arrays

to return.

In python code, with a PyjObject of the INumpyable implementation, simply do

x = obj.__numpy__

where obj is the INumpyable PyjObject, and x will be a python list of numpy arrays

corresponding to the primitive arrays returned by getNumPy().

To send numpy arrays back to Java, ensure the Java method you are calling accepts

the appropriate primitive array as an argument, and simply pass it along.

AWIPS II
Software System Design Description (Ver. 5)

Common 64
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

L. IDataStore

IDataStore is the interface for storing and accessing raw data that has been decoded.

The current implementations are PypiesDataStore and CachingDataStore; the other

implementations are legacy implementations that have been superseded by the

PypiesDataStore. Currently IDataStore implementations store to hdf5, but in theory

the storage format could change in the future.

To access a file, you must first create the IDataStore object by using

DataStoreFactory.getDataStore(File file). To add data to the file, you use

IDataStore.addRecord(IDataRecord) and then call IDataStore.store(). To retrieve

data, you can use any of the retrieve methods on IDataStore. If you wish to retrieve

only a column, row, or selected set of points, you must use a retrieve method that

takes a Request object.

1. PyPIES

PyPIES is Python Process Isolated Enhanced Storage. It is pronounced like Py as in

Python followed by the plural form of a dessert. PyPIES is designed to push all of our

hdf5 actions into transactions that are isolated to a unique process. In short, every

time you read or write to hdf5 a separate and dedicated process will handle that action

at the hdf5 API level. You can think of it as a separate hdf5 service, much like

postgres runs as a service and handles sql commands, PyPIES runs as a service and

handles IDataStore commands.

Advantages:

 EDEX cannot crash in the hdf5 libraries

 Removed bottleneck of single-thread per process on hdf5 access

 HDF5 service and file store can reside on different machine than EDEX

 Python DynamicSerialize developed to support this

Disadvantages:

 All data must be serialized and sent to the service before it can be written

a. PyPIES Architecture

PyPIES is built on the following components:

 Apache Http Server (httpd). For serving http requests and returning

responses.

1. mod_wsgi. Module for httpd to serve python

2. werkzeug. Python package that implements wsgi

AWIPS II
Software System Design Description (Ver. 5)

Common 65
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 dynamicserialize python package. For serializing/deserializing requests and

responses

 h5py. For writing/reading hdf5

 pypies python package. Glue that deserializes requests and processes data

with h5py, then serializes responses.

b. Starting PyPIES

To start pypies, as root do

/etc/init.d/httpd-pypies start

c. Configuring PyPIES

Pypies primary config files are apache config files. The most important is located

at httpd_pypies/etc/httpd/conf.d/pypies.conf. This allows you to configure the

number of processes that pypies will have available to process IDataStore

requests. The other important file is at httpd_pypies/var/www/wsgi/pypies.wsgi.

If either of these files has incorrect paths to python and its packages, pypies will

probably not start. The last config file for apache is at

httpd_pypies/etc/httpd/conf/httpd.conf. This files controls a number of options

including port number.

EDEX is configured to use the pypies server address specified in

edex/bin/setup.env.

You can also configure the number of connections an EDEX instance can have

open to pypies at any given time, and the timeout value. The number of

connections edex can open to pypies is currently set in the file

edex/etc/default.sh. If you would like different EDEX Java Virtual Machine

(JVM) to have a different number of connections, set the value in the appropriate

.sh file. The timeout value is set in edex.xml in the pypiesStoreProps bean.

d. PyPIES Logs

PyPIES logs to two different locations. For top level apache issues, it logs to

apache's error_log which you can find at httpd_pypies/etc/httpd/logs/error_log.

The python code that processes requests and returns responses is logging to

awips2/pypies/logs/pypies.log by default.

Due to the nature of multiple processes attempting to write to the same file,

pypies starts a separate logging service. Each individual process will log to a

socket, while this separate logging service reads from the socket and writes to the

file, rolling over the file at midnight each day.

AWIPS II
Software System Design Description (Ver. 5)

Common 66
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

M. Python Job Coordinator

The PythonJobCoordinator allows developers to easily create thread pools to execute

Python code on separate threads. Jobs can be run either asynchronously (in which a

listener is fired when the job is done) or synchronously (in which the calling code

waits for the job to finish before moving on). Jobs will be queued as necessary, so if a

pool of three is allocated and five jobs are queued, three will run simultaneously, with

two running after those finish (in an order). Code can allocate as many or as few

threads as desired, although starting with a single thread is recommended.

The following code is necessary to execute an existing PythonInterpreter class using

this functionality. Implementation of PythonInterpreter is not demonstrated by the

following code. For a basic example, look in the com.raytheon.viz.gfe.query package

in the com.raytheon.viz.gfe plug-in.

QueryScript.java. This class is the interface to the Python interpreter. It creates the

Jep instance, and has an execute method that will be called to run your Python code.

This class will be executed on a thread from the thread pool, and has any functionality

that is necessary while integrating with Python. This should be a subclass of

PythonInterpreter or PythonScript.

QueryScriptExecutor.java. This class will be instantiated every time a user wants to

call a method on QueryScript. Arguments should be added to the constructor of this

class that are necessary to be used in the QueryScript itself. The execute method takes

the QueryScript and runs any method on it. In this case, there is only a single

executor, but it is possible to have multiple Executor classes to do different things on

the same PythonInterpreter class. The Executor classes must implement

IPythonExecutor<I, O> where I is the QueryScript class and O is what the user

expects back from the method being called.

QueryScriptFactory.java. This class instantiates the QueryScript itself. The

constructor should take anything necessary to know about in the QueryScript itself,

and needs to define the name of the thread pool and how many threads should be

allocated. These threads do not go away, and are only used for this procedure, so this

needs to be taken into account when thinking of the number of threads. The

createPythonScript() method builds a new PythonInterpreter that does not go away.

To get the following to run:

The first thing to do is to declare a new factory. This only needs to be done once, so it

should only be constructed in a place that gets called once (for example, constructor).

AWIPS II
Software System Design Description (Ver. 5)

Common 67
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

AbstractPythonScriptFactory<QueryScript> factory = new

QueryScriptFactory(dataManager);

The PythonJobCoordinator now needs to create a new thread pool from that factory,

and this should be stored off. If this is not possible, there is a getInstance() method by

the name that is given in the factory.

PythonJobCoordinator coordinator =

PythonJobCoordinator.newInstance(factory);

OR

PythonJobCoodinator coordinator =

PythonJobCoordinator.getInstance("factoryname");

Now, we need to declare new Executors, create a listener (if desired), and submit

them to the coordinator.

IPythonExecutor<QueryScript,ReferenceData> executor = new

QueryScriptExecutor("evaluate", argMap);

IPythonJobListener<ReferenceData> listener = new

IPythonJobListener<ReferenceData>() {

 @Override

 public void jobFailed(Throwable e) {

 statusHandler.handle(Priority.ERROR,

 "Unable to finish QueryScript job", e);

 }

 @Override

 public void jobFinished(ReferenceData result) {

 getActiveRefSet();

 if

(!result.getGrid().equals(getActiveRefSet().getGrid())) {

 setActiveRefSet(result);

 }

 };

};

AWIPS II
Software System Design Description (Ver. 5)

Common 68
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

coordinator.submitAsyncJob(executor, listener);

OR

ReferenceData data = coordinator.submitSyncJob(executor);

In the first case, we are going to continue on with everything and the listener will get

fired depending on whether it failed (jobFailed) or worked (jobFinished).

In the second case, the code waits until the QueryScript job is done.

The first case is the desired and recommended approach, as nothing will lock up

when that is called.

N. Data Access Framework

The Data Access Framework allows developers to retrieve different types of data

without having dependencies on those types of data. It provides a single, unified data

type that can be customized by individual implementing plug-ins to provide full

functionality pertinent to each data type.

1. Writing a New Factory

Factories will most often be written in a dataplugin, but should always be written in a

common plug-in. This will allow for clean dependencies from both CAVE and

EDEX.

A new plug-in’s data access class must implement IDataFactory. For ease of use,

abstract classes have been created to combine similar methods. Data factories do not

have to implement both types of data (grid and geometry). They can if they choose,

but if they choose not to, they should do the following :

 throw new

UnsupportedOutputTypeException(request.getDatatype(), "grid");

This lets the code know that grid type is not supported for this data factory.

Depending on where the data is coming from, helpers have been written to make

writing a new data type factory easier. For example, PluginDataObjects can use

AbstractDataPluginFactory as a start and not have to create everything from scratch.

Each data type is allowed to implement retrieval in any manner that is felt necessary.

The power of the framework means that the code retrieving data does not have to

know anything of the underlying retrieval methods, only that it is getting data in a

AWIPS II
Software System Design Description (Ver. 5)

Common 69
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

certain manner. To see some examples of ways to retrieve data, reference

SatelliteGridFactory and RadarGridFactory.

Methods required for implementation :

public DataTime[] getAvailableTimes(IDataRequest request) This

method returns an array of DataTime objects corresponding to what times are

available for the data being retrieved, based on the parameters and identifiers

being passed in.

public DataTime[] getAvailableTimes(IDataRequest request,

BinOffset binOffset) This method returns available times as above, only

with a bin offset applied.

Note: Both of the preceding methods can throw TimeAgnosticDataException

exceptions if times do not apply to the data type.

public IGridData[] getGridData(IDataRequest request, DataTime...

times) – This method returns IGridData objects (an array) based on the request

and times to request for. There can be multiple times or a single time.

public IGridData[] getGridData(IDataRequest request, TimeRange

range) Similar to the preceding method, this returns IGridData objects based

on a range of times.

public IGeometryData[] getGeometryData(IDataRequest request,

DataTime times) – This method returns IGeometryData objects based on a

request and times.

public IGeometryData[] getGeometryData(IDataRequest request,

TimeRange range) – Like the preceding method, this method returns

IGeometryData objects based on a range of times.

public String[] getAvailableLocationNames(IDataRequest request) –

This method returns location names that match the request. If this does not apply

to the data type, an IncompatibleRequestException should be thrown.

2. Registering the Factory with the Framework

The following needs to be added in a spring file in the plug-in that contains the

new factory:

 <bean id="radarGridFactory"

class="com.raytheon.uf.common.dataplugin.radar.dataaccess.RadarGr

idFactory" />

AWIPS II
Software System Design Description (Ver. 5)

Common 70
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 <bean factory-bean="dataAccessRegistry" factory-

method="register">

 <constructor-arg value="radar"/>

 <constructor-arg ref="radarGridFactory"/>

 </bean>

This takes the RadarGridFactory and registers it with the registry and allows it to

be used any time the code makes a request for the data type “radar.”

3. Retrieving Data Using the Factory :

For ease of use and more diverse use, there are multiple interfaces into the Data

Access Layer. Currently, there is a Python implementation and a Java

implementation, which have very similar method calls and work in a similar

manner. Plug-ins that want to use the data access framework to retrieve data

should include com.raytheon.uf.common.dataaccess as a Required Bundle in

their MANIFEST.MF.

To retrieve data using the Python interface :

 from ufpy.dataaccess import DataAccessLayer

 req = DataAccessLayer.newDataRequest()

 req.setDatatype("grid")

 req.setParameters("T")

 req.setLevels("2FHAG")

 req.addIdentifier("info.datasetId", "GFS212")

 times = DataAccessLayer.getAvailableTimes(req)

 data = DataAccessLayer.getGridData(req, times)

To retrieve data using the Java interface :

 IDataRequest req = DataAccessLayer.newDataRequest();

 req.setDatatype("grid");

 req.setParameters("T");

 req.setLevels("2FHAG");

 req.addIdentifier("info.datasetId", "GFS212");

 DataTime[] times = DataAccessLayer.getAvailableTimes(req)

 IData data = DataAccessLayer.getGridData(req, times);

AWIPS II
Software System Design Description (Ver. 5)

Common 71
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

newDataRequest() This creates a new data request. Most often this is a

DefaultDataRequest, but saves for future implentations as well.

setDatatype(String) This is the data type being retrieved. This can be found

as the value that is registered when creating the new factory (See Section 2.N.2,

Registering the Factory with the Framework [radar in that case]).

setParameters(String...) This can differ depending on data type. It is most

often used as a main difference between products.

setLevels(String...) This is often used to identify the same products on

different mathematical angles, heights, levels, etc.

addIdentifier(String, String) This differs based on data type, but is often

used for more fine-tuned querying.

Both methods return a similar set of data and can be manipulated by their

respective languages. See DataAccessLayer.py and DataAccessLayer.java for

more methods that can be called to retrieve data and different parts of the data.

Because each data type has different parameters, levels, and identifiers, it is best

to see the actual data type for the available options. If it is undocumented, then the

best way to identify what parameters are to be used is to reference the code.

AWIPS II
Software System Design Description (Ver. 5)

EDEX 72
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

3. EDEX

A. EDEX Camel Spring

EDEX is built upon the Apache Camel framework and is configured through the use

of Spring XML files. Plug-ins contribute their Spring XML files inside the plug-in in

the res/spring folder.

1. EDEX Modes

Each EDEX instance can selectively start different services and plug-ins through the

use of a command line argument to start.sh that designates the edex mode.

There are currently four supported EDEX modes, and each server starts all four,

resulting in four distinct JVMs.

1. request. Serves http for CAVE and other clients.

2. ingest. Processes most of the backend work, including ingesting and storing most

data types.

3. ingestGrib. Decodes and stores grib data that is received. This was separated

from the ingest JVM to free up memory for the other ingest process.

4. ingestDat. Calculates and stores data types for the DAT plug-ins, such as FFMP

and Scan.

Too many JVMs can result in the server going into memory swap. However, splitting

the functionality into separate JVMs can improve efficiency and how much is

affected by a failover scenario.

The services that are started with each mode are determined by the modes.xml file.

As an example, here is the entry for the request mode.

 <mode name="request">

 <include>.*request.*</include>

 <include>.*common.*</include>

 </mode>

When you start edex with start.sh request, edex scans all available plug-ins for files

under the res/spring folder. Then, any of those files that match the regular expressions

of <include> tags and do not match the regular expressions of <exclude> tags will be

loaded.

AWIPS II
Software System Design Description (Ver. 5)

EDEX 73
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

2. Spring XML Files

To understand how EDEX uses Spring, it is helpful to understand some of Spring

itself. For documentation on Spring, please see

http://static.springsource.org/spring/docs/2.5.x/reference/index.html.

An EDEX Spring XML file must always start and end with the <beans> tag that

defines where the schemas are located. EDEX typically uses the Spring schema and

the Camel schema.

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd

 http://camel.apache.org/schema/spring

http://camel.apache.org/schema/spring/camel-spring.xsd">

Within the beans tag, plug-ins typically instantiate beans that will be used in service

routes and register with specific services. For some examples:

<bean id="satNotifyTransform"

class="com.raytheon.edex.plugin.satellite.notify.SatelliteNotifyTran

sform" />

This XML tag instantiates the class SatelliteNotifyTransform and identifies it for later

use as satNotifyTransform.

<bean id="gribRegistered" factory-bean="pluginRegistry" factory-

method="register"

 depends-on="levelRegistered">

 <constructor-arg value="grib"/>

 <constructor-arg ref="gribProperties"/>

 </bean>

This XML tag calls PluginRegistry.register(grib, gribProperties), and it will not be

called until the levelRegistered bean and gribProperties bean are created. Since

gribProperties is passed into this call, it will be created before this call.

levelRegistered is not passed into the method, but the developer determined it was

necessary to occur before gribRegistered, hence the use of the depends-on attribute.

 <camelContext id="sat-camel"

 xmlns="http://camel.apache.org/schema/spring"

 errorHandlerRef="errorHandler"

 autoStartup="false">

The camel contexts are the services of EDEX. Contexts consist of one or more routes.

 <route id="satNotification">

 <from uri="vm:satNotify" />

http://static.springsource.org/spring/docs/2.5.x/reference/index.html
http://camel.apache.org/schema/spring/camel-spring.xsd

AWIPS II
Software System Design Description (Ver. 5)

EDEX 74
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

<bean ref="satNotifyTransform" method="transformToMessages" />

 <bean ref="serializationUtil" method="transformToThrift" />

 <to uri="jms-generic:queue:satNotification" />

 </route>

Routes consist of a from uri, processing in the middle, and then a to uri. To

understand specific options for a route, you should consult the Camel documentation

at http://camel.apache.org/. In the above example, messages are pulled from the

vm:satNotify queue, they are sent through the previously instantiated

satNotifyTransform’s transformToMessages method, then passed to

serializationUtil.transformToThrift(), and finally are sent out through JMS to another

queue.

Multiple routes can be chained together with the use of from and to uri’s. As an

example, all incoming data gets routed to the distribution service, then routed to the

individual plug-in’s decoding service, then the persist service, then the index service,

and finally the notify service. So when a developer goes to add a new data type, they

only have to hook in the decoding service into the appropriate spot in the chain and

the rest will work automatically.

B. Camel EDEX Adapters

1. Important Camel-EDEX Classes

The purpose of these classes is to provide some common utility functions that are

used when processing data within the Camel ESB. In addition, several of these

classes define an adapter layer that decouples EDEX from the underlying Camel

infrastructure.

The Exchange interface defines a container that is used to transfer data between

various Camel components.

2. DataUriAggregator

 Method: addDataUris

 Input: Array of String - An array of URIs to add to the collection.

 Output : void

Add one or more URIs to the internal collection of URIs.

Method: hasUris

 Input: Object - Not used.

 Output : boolean

Does the aggregation contain any URIs?

http://camel.apache.org/

AWIPS II
Software System Design Description (Ver. 5)

EDEX 75
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 Method: sendQueuedUris

 Output : DataURINotificationMessage

Create a message containing the aggregated URIs.

 Method: sendPracticeQueuedUris

 Output : PracticeDataURINotificationMessage

Create a practice message containing the aggregated URIs.

3. FileToBytesConverter

 Method: toByteArray

 Input: File

 Output: Array of byte

 Read an entire array of byte from a specified File reference.

4. FileToString

 Method: process

 Input: Exchange

 Output : void

Copy an incoming file from its location into the edex “../data/processing”

directory structure. The FileToString class assumes that the incoming message

contains a Java File reference to some existing file on the file system. The process

method creates the new path in the “processing” structure if necessary, then performs

a binary copy operation of the contents of the file. When the copy is complete the

original file is deleted from the file system. The dequeueTime message property is

set to the current system time in milliseconds. This time is used to provide timing

instrumentation.

5. MessageProducer

 Method: sendAsync

 Input: String - endpoint - Name of the endpoint to receive the object.

 Object - message - The object to send.

 Output: void

 Method: sendSync

 Input: String - endpoint - Name of the endpoint to receive the object.

 Object - message - The object to send.

 Output : void

AWIPS II
Software System Design Description (Ver. 5)

EDEX 76
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 Method: sendAsyncUri

 Input: String - uri - The URI of the endpoint to receive the object.

 Object - message - The object to send.

 Output : void

Allow objects to be sent to Camel endpoints programmatically. The two send

methods, sendASync and sendSync, send a message to the endpoint. The sendSync

will expect a reply from the endpoint, whereas the sendASync is "fire and forget."

The sendAsyncURI sends to an endpoint URI instead of a named endpoint.

6. NotifySeparator

 Method: separate

 Input: String - header - derived from the message header property.

Long - queueTime - derived from the message enqueueTime

property.

 String - body - derived from the message body.

 Output : List<Message>

Assumes that "header" is a concatenated list of notifications and that body is a

concatenated list of locations. The separate method splits the concatenated lists and

creates a list of Camel Messages, one for each member of the lists.

7. ProcessUtil

 Method: delete

Input: String - derived from the "ingestFileName" message header

property.

 Output : void

Delete the file referenced by the ingestFileName.

 Method: delete

 Input: File - A file reference to delete.

 Output: void

Delete the specified file.

 Method: log

Input: Map<?,?> - derived from the message headers. Contains various

properties that are collected during processing.

 Output : void

AWIPS II
Software System Design Description (Ver. 5)

EDEX 77
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

Log information derived from various header properties that may have been set

during processing. Used to generate timing statistics.

 Method: iterate

 Input: Array of PluginDataObject

 Output : Iterator<?> An iterator to the array.

Convenience method to return an iterator to an array of PluginDataObjects. Normally

used within Camel "wiring" to get items one at a time.

8. SetIngestHeaderFields

 Method: process

 Input: Exchange - The message container used for transport data.

 Output : void

On entry to the process method the dequeueTime message property is set to the

current system time in milliseconds. This time is used to provide timing

instrumentation. The body of the message, assumed to be a String, is read and used to

create a File reference. The resulting File is checked to see if it exists on the file

system. On success the "ingestFileName" property to the fully qualified path name of

the file. If the file does not exist an error log message is posted and the fault flag on

the outgoing message is set to true.

9. StringToFile

 Method: process

 Input: Exchange

 Output: void

The StringToFile class assumes that the incoming message contains either an array of

byte or a String as its payload. In the case of a byte array it is further assumed that

this data represents a String. The String object should be a fully qualified file path to

some file of interest. A Java File object is created using the resulting String data and

this File is then tested to determine if it exists. If it does exist, the body of the

Exchange message is set to the File object. In addition, the following message

properties are set.

 “ingestFileName” is set to the name of the File object created.

 dequeueTime is set to the current system time in milliseconds. This time is

used to provide timing instrumentation.

 If the file represented by the input String was not found an error is logged and

the fault flag on the outgoing message is set to true.

AWIPS II
Software System Design Description (Ver. 5)

EDEX 78
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

10. ToDataURI

 Method: toDataURI

 Input: Array of PluginDataObject

 Output : Array of String

The ToDataURI class converts an array of PluginDataObject and converts these to

their DataURI. This function is primarily used as a step prior to notification. The

notification subsystem notifies interested subscribers of new data by broadcasting the

datauri only.

11. UUIDGenerator

 Method: generateUUID

 Output : String

Generates a random Universally Unique IDentifier (UUID) and returns the String

representation of that identifier.

C. Thread Pools: Usage of Generic Decoder

Thread pooling in the EDEX system is derived from the Spring concurrent scheduling

architecture, which is in turn built on the Java Concurrency API. See the following

documentation.

 Spring Concurrent Scheduling Framework Documentation.

 Java Concurrency API Documentation.

Threading allows various program execution units in the EDEX system to share time

on the processors. How that sharing takes place is “hidden” by the API with the

assumption that the API can best decide how to allocate resources to multiple tasks.

ThreadPools are defined within the Spring xml configuration files in the following

manner.

<bean id="mytestThreadPool"

class="com.raytheon.uf.edex.esb.camel.JmsThreadPoolTaskExecuto

r" >

 <property name="corePoolSize" value="3"/>

 <property name="maxPoolSize" value="3"/>

</bean>

In this example we set up a thread pool with given properties. By setting “core” and

“max” PoolSize to the same value we indicate that this is the maximum number of

threads that will be created for this pool. This threadPool is then set as a property on

the JMS component for the plug-in as follows

http://static.springsource.org/spring/docs/2.0.x/api/index.html?overview-tree.html
http://docs.oracle.com/javase/6/docs/api/index.html?java/util/concurrent/package-summary.html

AWIPS II
Software System Design Description (Ver. 5)

EDEX 79
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

<bean id="jms-mytest"

class="org.apache.camel.component.jms.JmsComponent" >

 <constructor-arg ref="jmsIngestMyTestConfig"/>

 <property name="taskExecutor"

ref="mytestThreadPool"/>

</bean>

Here the thread pool is injected into the plug-in JMS Component as a custom

executor for consuming messages from either queues or topics. Any data arriving on

the component will be executed on the thread. The named JmsComponent is later

used to create specific JMS inbound routes for data arriving at the plug-in.

The primary purpose for this threading environment is to allow individual logging for

various plug-in components. Also it allows a separation of processing code. The

Standard Hydrometeorology Exchange (SHEF) decoder, for example, writes its data

to its own database. By using threading, this processing is kept separate from other

decoders. Note that to keep the processing on the same processor, and thread of

execution, subsequent endpoints must use the “directvm” endpoint.

To use the separate logging feature, an appender for the plug-in is created. This

appender is then associated with the specific thread pool. These actions are specific to

the system Log4j configuration.

<appender name="MyTestLog"

 <!-- define appender -->

</appender>

<appender name="ThreadBasedLog"

class="com.raytheon.uf.edex.log.ThreadBasedAppender">

<param name="ThreadPatterns"

value="...;MyTestLog:mytestThreadPool .*;..."/>

 <!-- Other definition itemsr -->

 <appender-ref ref="MyTestLog"/>

</appender

D. EDEX Data Routing

1. indexAlert Route

The “indexAlert” route is used as a possible destination for decoded data that needs to

be stored to a database table. Specifically, this route exists to persist data to the

“metadata” data base and to place alerts for that data on the notification queue. The

processing for indexAlert takes place as follows.

AWIPS II
Software System Design Description (Ver. 5)

EDEX 80
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

When a decoder process has completed its decode, any resulting data is placed on the

indexAlert queue. The indexAlert route receives data from that queue and passes it

through the set of processing steps as shown in Figure 3-1.

Figure 3-1. indexAlert Route

E. Persistence, Hibernate, Postgres, and CoreDao

1. Postgres Database (v9.2.4)

EDEX uses Postgres as the repository for storing metadata extracted during the data

ingest process. The database also contains the text database, the maps database, and

the hydro database.

In a typical AWIPS II installation, the Postgres database, by default, is installed on

the dx1 server under the /awips2/postgresql directory. For typical development

purposes, the contents of this directory are not significant as most development can be

carried out without concern for the underlying database configuration. Nevertheless, a

few items in this directory may be of some importance. The following is an overview

of some important directories and files in the postgres installation.

AWIPS II
Software System Design Description (Ver. 5)

EDEX 81
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 /awips2/postgresql/bin

– start_developer_postgres.sh and start_postgres.sh. Either of these

scripts can be used to start the postgres server on a development

workstation.

– Psql. This is the command line interface for interacting with the postgres

database. A typical usage of this command to connect to the metadata

database is as follows: psql -d metadata -U awips -h dx1. You would then

enter the password for user awips which is awips. Once connected, you are

now able to interact with the database using SQL or the set of meta-

commands provided by psql. Detailed documentation about using psql and

psql’s meta-commands can be found here:

http://www.postgresql.org/docs/8.3/static/app-psql.html

– Further documentation about the client applications in this directory can

be found here: http://www.postgresql.org/docs/9.2/static/reference-

client.html.

 /awips2/postgresql/doc. This directory contains a complete set of html

documents detailing the usage of postgres.

 /awips2/postgresql/include. This directory contains code used internally by

postgres and should not be manually modified

 /awips2/postgresql/lib. This directory contains libraries used by postgres and

should not be manually modified

 /awips2/postgresql/man. Unix man pages for client applications included in

the postgres installation.

The /awips2/data directory is used by postgres to store table information (schemas,

tablespaces, etc.) and user configurable files. Some important directories and files

contained in this directory are:

 /awips2/data/postgresql.conf. This file controls a number of items defining

how Postgres behaves behind the scenes including memory usage, logging,

and querying. Modifying items in this file can have significant performance

implications. Therefore, modifications should be carefully considered. A

series of documentation explaining the various configuration items contained

in this file is here: http://www.postgresql.org/docs/8.3/static/runtime-config-

file-locations.html

 /awips2/data/pg_hba.conf. This file controls client connection permissions

and authentication. Detailed documentation about this file and other client

authentication concerns can be found here:

http://www.postgresql.org/docs/8.3/static/client-authentication.html

http://www.postgresql.org/docs/8.3/static/app-psql.html
http://www.postgresql.org/docs/9.2/static/reference-client.html
http://www.postgresql.org/docs/9.2/static/reference-client.html
http://www.postgresql.org/docs/8.3/static/runtime-config-file-locations.html
http://www.postgresql.org/docs/8.3/static/runtime-config-file-locations.html
http://www.postgresql.org/docs/8.3/static/client-authentication.html

AWIPS II
Software System Design Description (Ver. 5)

EDEX 82
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 /awips2/data/pg_log. This directory contains the postgres logs. Logging

behavior can be enabled/disabled and modified in the aforementioned

postgresql.conf file.

 The complete set of documentation for Postgres 8.3 is located here:

http://www.postgresql.org/docs/8.3/static/index.html.

a. PGAdmin3

PGAdmin3 is a graphical interface to view postgres databases. Refer to the

PGAdmin3 documentation for usage details: http://www.pgadmin.org/docs/

2. Hibernate

At a very high level, Hibernate is a COTS product that can be used to map Java

classes to a relational database. This effectively removes the user/developer from

being concerned with constructing complex and sometimes confusing SQL

commands to interact with persistent data and focus more on the behavior and

interactions of Java objects. AWIPS II currently uses Hibernate v3.5. Detailed

documentation about Hibernate v3.5 can be found here:

http://docs.jboss.org/hibernate/core/3.5/reference/en-US/html/

a. Configuring Hibernate

Hibernate is injected into EDEX via the /awips2/edex/conf/spring/edex.xml file.

In this file, SessionFactory objects are defined for each database currently in use.

The Hibernate SessionFactory object is the critical link between a persistent Java

class and the database. The SessionFactory gets database connections, controls

transactions, and generates the SQL statements from the provided Java objects.

The SessionFactory uses a configuration file to configure how it is going to

connect and interact with the database. These configuration files are located at

/awips2/edex/conf/db/hibernateConfig. Each database uses its own

SessionFactory and therefore each database has its own hibernation configuration

file. For example, the configuration file for the metadata database is located here:

/awips2/edex/conf/db/hibernateConfig/metadata/hibernate.cfg.xml. Detailed

information about the options available for use in this document can be found

here: http://docs.jboss.org/hibernate/core/3.5/reference/en/html/session-

configuration.html

Database connection pooling is also used. A package called c3p0 is used for this

purpose. The c3p0 connection pooling parameters are defined in the

hibernate.cfg.xml files mentioned above. The parameters available are described

http://www.postgresql.org/docs/8.3/static/index.html
http://www.pgadmin.org/docs/
http://docs.jboss.org/hibernate/core/3.5/reference/en-US/html/
http://docs.jboss.org/hibernate/core/3.5/reference/en/html/session-configuration.html
http://docs.jboss.org/hibernate/core/3.5/reference/en/html/session-configuration.html

AWIPS II
Software System Design Description (Ver. 5)

EDEX 83
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

here: http://www.mchange.com/projects/c3p0/index.html. See Appendix C in that

document for information about using c3p0 with Hibernate.

The SessionFactory must be made aware of which classes are to be mapped to the

database. These classes may be specified in the SessionFactory Spring bean

definition. Since EDEX was designed to be extensible via data type plug-ins, this

approach was insufficient. As a result, EDEX dynamically determines the set of

mapped classes at startup. The

com.raytheon.uf.common.serialization.SerializableManager class scans the

class path for classes with the javax./persistence.Entity (@Entity) annotation. Any

classes found with that annotation are included in the SessionFactory.

b. Adding Hibernate Annotations

Hibernate provides two methods for mapping classes, configuration files and

annotations. AWIPS II uses annotations for mapping. For informational purposes,

information about using configuration files for mapping classes can be found

here: http://docs.jboss.org/hibernate/core/3.5/reference/en/html/mapping.html

Detailed information about mapping classes using annotations is located here:

http://docs.jboss.org/hibernate/annotations/3.5/reference/en/html_single/.

A few highlights of the most important annotations follow.

 @Entity. The @Entity annotation must be attached at the class level. The

@Entity annotation is used to make the class Hibernate aware.

 @Table. The @Table annotation must be attached at the class level. The

@Table annotation is used to specify the table name, catalog, schema, and any

unique constraints. All attributes on the @Table annotation are optional.

 @Id. The @Id annotation attached to the property in the Java class that is to

be used as the primary key for the associated database table. All classes

mapped with the @Entity annotation must have an @Id parameter specified

(except in the case of a complex key or an embedded object)

 @Embeddable. The @Embeddable annotation is placed at the class level.

The @Embeddable annotation informs Hibernate that this class is not mapped

to its own table. Instead, the properties contained in this class will be included

in the containing class’ database table

 @Embedded. The @Embedded annotation is placed at the property level.

The @Embedded annotation means that the columns specified by an

@Embeddable class are to be included in this class's database table

 @Column. The @Column annotation is placed at the property level (or on the

getter for that property). The @Column annotation is used to give Hibernate

http://www.mchange.com/projects/c3p0/index.html
http://docs.jboss.org/hibernate/core/3.5/reference/en/html/mapping.html
http://docs.jboss.org/hibernate/annotations/3.5/reference/en/html_single/

AWIPS II
Software System Design Description (Ver. 5)

EDEX 84
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

hints about how to create the associated column in the database. Hibernate is

able to dynamically figure out the associated column type based on the Java

type in most cases (i.e., String maps to varchar, int maps to integer). The

@Column annotation is implied (using Hibernate derived defaults) for all

properties in an @Entity annotated class. In other words, if you do not

explicitly annotate a property with the @Column annotation, Hibernate will

map the property for you anyway.

 @Transient. The @Transient annotation is placed at the property level. The

@Transient annotation tells Hibernate not to include this property in the

database mapping.

 @Index. The @Index annotation is placed at the property level. The @Index

annotation tells Hibernate to create a database index based on the this

property.

 @Type. The @Type annotation is placed at the property level. This

annotation is used in the case that you have specified a property type that

cannot be automatically determined by Hibernate. The @Type annotation

expects you to give it the FQN of an implementation of

org.hibernate.usertype.UserType. A UserType implementation details how

Hibernate should transform the class into a form that can be inserted into and

retrieved from the database.

– An example of this is the utilityFlags property in

com.raytheon.uf.common.time.DataTime. The type is defined as

com.raytheon.edex.db.mapping.DataTimeFlagType which is an

implementation of org.hibernate.usertype.UserType.

c. Data Access Objects

Data type plug-ins may specify their own data access objects for data access. The

com.raytheon.uf.edex.database.dao.CoreDao is used as the base class from

which all other data access objects inherit. The CoreDao constructor takes a

com.raytheon.uf.edex.database.dao.DaoConfig object, which specifies which

session factory to use (essentially tells the dao which database to look at). Once a

CoreDao object has been instantiated, it may be used to insert, delete, update, and

query data from the database.

There are several methods available for inserting data into the database. These are

create, persist, persistAll, saveOrUpdate, and mergeAll. The create method saves

an object that has not been previously inserted into the database. The persist,

persistAll, and saveOrUpdate methods save (or update if previously saved)

objects into the database.

AWIPS II
Software System Design Description (Ver. 5)

EDEX 85
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

Users have the option of using several different methods for querying data:

 executeSQLQuery and executeNativeSQL. Users may submit SQL strings

to directly query the underlying database structure

 executeHQLQuery and executeHQLStatement. Hibernate provides its own

query language for querying objects. The Hibernate Query Language (HQL)

language is similar to Structured Query Language (SQL). Documentation on

HQL can be found here:

http://docs.jboss.org/hibernate/core/3.5/reference/en/html/queryhql.html.

The executeHQLQuery is used for querying the database and the

executeHQLStatement method is used for all other non-query (i.e. insert,

update, etc.) statements.

 queryByCriteria. There are several queryByCriteria methods available on

CoreDao. These methods expect a

com.raytheon.uf.edex.database.query.DatabaseQuery object to be

submitted.

– The DatabaseQuery object allows users to easily specify which parameters

to query for. The constructor of the DatabaseQuery expects the developer

to specify which class they are querying for. Developers may use the

addQueryParam methods to specify the name, value and operator used to

query on. The addReturned field specifies which fields are to be returned

from the query. Note that when adding query parameters and returned

fields, the names used are those contained in the Java class and not the

database column names. It is worth noting that attempting to do queries

using table joins using the addJoinField on the DatabaseQuery class will

not yield correct results.

– An example use of queryByCriteria:

LambertConformalGridCoverage coverage = (LambertConformalGridCoverage) grid;

 DatabaseQuery query = new DatabaseQuery(this.daoClass);

 query.addQueryParam("dx", coverage.getDx());
 List<LambertConformalGridCoverage> result =

(List<LambertConformalGridCoverage>) queryByCriteria(query);

If the basic methods in CoreDao are insufficient for the needs of a data type plug-

in, a developer may extend CoreDao and implement additional methods.

Otherwise, CoreDao may be instantiated and used out of the box.

http://docs.jboss.org/hibernate/core/3.5/reference/en/html/queryhql.html

AWIPS II
Software System Design Description (Ver. 5)

EDEX 86
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

F. EDEX Decoder Plug-ins

1. Generic Decoder

EDEX decoders provide the capability of transforming incoming data, coded or not,

into a canonical data form that is later persisted to a data store. By providing the data

in a canonical form, only a single data access object needs to be provided to retrieve

these data. The decoders within the ingest component may receive data from outside

sources, coded weather data for example, or as the output of other decoders to be

transformed into a different format.

A simple implementation of a decoder is a class that exposes an “action” method that

will be called by the “camel” subsystem. When designing such a class some of the

following rules and conventions must be observed.

The camel Spring “wiring” XML allow the developer to expose the decoder action

method to camel. The following is a snippet from a configuration XML of a typical

decoder.

 <bean id="mytestDecoder"

class="com.raytheon.uf.edex.plugin.mytest.MyTestDecoder"

 depends-on="mytestPluginName">

 <constructor-arg ref="mytestPluginName" />

 </bean>

The bean name mytestDecoder is the decoder’s name reference. This will be used

when a reference to the bean is required. The “class” argument indicates that class

that will be created, and “depends” on indicates that mytestPluginName must be

defined before this bean will be created. Note that when the bean is created and used,

there is a single instance. The above “bean” definition would use the following java

code:

 public MyTestDecoder(String name) {

 pluginName = name;

 }

Note that the only correspondence between the “bean” constructor argument and the

Java code is that the constructor parameter takes a single argument of type String.

Camel uses reflection to determine the correct constructor to be called.

It is important to recognize that a single instance of the class is created. That means

that any attributes of the class are common to an invocation of the bean methods. Any

data that is declared within a method is visible to that method only, however any data

declared at the class level is visible to any invocation of any method. So it is best to

ensure that thread safety is a high design priority.

AWIPS II
Software System Design Description (Ver. 5)

EDEX 87
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

The following reference actually uses the defined bean and indicates that the method

“decode” will be invoked as the action method of the class. Note in particular that

there are no arguments to the method. Camel uses reflection to examine the decoder’s

decode method and determine how to transform the incoming data if that is possible.

 <bean ref="stringToFile" />

 <bean ref="mytestDecoder" method="decode" />

As an example, given the above XML, the “bean” stringToFile converts a byte array

or String to a File reference given the assumption that the byte array/String represents

a fully qualified file name. Then Camel examines the bean mytestDecoder’s decode

method to determine what parameter(s) it may take. The following code outlines

some possible variations:

 public PluginDataObject [] decode(File file)

 the file reference created by stringToFile is passed unchanged.

 public PluginDataObject [] decode(byte [] data)

The contents of the file reference are first read into a byte array and this is then

passed to the decode method.

 public PluginDataObject [] decode(String data)

The contents of the file reference are first read and converted to a String and this

String is passed to the decode method.

The first method, a direct File reference, is useful when dealing with large files. This

allows the decoder to keep a minimum of data in memory at a time. The developer

should keep in mind that the file being referred to should not be deleted or modified

as it may be used by other clients not known to the developer.

Using the second method, the entire contents of the file are read as a byte []. This is

useful for smaller data files as the developer has the data readily available and has no

concern regarding file manipulation. Like the first method, this allows the developer

access to the raw data. However, unlike the first method, the developer does not have

access to the underlying file reference.

The third method makes the assumption that the underlying data is of a String type.

Although useful, this method must be used with care. The Java runtime uses certain

AWIPS II
Software System Design Description (Ver. 5)

EDEX 88
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

encoding to transform raw data into a String. If any data within the raw data does not

map correctly then, the result will not be accurate or even rendered unusable.

The action method “decode” declares a return type of an array of PluginDataObject.

The return value should be a not-null reference with zero or more entries. Returning

zero entries allows the data to be processed fully by “downstream” processes as

empty is valid. The not-null array keeps an exception from being thrown if a

downstream process is expecting an array of PluginDataObject.

The strategy design pattern is commonly used with designing decoder classes. Figure

3-2 illustrates a situation where several parser classes may be used depending on the

type of the data.

Figure 3-2. Parser Classes

Implementing the parsing services behind the ParserInterface decouples the Decoder

“frontend” from the actual parser implementation. This makes software maintenance

easier as the Camel interfaces need little or no changes when changes occur within

the Parser class. This division of labor also allows the Parser to be tested in a stand-

alone mode.

Figure 3-3 shows the sequence of events that are typical during the lifetime of a

decoder class. At startup camel creates a bean instance of the decoder. At that point

the decoder instance should be ready to begin receiving messages via its exposed

“action” methods.

Decoder

+Decoder(String)

+decoder(byte []) : PluginDataObject []

+parse(byte []) : PluginDataObject []

ParserInterface

ParserA ParserB ParserC

+parse(byte []) : PluginDataObject [] +parse(byte []) : PluginDataObject [] +parse(byte []) : PluginDataObject []

~+getParser(byte []) : ParserInterface

AWIPS II
Software System Design Description (Ver. 5)

EDEX 89
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

Figure 3-3. Typical Sequence of Events During Lifetime of a Decoder Class

Between Startup and Shutdown a simple sequence occurs. Data, from some source, is

received by camel and, after being identified as data to be processed by the

mytestDecoder, is routed to the this decoder. The “bean” mytestDecoder has

identified decode as its action method, which is called with the incoming data. For

each new data message a new Parser object is created, its parse method is then called

to decode the data fully and return an array of PluginDataObjects representing the

decoded data. This is then returned to camel to be processed further downstream.

Note that because of the way this occurs, the decoder should make no assumptions

mytestDecoder

camel : Camel

new()

Parser

decode(byte [])

parse(byte [])

PluginDataObject []

PluginDataObject []

A new Parser is created for each
message that is received. When the
parse process is complete the
Parser object is released allowing

resources to be reclaimed.

The Decoder is created at start

up and continues until camel is
shutdown.

Camel Startup

new()

Camel Shutdown

PluginDataObject []

AWIPS II
Software System Design Description (Ver. 5)

EDEX 90
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

about how the data is to be used by downstream consumers. The data object

representing the decoded data should be the only output of the decoder.

2. Camel-Spring Configuration xml

Normally the Spring configuration is split into two sections. The first, named

“plugin”-common.xml, usually contains information that should be “available” prior

to the plug-in specific information being defined. The following shows a simple, yet

complete definition for the “mytest” plug-in.

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:amq="http://activemq.apache.org/schema/core"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd

 http://activemq.apache.org/schema/core

http://activemq.apache.org/schema/core/activemq-core.xsd

 http://camel.apache.org/schema/spring

http://camel.apache.org/schema/spring/camel-spring.xsd">

 <bean id="mytestPluginName" class="java.lang.String">

 <constructor-arg type="java.lang.String" value="mytest" />

 </bean>

 <bean id="mytestProperties"

class="com.raytheon.uf.common.dataplugin.PluginProperties">

 <property name="pluginName" ref="mytestPluginName" />

 <property name="pluginFQN"

value="com.raytheon.uf.common.dataplugin.mytest" />

 <property name="record"

value="com.raytheon.uf.common.dataplugin.mytest.MyTestRecord" />

 </bean>

 <bean id="mytestRegistered" factory-bean="pluginRegistry"

factory-method="register">

 <constructor-arg ref="mytestPluginName"/>

 <constructor-arg ref="mytestProperties"/>

 </bean>

</beans>

The XML attributes in the <beans... > tag is always required and identifies camel

XML namespace information.

The first bean of interest is “mytestPluginName.” This bean is identified by name

“id=”mytestPluginName”, the class that represents the value class=”java.lang.String”.

The value that will be assigned to the bean is set using a “constructor-arg”, that is,

“constructor argument”, which identifies the argument type and value. Once this bean

is created it is commonly used by using the form ref=”name”, where name is the id

AWIPS II
Software System Design Description (Ver. 5)

EDEX 91
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

associated with the bean. This is defined so that all references for pluginName are the

same.

The second bean sets up some important properties associated with the plug-in.

 pluginName. The “short” name of this plug-in. Normally the

pluginName bean reference.

 pluginFQN. The fully qualified name of the data plug-in!

 Record. This is the fully qualified name of the Data Record that will

be used to return data from this decoder.

The third bean registers the above properties with the pluginRegistry. This registry

makes the defined property information available to other services using the

pluginName as a key.

Once these items have been declared the plug-in has been identified to the system.

The second configuration section, named “plugin”-ingest.xml usually contains

information that tells camel how this plug-in handles data being received by the

ingest system. In the following the <beans... > preamble is not shown.

 <bean id="mytestDecoder"

class="com.raytheon.uf.edex.plugin.mytest.MyTestDecoder"

 depends-on="mytestPluginName">

 <constructor-arg ref="mytestPluginName" />

 </bean>

 <bean id="mytestDistRegistry" factory-bean="distributionSrv"

 factory-method="register">

 <constructor-arg ref="mytestPluginName" />

 <constructor-arg

 value="jms-

dist:queue:Ingest.mytest?destinationResolver=#qpidDurableResolve

r" />

 </bean>

 <bean id="mytestCamelRegistered" factory-bean="contextManager"

 factory-method="register"

 depends-on="persistCamelRegistered">

 <constructor-arg ref="mytest-camel" />

 </bean>

 <camelContext id="mytest-camel"

xmlns="http://camel.apache.org/schema/spring"

 errorHandlerRef="errorHandler" autoStartup="false">

 <!-- Begin mytest routes -->

 <route id="mytestIngestRoute">

 <from

AWIPS II
Software System Design Description (Ver. 5)

EDEX 92
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 uri="jms-

generic:queue:Ingest.mytest?destinationResolver=#qpidDurableReso

lver" />

 <setHeader headerName="pluginName">

 <constant>mytest</constant>

 </setHeader>

 <doTry>

 <pipeline>

 <bean ref="stringToFile" />

 <bean ref="mytestDecoder" method="decode" />

 <to uri="directvm:indexAlert" />

 </pipeline>

 <doCatch>

 <exception>java.lang.Throwable</exception>

 <to

uri="log:mytest?level=ERROR&showBody=false&showCaughtExc

eption=true&showStackTrace=true" />

 </doCatch>

 </doTry>

 </route>

 </camelContext>

The first bean, “mytestDecoder,” defines the decoder bean, its implementing class,

and in this case a constructor argument referencing the pluginName.

As noted previously, this creates a single instance of the class that will be used when

referenced. Note that this bean also contains the attribute

depends-on=”mytestPluginName”

This ensures that all beans in “mytest”-common.xml have been defined prior to this

bean being created.

The second bean, “mytestDistRegistry,” registers information about this plug-in with

the distribution service. In this case the pluginName and a message service queue are

registered. This tells the distribution service that when data for the named plug-in is

received, that data should be placed on the specified queue so that the data may be

routed to the plug-in. Generically an “endpoint” is being defined which may be

written to or read from.

The first bean of interest is “mytestPluginName.” This bean is identified by name

“id=”mytestPluginName”, the class that represents the value class=”java.lang.String”.

The value that will be assigned to the bean is set using a “constructor-arg”, that is,

“constructor argument”, which identifies the argument type and value. Once this bean

is created it is commonly used by using the form ref=”name”, where name is the id

AWIPS II
Software System Design Description (Ver. 5)

EDEX 93
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

associated with the bean. This is defined so that all references for pluginName are the

same.

The first item in the route “mytestIngestRoute” declares the “from” endpoint, that is,

where the message comes from. In this case the “jms” queue endpoint is referenced.

Next, the message header is modified to add a property “pluginName” with the value

“mytest.” This property will serve to identify where the processing was performed for

later use. Next, a “doTry” section is declared. This is set so that any errors that occur

will be caught (by the doCatch tag) and appropriate action can be taken, writing an

error message to the log file in this example.

The actions contained with the “pipeline” tag are then executed serially. The first

“stringToFile” and the second “mytestDecoder” have been described. The third tag –

“to” – sends the resulting message to the endpoint “directvm:indexAlert” for further

processing.

A note of warning. The data placed in the body of the message is not checked and is

presupposed to be correct. If the “decoder” bean were to return an array of String

instead of PluginDataObject, no error would occur within this context. The error

would occur, however, in downstream processing where camel finds bean method

expecting an array of PluginDataObjects and is instead presented with an array of

String. An exception would be thrown, indicating that a suitable conversion could not

be made.

G. PluginRegistry

The EDEX PluginRegistry provides a means of setting various property values that

are specific to each plug-in. These property values are stored in a single object,

PluginProperties, which is keyed using the pluginName. Figure 3-4 provides a class

diagram of the relationship.

The PluginProperties class used in PluginRegistry exposes important properties that

are used while creating a plug-in at startup as well as providing information that will

be used during the lifetime of the plug-in.

AWIPS II
Software System Design Description (Ver. 5)

EDEX 94
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

Figure 3-4. Plug-in Registry

1. Properties Exposed by PluginProperties

The properties exposed by PluginProperties are:

 pluginName. The short name of the project.

 pluginFQN. The fully qualified name of the project.

 Database. The database that should be used.

 Record. The fully qualified name of the record object to be

registered.

 dao. The Dao (Data Access Object) that implements store behavior

for the record object.

 Initialize. An initializer class that performs any initialization

required while the plug-in is being registered.

 dependencyFQNs

 pathProvider. A class that provides a path to the HDF repository for

the record object.

 Compression. The type of compression to be used on the data.

 initialRetentionTime. Use of this property is deprecated.

AWIPS II
Software System Design Description (Ver. 5)

EDEX 95
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

The values for database, initializer, dao, initialRetentionTime, and pathProvider are

set to default values that are declared in the class PluginPropertyDefaults in the

“edex.xml” startup configuration.

The following properties show some typical values for the properties. The “record”

property is important as the initialization tasks use this record to construct the build

table SQL required when a table is initially created in the database.

Given a sample decoder plug-in named mytest the following properties could be set

as follows

 <bean id="mytestPluginName" class="java.lang.String" >

 <constructor-arg type="java.lang.String" value="mytest" />

 </bean>

<bean id="mytestProperties"

class="com.raytheon.uf.common.dataplugin.PluginProperties" >

 <property name="pluginName"

ref="mytestPluginName" />

 <property name="pluginFQN"

value="com.raytheon.uf.common.dataplugin.mytest" />

 <property name="dao"

value="com.raytheon.uf.common.dataplugin.mytest.dao.MyTestDao"

/>

 <property name="record"

value="com.raytheon.uf.common.dataplugin.mytest.MyTestRecord" />

 </bean>

The properties defined are then registered with the pluginRegistry and any

initialization actions occur at this time.

 <bean factory-bean=="pluginRegistry" factory-method="register" >

 <constructor-arg ref="mytestPluginName" />

 <constructor-arg ref="mytestProperties" />

 </bean>

2. Plug-in Startup

Figure 3-5 shows both the system initialization and the plug-in initialization involved

with PluginRegistration. At startup the edex.xml configuration file begins by creating

a set of default plug-in properties. These properties are later used to populate initial

properties in the PluginProperties constructor as each new plug-in is defined. When

values for certain properties are not explicitly specified by a plug-in, these defaults

ensure that important properties always have meaningful values.

AWIPS II
Software System Design Description (Ver. 5)

EDEX 96
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

Figure 3-5. Plug-in Startup: System Initialization and Plug-in Initialization

The edex.xml next creates callback classes that will later use specified plug-in

properties to perform additional initialization as follows.

1. The schemaManager bean is created, followed by the dbPluginRegistry. This

schemaManager is then added to the dbPluginManager as a listener for

registryChanged events in the dbPluginRegistry.

pluginDefaults :PluginPropertyDefaults()

setXXX(String)

edex.xml

schemaManager:

addListener(schemaManager)

Various properties set

dbPluginRegistry :

SchemaManager()

DatabasePluginRegistry()

pluginRegistry :PluginRegistry()

addListener(dbPluginRegistry)

pluginSetup :PluginInitialSetup()

addListener(pluginSetup)

mytest-common.xml :

mytestProperties :
PluginProperties()

setRecord()

setPluginName()

register(mytestPluginName, mytestProperties)

pluginAdded(pluginName)

IPluginRegistryChanged

getDefaultProperties
The plugin properties being constructed may
use the default properties set of overwrite these
with values specific to the plugin.

The pluginAdded callback on any added listeners are called to ensure

that plugin specific actions take place during registration.

AWIPS II
Software System Design Description (Ver. 5)

EDEX 97
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

2. The dbPluginRegistry is in turn added as a registryChanged listener on

pluginRegistry after it has been created.

3. Other registryChanged listeners may be added to either the dbPluginRegistry or

pluginRegistry in a similar fashion.

4. Later, as plug-ins are defined and registered with the pluginRegistry, the

pluginAdded method on any listeners in the pluginRegistry are called. For the

above example:

a. A plug-in is defined and registered with the pluginRegistry.

b. The pluginRegistry then calls the pluginAdded method on the

dbPluginRegistry.

c. The dbPluginRegistry performs its tasks then calls the pluginAdded method

on the schemaManager.

d. The schemaManager uses information in the pluginProperties to perform

various database specific actions during startup. Most common would be

creating the DDL for the table for initial creation and then creating that table if

it does not exist.

The following extract is typical of the definitions for the items mentioned above.

 <!-- Create the default properties →

 <bean id="pluginDefaults"

class="com.raytheon.uf.common.dataplugin.defaults.PluginPropertyD

efaults">

 <property name="database" value="metadata" />

 <property name="initializer"

value="com.raytheon.edex.plugin.DefaultPluginInitializer" />

 <property name="dao"

value="com.raytheon.edex.db.dao.DefaultPluginDao" />

 <property name="initialRetentionTime" value="24" />

 <property name="pathProvider" ref="defaultPathProvider"/>

 </bean>

 <bean id="pluginRegistry"

 class="com.raytheon.uf.edex.core.dataplugin.PluginRegistry"

 factory-method="getInstance"/>

 <bean id="dbPluginRegistry"

 class="com.raytheon.uf.edex.database.DatabasePluginRegistry"

 factory-method="getInstance"/>

 <!-- schemaManager initializes database tables db plugin is

registered -->

 <bean id="schemaManager"

class="com.raytheon.edex.db.purge.SchemaManager"

 factory-method="getInstance" />

 <!-- Add the schemaManager as a listener on the dbPluginRegistry -

->

AWIPS II
Software System Design Description (Ver. 5)

EDEX 98
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 <bean factory-bean="dbPluginRegistry" factory-

method="addListener">

 <constructor-arg><ref bean="schemaManager"/></constructor-arg>

 </bean>

 <!-- This causes the data plugin's database tables to be created

when a plugin is registered -->

 <bean id="dbPluginRegistryListenerAdded" factory-

bean="pluginRegistry"

 factory-method="addListener">

 <constructor-arg><ref bean="dbPluginRegistry"/></constructor-arg>

 </bean>

 <!-- Runs the data plugin's initializer when a plugin is

registered -->

 <bean id="pluginSetup"

class="com.raytheon.edex.plugin.PluginInitialSetup" />

 <!-- Note the “depends-on” reference requires that the bean

“dbPluginRegistryListenerAdded” be defined prior to this bean

being created. -->

 <bean factory-bean="pluginRegistry" factory-method="addListener"

 depends-on="dbPluginRegistryListenerAdded">

 <constructor-arg><ref bean="pluginSetup"/></constructor-arg>

 </bean>

H. AWIPS II Data Purging

The purging in AWIPS II is based largely on the rule-based purging scheme in use

currently by AWIPS I. Due to some fundamental architecture differences between

AWIPS I and AWIPS II, the AWIPS II data purging model differs in some regards.

1. Configuration

By default, the purge routine runs off of a quartz timer once an hour at 30 minutes

past the hour. This value may be changed by modifying the purge.cron entry in the

/awips2/edex/conf/spring/project.properties file. The purge component is

configured in the res/spring/purge-spring.xml file located in the

com.raytheon.uf.edex.purgesrv plug-in. This file defines several beans and camel

routes, including the aforementioned quartz timer job, used in the purge process.

As will be explained later, each plug-in is responsible for purging its own data in

whatever manner it chooses. Each plug-in is responsible for assigning a data access

object (DAO) in their <plugin_name>-common.xml spring configuration file in the

<plugin_name>Properties bean. If a plug-in does not specify a custom DAO to use,

the default plug-in DAO (com.raytheon.uf.edex.database.plugin.PluginDao) is

used. Specifically, the purge behavior is defined in two methods on the data access

object. These are purgeExpiredData and purgeAllData. The default plug-in DAOs

implement the default rule-based purge routine. Plugin-defined DAOs may override

these methods to define their own custom purge behavior.

AWIPS II
Software System Design Description (Ver. 5)

EDEX 99
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

2. Purge Execution Flow

The quartz timer sends a message to the com.raytheon.uf.edex.purgesrv.PurgeSrv

bean defined by spring. The PurgeSrv then retrieves all the registered plug-ins from

the PluginRegistry. A loop then delegates the purging of data to the plug-in by calling

the purgeExpiredData method on the DAO. As mentioned above, plug-ins may use

the default purge routine or define their own.

3. Default Purge Behavior

If a plug-in chooses to use the default purge behavior, the plug-in must define rules

for how and what to purge. The plug-in should contain a file called

<plugin_name>PurgeRules.xml located in the utility/common_static/base/purge

folder. If a plug-in does not define this file, the default purge rule will be used to

purge their data. The default purge rule is defined in defaultPurgeRules.xml located

in the utility/common_static/base/purge folder of the

com.raytheon.uf.edex.database plug-in. Currently, the default rule is to purge all

data with reference times older than one day based on the current time.

A purge is identified by an id field. The id consists of the plug-in name and a purge

key. The key field defines what fields in the plug-in record class to examine to

determine if the data should be purged. For example, the grib plug-in defines the

following rule:

<rule>

 <id>

 <pluginName>grib</pluginName>

 <key>modelInfo.modelName=ETA</key>

 </id>

 <versionsToKeep>2</versionsToKeep>

</rule>

The key field in the id is identified as modelinfo.modelName=ETA. This means that

the purger will examine the modelInfo field of GribRecord (the record class assigned

to the grib plug-in) and subsequently look at the modelName field of the modelInfo

field to make its purge decision. In this case, this rule is saying to keep two versions

of grib records whose modelInfo.modelName field is ETA. Or, in other words, keep

two runs of the ETA grib model.

A plug-in may specify a plug-in default rule. This rule is used to prevent data that

may not get examined by the defined rules from not getting purged. If a plug-in does

not specify a plug-in default rule, then the global default rule mentioned earlier is

used. A plug-in default purge rule is defined as follows:

<rule>

 <id>

AWIPS II
Software System Design Description (Ver. 5)

EDEX 100
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 <pluginName>grib</pluginName>

 <key>default</key>

 </id>

 <versionsToKeep>2</versionsToKeep>

</rule>

The plug-in name is specified as the plug-in that this rule applies to. The key is

specified as default. This rule is saying to keep two versions of all data not addressed

by other defined rules. Taking grib as an example: Say a new model, or an unknown

model, starts to be ingested by EDEX. Obviously, no rule has been defined for this

data, but we do not want the data to persist forever and fill the disk. The default purge

rule kicks in and this data is purged in a reasonable way until a specific rule can be

defined.

If a plug-in, such as grib, defines purge rules based on fields in the class (in the case

of grib modelInfo, modelName) and the plug-in stores HDF5 data, then an additional

file must be present for purge to operate correctly. This file is called

<plugin_name>PathKeys.xml and is located in the

utility/common_static/base/path/ directory of the plug-in. This file is read by the

purger to tell it the fields on which this plug-in is basing its purging. This file also

determines the layout of the HDF5 data in the HDF5 data store. For grib, the contents

of the file are as follows:

<pathKeySet>

 <pathKey>

 <key>modelInfo.modelName</key>

 <order>0</order>

 </pathKey>

</pathKeySet>

The key field is the record class field to use when persisting HDF5 data. The order is

the order in which these fields should be appended when determining the HDF5 path.

In this case, the modelInfo.modelName field from the GribRecord class is used.

Examining the HDF5 directory for grib shows this:

grib

|-- AK-NamDNG5

|-- AK-RTMA

|-- AKWAVE239

|-- AKwave10

|-- AKwave4

|-- AUTOSPE

|-- AVN

|-- AVN203

|-- AVN211

.

.

.

AWIPS II
Software System Design Description (Ver. 5)

EDEX 101
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

You can see that the model name is used as the directory name. Expanding that out a

little more, you can observe that the actual HDF5 files then reside in those directories:

grib

|-- AK-NamDNG5

| |-- AK-NamDNG5-2012-03-22-06-FH-000.h5

| |-- AK-NamDNG5-2012-03-22-06-FH-003.h5

.

.

.

Important Note: A plug-in may not use more than one key for defining purge rules.

This means that for grib, you cannot have rules with different keys meaning you can

have one rule with key modelInfo.modelName and another rule with key

modelInfo.genprocess. This is due to how the purge routine was designed. Because

plug-ins have wide latitude for defining how their data is persisted, concessions had

to be made on what the purge routine was capable of doing The purger examines the

pathKeys.xml file to determine what to look at in the database. Then, based on that

key, it determines the list of refTimes matching that criteria. As an example, the grib

plug-in uses modelInfo.modelName as its key. Therefore, the purger will first

determine all the unique modelNames found in the database. Then, it will find all of

the unique reference times for each of those modelNames. An example representation

of the lists follows:

ETA (2012-03-22-00, 2012-03-22-06, 2012-03-22-12)

ETA218 (2012-03-22-00, 2012-03-22-06)

The purger then uses these lists to determine what data to purge. If multiple keys were

allowed, the purger would potentially be making thousands of queries to the database

to determine all the reference times that apply to those keys and then have to find out

if multiple rules apply. The logic has the potential to get extremely complex and more

importantly, time consuming. In this case, we are keeping two versions of the ETA

model, meaning that all ETA data with refTime 2012-03-22-00 is deleted from the

database and the HDF5 directory. This also adds efficiency to deleting HDF5 data.

Instead of calling many deletes to HDF5 directory to cherry pick specific pieces of

data from each file, which could get very time consuming, entire files may be deleted.

Essentially, the pathKeys file makes the HDF5 data get organized in manner that

facilitates fast purging.

The default purge routine relies on a plug-in using the DefaultPathProvider. If the

plug-in does not use this path provider, the purge routine may fail.

AWIPS II
Software System Design Description (Ver. 5)

EDEX 102
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

4. Purge Rules

A purge rule may specify the following parameters:

 versionsToKeep. The number of versions for this key to keep. Note that a

version is a reference time.

 period. Max period between the current time and the oldest time stamp of

files to keep; defaults to 0 which means do not time purge. The leading tilde

(~) on the period means to calculate from the latest time instead of the current

time

 delta. Data with a time stamp separated by less than this from the next newest

file will not be kept. Defaults to zero, which means do not consider time

separation. If a leading equals (=), keep only files an exact multiple of this

delta time, if a leading tilde (~), keep only the one file closes to an exact

multiple of this delta time.

 round. Round times by this before deciding whether to purge. Defaults to

zero, which means do not round. The rounding time interacts with the delta,

but not the period. If a leading plus sign (+), add the time instead of rounding

by it. If consecutive data round to the same time, then if one is kept, they will

all be kept.

 LogOnly. Do not actually purge by this entry, only log what would have been

purged

 modeTimeToWait. Time period to wait after the insert time of the latest data

to purge normally; this allows the most recent file to be completed before the

oldest is purged

I. Request JVM

1. Thrift Request and Handler API

EDEX supports a request-handler API that allows client applications (like CAVE) to

send data that will be processed by the EDEX server and optionally return results

back to the client. Due to its use of Dynamic Serialize, Java-based and Python-based

clients can interact with the server through this API.

2. Creating a Request

To create a new request type, create a new class that implements the IServerRequest

interface (see com.raytheon.uf.common.serialization.comm.IServerRequest).

Because this class will be sent to the server via Dynamic Serialize/Thrift, you must

also annotate your new class with the Dynamic Serialize annotations. The class itself

should have the @DynamicSerialize annotation and any fields of the class that will

be needed to process the request should have the @DynamicSerializeElement

AWIPS II
Software System Design Description (Ver. 5)

EDEX 103
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

annotation. Also, any fields marked as @DynamicSerializeElement will need

associated getters and setters.

The following sample code demonstrates a very simple request type.

 // ASampleRequest.java

 @DynamicSerialize

 public class ASampleRequest implements IServerRequest {

 @DynamicSerializeElement

 private long userId;

 @DynamicSerializeElement

 private String siteId;

 @DynamicSerializeElement

 private String message;

 public long getUserId() {

 return userId;

 }

 public String getSiteId() {

 return siteId;

 }

 public String getMessage() {

 return message;

 }

 public void setUserId(long userId) {

 this.userId = userId;

 }

 public void setSiteId(String siteId) {

 this.siteId = siteId;

 }

 public void setMessage(String message) {

 this.message = message;

 }

 }

3. Creating a Request Handler

To process requests of your new request type, you will need to do two things:

1. Create a class that implements the IRequestHandler<YourNewRequestType>

interface (see

com.raytheon.uf.common.serialization.comm.IRequestHandler).

2. Register your request handler with the request handler registry.

AWIPS II
Software System Design Description (Ver. 5)

EDEX 104
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

To implement the IRequestHandler interface properly, your new handler class must

implement a method named handleRequest, which accepts your request as the only

argument and returns an Object. This return value does not have to be typed Object

because primitives, Strings, and user-defined classes are also acceptable. The only

requirement is that the return type supports serialization via Dynamic Serialize.

The following sample code demonstrates a request handler for the request type from

the previous section.

// ASampleRequestHandler.java

public class ASampleRequestHandler

 implements IRequestHandler<ASampleRequest> {

 @Override

 public String handleRequest(ASampleRequest request) {

 StringBuilder retVal = new StringBuilder();

 retVal.append("User ");

 retVal.append(request.getUserId());

 retVal.append(" from site ");

 retVal.append(request.getSiteId());

 retVal.append(" says ");

 retVal.append(request.getMessage());

 return retVal.toString();

 }

To register your new handler, you will have to alter the EDEX plug-in’s spring

request XML (this will be in an XML file named *-request.xml) file and add the

following:

<!-- samplePlugin-request.xml -->

<bean id="sampleHandler"

class="com.raytheon.edex.plugin.sample.handlers.ASampleRequestHan

dler"/>

<bean factory-bean="handlerRegistry" factory-method="register">

 <constructor-arg

value="com.raytheon.uf.common.dataplugin.sample.requests.ASampleR

equest"/>

 <constructor-arg ref="sampleHandler"/>

</bean>

So, you create a bean for the request handler, then register it with the handlerRegistry,

and, by specifying your request type in constructor argument, tell the server to send

all requests of that type to your handler bean.

4. Sending the Request with Java from CAVE

In order for the client to send a request, developers should use the ThriftClient class

(see com.raytheon.uf.viz.core.requests.ThriftClient). This will automatically send

AWIPS II
Software System Design Description (Ver. 5)

EDEX 105
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

your request to the configured EDEX server. Just call the static method sendRequest

and pass in the request you want to send, and the server’s response will be returned. If

the request handler threw an exception while processing your request, sendRequest

will throw this exception back to the caller.

5. Sending the Request with Python

Since the Request/Handler API communicates using Dynamic Serialize, pure Python

clients can also interact with EDEX using the same request types that Java does.

AWIPS II provides a ufpy Python package, which includes a ThriftClient class for

communicating with EDEX. However, any requests you wish to send through

ThriftClient must be converted to pure python classes. Classes within the

dynamicserialize.dstypes Python package have already been converted for use in

baseline tools. Further information on converting Java classes to Python is covered in

the documentation on Dynamic Serialize.

J. Clustering

This is an EDEX-only concept, implemented via database row locks. All clustering

goes through com.raytheon.uf.edex.database.cluster.ClusterLockUtils. The

general conops is to use an easily identifiable name field that is specific to your

overall flow and then to use the details column to specify the unit of work. The

unique combination of the name and details provide the specific database row to lock.

ClusterLockUtils is used directly to cluster lock specific pieces of code, for example,

com.raytheon.edex.plugin.gfe.config.GFESiteActivation.java, where the name is

“GFESiteActivation” and task details is “Initialization: OAX”. The different lock

calls to ClusterLockUtils allow for customization of other only returning once a lock

is granted, the timeout of when to override a current lock, and overriding of

IClusterLockHandler can you give you custom control of how the extrainfo column is

used. The state of locks can be viewed in postgres. It is stored in the metadata

database, awips schema, cluster_task table.

There are clustered camel contexts to emulate singleton services, so an entire set of

routes is only running on a work machine in the cluster based on the context name.

The clustered context needs to be registered with the clustered camel context manager

and the context set to not auto-start, for example, purge-spring.xml.

Note: Changing the extrainfo column of a ClusteredContext to a different host/jvm

will cause that service to switch to the designated jvm at the next sync interval

(usually 20 seconds).

AWIPS II
Software System Design Description (Ver. 5)

EDEX 106
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

There are clusteredquartz endpoints for periodic kickoff of work that can be run on

any system, but the work unit should only happen once (example: gfe-request.xml).

If CAVE ever needed cluster locking, a Thrift request would need to be sent to EDEX

to interface with ClusterLockUtils on the client’s behalf.

K. AWIPS II deploy-install.xml

To understand what the deploy-install.xml file is and how to use it, you will need to

be familiar with ant. Ant, an Apache project, is a Java library and command-line tool

whose mission is to drive processes described in build files as targets and extension

points dependent upon each other. The primary use case of Ant is to build Java

applications. Ant supplies a number of built-in tasks allowing users to compile,

assemble, test, and run Java applications.

The AWIPS II deploy-install.xml file (provided that you have ant installed) will

allow you to deploy EDEX directly from your Eclipse workspace during development

provided that you have installed AWIPS II Standalone software package (installing

and configuring AWIPS II Standalone is outside the scope of this document).

Within your workspace, the deploy-install.xml file can be found in the build.edex

directory. To run deploy-install.xml from within Eclipse, right click on the file and

select: Run As -> Ant Build… in the context menu that is displayed. The “Edit

Configuration” dialog will be displayed. Select the “Main” tab in the Edit

Configuration dialog and look for the Arguments field. There are a few arguments

that you will have to provide before you can use deploy-install; a few are required

and others are optional. One of the required arguments is install.dir; if you are using

the standard ADE setup this argument should always be set to “/awips2/edex”: -

Dinstall.dir=/awips2/edex. Other arguments that you can specify include:

 -Dupdate.python

 -Dlocalization.sites

The update.python argument expects a yes / no value. If you set update.python to

“yes”, deploy-install.xml will update the ufpy and dynamicserialize site-packages in

your python install. However, in order for this update to work, you must have the

pythonPackages project in your workspace and the pythonPackages project must have

dynamicserialize and ufpy sub-directories. If the pythonPackages project is not

present in your workspace, deploy-install will fail.

The localization.sites argument expects nothing, a single site identifier or a comma-

separated list of site identifiers. When a localization site is specified, deploy-install

AWIPS II
Software System Design Description (Ver. 5)

EDEX 107
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

will copy the files from the associated localization project in your workspace to your

EDEX installation. (WARNING: This will overwrite any localization files that are

already present for the site.) The localization project(s) for any site that you specified

must be in your workspace; if not, deploy-install will fail.

Once you configure deploy-install.xml, you will be able to bypass the configuration

step completely and immediately run deploy-install by right clicking on the file in

Eclipse and select: Run As -> Ant Build in the context menu that is displayed. As

deploy-install is running, it will log information in the Eclipse console so that you

will be able to determine if deploy-install was successful or if it failed.

L. Logging Configuration

1. Configured Via XML Files

 XML Files for EDEX

 log4j.xml

 log4j-ingest.xml

 Logging Levels

 Level Names:

o TRACE

o DEBUG

o INFO

o WARN

o ERROR

o FATAL.

 TRACE is lowest level and FATAL is highest level.

 A logger set to log at a certain level will log that level and all higher

levels. Example: logger set to WARN level will log all WARN, ERROR,

and FATAL messages, but not TRACE, DEBUG, or INFO levels.

 Logging level is inherited from a parent logger.

 Additivity

 Additivity allows logging statements to be forwarded to all the appenders

in that logger as well as the appenders higher in the hierarchy.

 Set to true by default.

2. Appenders

An appender is an output location. All loggers log to one or more appenders.

AWIPS II
Software System Design Description (Ver. 5)

EDEX 108
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 Layouts

 Appenders use layouts to format the log file’s name and the output

 The PatternLayout is standard with the log4j distribution

 Uses conversion patterns to format the output.

 The conversions patterns are closely related to the print function in C.

 Literal text can be inserted within the conversion pattern.

3. XML Entries Explained

Start by creating appenders. Here is the radar log appender:

 <!-- radar log -->

 <appender name="RadarLog"

class="org.apache.log4j.rolling.RollingFileAppender">

 <rollingPolicy

class="org.apache.log4j.rolling.TimeBasedRollingPolicy">

 <param name="FileNamePattern"

value="${edex.home}/logs/edex-${edex.run.mode}-radar-

%d{yyyyMMdd}.log"/>

 </rollingPolicy>

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value="%-5p %d [%t]

%c{1}: %m%n"/>

 </layout>

 </appender>

 Appender

 name is RadarLog.

 Java class is RollingFileAppender.

 RollingPolicy

 Determines how the log files will roll over.

 AWIPS II uses the TimeBasedRollingPolicy.

 Requires a FileNamePattern option to be set.

 The value FileNamePattern should consist of the name of the file and a %d

conversion specifier.

 Uses Java's SimpleDateFormat.

 The %d conversion specifier determines when the log will roll over.

 AWIPS2 log files roll over daily.

– %d{yyyyMMdd}

– FileNamePattern value is the path to the log file and the file’s name.

 Layout

– Uses the PatternLayout.

AWIPS II
Software System Design Description (Ver. 5)

EDEX 109
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

– The conversion pattern is the format of the output line.

– ConversionPattern value above is %-5p %d [%t] %c{1}: %m%n.

 %5-p is the log priority left justified at 5 spaces.

 %d is the date time stamp in this format: 2011-12-14 17:11:16,509.

 [%t] is the name of the thread running surrounded by [].

 %c{1} prints the category of the logging event, where the number means to

print the corresponding number of right most components. 1 prints just the

rightmost component.

 The colon is just literal text to signify the start of the log text.

 %m is the actual message.

 %n is a platform dependent line separator character.

<logger name=”com.raytheon”>

 <level value=”INFO” />

</logger>

<logger name=”com.raytheon.edex.plugin.shef”>

 <level value=”DEBUG” />

</logger>

 Logger

 name is the package name to be logged.

 Any code inside the com.raytheon package will be logged at level INFO.

 The logger com.raytheon.edex.plugin.shef overrides the value set at the

com.raytheon level and uses the DEBUG level logging for log entries

inside the com.raytheon.edex.plugin.shef package.

 Add an appender to a logger with the <appender-ref

ref=”AppenderName”/>.

 If no appender-ref listed the logger will use the default <root> logging.

 Logging in the Java Code.

 Define the status handler:
private static final transient IUFStatusHandler statusHandler =

UFStatus

 .getHandler(ClassName.class);

 Call any of the statusHandler.handle() methods to send the message.

 Messages go to log file and AlertViz for notification.

 Notifications are configurable in the Alert Visualization Configuration dialog.

 Additional Info available via the log4j website:

http://logging.apache.org/log4j/index.html

AWIPS II
Software System Design Description (Ver. 5)

EDEX 110
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

M. Uframe feature.xml

The feature.xml is a file that allows plug-in providers a means to make collections of

plug-ins that logically go together. In addition to collecting the plug-in names

together, these names define the dependencies of the feature project.

com.raytheon.edex.feature.uframe

The com.raytheon.edex.feature.uframe project groups together all of the projects

that are required to build and deploy the EDEX uframe subsystem successfully.

<feature

 id="com.raytheon.edex.feature.uframe"

 label="Uframe Feature"

 version="1.0.0"

 provider-name="RAYTHEON">

 <description url="http://www.example.com/description">

 [Enter Feature Description here.]

 </description>

 <copyright url="http://www.example.com/copyright">

 [Enter Copyright Description here.]

 </copyright>

 <license url="http://www.example.com/license">

 [Enter License Description here.]

 </license>

 <plugin

 id="com.raytheon.edex.common"

 download-size="0"

 install-size="0"

 version="0.0.0"

 unpack="false"/>

</feature >

This extract shows the required elements of the file. Although only a single plug-in is

referenced here, com.raytheon.edex.common, the actual number is nearly 300

required plug-ins. This highlights another aspect of the feature.xml. By mentioning

the plug-in in the feature.xml the Eclipse environment is able to detect missing plug-

ins. This is useful in the development environment as new plug-ins are added, Eclipse

may issue an error alerting the developer of the need to import the specific project. At

build and deployment, the feature is used to ensure that all required projects are

available in the source baseline.

AWIPS II
Software System Design Description (Ver. 5)

CAVE 111
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

4. CAVE

A. RCP Framework

CAVE is built off the Eclipse RCP framework. Many of the things available in

Eclipse are also available for use in CAVE.

1. Views

A view is something that can be detached or attached to the CAVE window. It

functions similar to a dialog, the difference being that it can be attached or detached.

For an example, see ProductBrowserView.java in

com.raytheon.uf.viz.productbrowser.

Views must extend ViewPart. They must also have an extension point defined in the

plugin.xml for that plug-in, which is defined like the following :

 <extension

 point="org.eclipse.ui.views">

 <view

 allowMultiple="false"

 category="com.raytheon.viz.ui"

class="com.raytheon.uf.viz.productbrowser.ProductBrowserView"

id="com.raytheon.uf.viz.productbrowser.ProductBrowserView"

 icon="icons/browser.gif"

 name="Product Browser"

 restorable="true"/>

 </extension>

Because a view is much like a dialog, you are able to use all the Standard Widget

Toolkit (SWT) controls inside of it.

2. Perspectives

A perspective is basically everything that you see. Different perspectives can be made

for different things, as we see in having D2D/GFE/Hydro/Multi-programming

Executive (MPE)/Localization, etc. This includes menus, views, editors, as well as

other things. Basic new perspectives can be made as follows.

See LocalizationPerspective.java and the plugin.xml inside the

com.raytheon.uf.viz.localization.perspective plug-in.

AWIPS II
Software System Design Description (Ver. 5)

CAVE 112
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

Perspective Java classes must implement IPerspectiveFactory. This will force the user

to override createInitialLayout, which then the user can then add views and editors to

their liking.

The plugin.xml will need to define the perspective as follows:

 <extension point="org.eclipse.ui.perspectives">

 <perspective

class="com.raytheon.uf.viz.localization.perspective.LocalizationP

erspective"

id="com.raytheon.uf.viz.ui.LocalizationPerspective"

name="Localization"

 icon="icons/localization.gif"

 singleton="true">

 </perspective>

 </extension>

Perspectives then need to create a class that extends

AbstractVizPerspectiveManager.java. In this class the perspective will be created

and managed. See LocalizationPerspectiveManager.java. The plugin.xml must

also define this as follows :

 <!-- Viz Localization Perspective Manager -->

 <extension point="com.raytheon.viz.ui.perspectiveManager">

 <perspectiveManager

perspectiveId="com.raytheon.uf.viz.ui.LocalizationPerspective"

 class="com.raytheon.uf.viz.localization.perspective.LocalizationP

erspectiveManager"

 name="LocalizationPerspectiveManager">

 </perspectiveManager>

 </extension>

3. Editors

Editors are used to allow users to edit items, files, or anything really. Editors are tied

very tightly with a perspective, and often tied with Views as well. To create an editor

the following needs to be done:

 For CAVE editors, see any class that extends AbstractEditor.

4. Extension Points

Extension points can be used to contribute functionality by plug-ins that are not

included in the MANIFEST.MF file. A good example of how extension points work

is used in the com.raytheon.uf.viz.productbrowser plug-in. For each plug-in that

wants to contribute data to this plug-in, something must be added to its plugin.xml

AWIPS II
Software System Design Description (Ver. 5)

CAVE 113
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

file. This allows for the ProductBrowser plug-in to receive data from the other plug-

ins without actually having a dependency added for the other plug-in.

For example:

com.raytheon.uf.viz.productbrowser

<extension-point id="dataDefinition" name="dataDefinition" schema="schema/dataDefinition.exsd"/>

 Defines an extension point on the dataDefinition.exsd file.

com.raytheon.viz.radar plugin.xml (for adding radar data to the product browser)

<extension

 point="com.raytheon.uf.viz.productbrowser.dataDefinition">

 <dataDefinition

 name="radarProductBrowserDataDefinition"

 class="com.raytheon.viz.radar.RadarProductBrowserDataDefinition" >

 </dataDefinition>

 </extension>

This defines that the com.raytheon.uf.viz.productbrowser.dataDefinition extension

point will use the com.raytheon.viz.radar.RadarProductBrowserDataDefinition

class.

In the Java class, doing the following will recurse all the extensions and get each class

that was defined in the individual plugin.xml files.

ProductBrowserView.java

 IExtensionRegistry registry = Platform.getExtensionRegistry();

 IExtensionPoint point = registry

 .getExtensionPoint(ProductBrowserUtils.DATA_DEFINITION_ID);

 if (point != null) {

 extensions = point.getExtensions();

 } else {

 extensions = new IExtension[0];

 }

Because all of these classes extend AbstractProductBrowserDataDefinition.java,

we can use the same function call and get all the data to populate the product browser

tree.

ProductBrowserView.java

 for (IExtension ext : extensions) {

 config = ext.getConfigurationElements();

 for (IConfigurationElement element : config) {

 try {

 AbstractProductBrowserDataDefinition<?> prod =

(AbstractProductBrowserDataDefinition<?>) element

AWIPS II
Software System Design Description (Ver. 5)

CAVE 114
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 .createExecutableExtension("class");

 String productName = prod.populateInitial();

 }

 }

This will make calls into each individual class for each of the functions call

prod.populateInitial() and return the String for each.

5. Plug-ins

Plug-ins can be added to the RCP application simply by including them in the

feature.xml for CAVE, or by including them in a feature.xml that is included by the

AWIPS feature.xml file.

To create a new plug-in, go to File -> New -> Project... -> Plug-in Project. Name the

project according to the correct naming convention, leaving everything else default,

and click Finish.

By default, the only thing that is created is an Activator.java class. This class is first

called when the plug-in is activated or first used.

6. SWT/JFace

Eclipse RCP is based on SWT/JFace components, for which there is more

documentation in CAVE_SWT.odt.

B. SWT

SWT uses the native widgets of the operating system. The life-cycle of the widgets’

Java object mirrors the life-cycle of the native widget that it represents. When the

Java widget is created, the native widget is created, and when the Java widget is

destroyed, the native widget is destroyed. The design avoids the issues of calling

methods on a code object before the underlying widget has been created.

1. Display Object

The Display object is the connection between the application SWT classes and the

underlying windowing system. The Display class is windowing-system dependent

and may have additional methods available on some platforms.

 Each application will have only one Display object.

 The “User-Interface” thread that creates the Display object is the thread that

executes the event loop.

 An important task of the Display class is the event-handling mechanism.

AWIPS II
Software System Design Description (Ver. 5)

CAVE 115
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 The Display class keeps a collection of the registered events from the

operating system level event queue and delivers the events to the registered

listener.

 The Display object forms the GUI foundation but doesn't display any graphics

to the screen.

2. Shell Object

The shell object represents a window/dialog. A shell can be either a top level shell or

regular dialog shell. The Shell follows the SWT pattern of passing in a parent and

style into the constructor.

a. Top-Level Shell

A top-level shell:

 Takes a Display object as the parent.

 Will show up as a separate application on the operating system’s task bar.

 Can be minimized to the operating system’s task bar.

b. Regular/Dialog Shell

A regular/dialog shell:

 Takes another shell as the parent.

 Will not show up as a separate application in the operating systems task bar.

 Will be minimized when the parent dialog is minimized.

 Can be set up to block the parent dialog.

3. Disposing of Widgets/Objects

SWT works directly with the native graphics resources. Each SWT resource

consumes a GUI resource. Because all GUI resources are limited across all platforms,

a timely release of resources are vital. SWT widgets have to be disposed of manually

because the Java garbage collector never guarantees a timely release so it is

considered to be a poor manager of GUI resources.

When widgets are created, a parent widget is passed into the constructor (example

parent widget would be a Shell, Composite, or Group). The lifetime of the parent

component constrains the lifetime of the child component. So when that parent is

disposed of the child get disposed of as well.

These are the rules for disposing widgets:

 If you create, you dispose it.

 Because native resources are created when an SWT object is created, the

AWIPS II
Software System Design Description (Ver. 5)

CAVE 116
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

object needs to be disposed when it is no longer used.

 If you do not call the constructor to get a resource, then you must not dispose

of the resource.

 Why? Because the resource does not belong to you. It is considered

“borrowed.”

 Disposing of the parent will dispose the child.

 Calling the dispose() method for every object would be very time

consuming.

 Since each widget has a parent, disposing of the parent will take care of

the children.

 This ensures that all of the resources get disposed.

4. Layout Overview

Layouts provide a layer between the widgets in a Composite and the Composite itself.

They define where to place widgets in a Composite.

You set the Composite’s layout by using the setLayout() method, and there can only

be one layout per composite.

Composites can be nested and each Composite can have a layout independent of the

other Composites.

a. Types of Layouts

 FillLayout

 FillLayout is the simplest layout.

 The widgets are placed in a single column or a single row and are all the

same size.

 There are two possible styles for the FillLayout: SWT.HORIZONTAL and

SWT.VERTICAL.

 You can configure the FillLayout by setting member data (marginHeight,

MarginWidth, spacing, etc.).

 RowLayout

 RowLayout is similar to FillLayout as it places widgets in a single row or

column.

 It does not force the widgets to be the same size.

 If widgets will not fit on a single line they wrap to the next line or column.

 RowLayout uses the RowData class to configure the setting for the layout.

o Each widget must have its own instance of the RowData object.

o Reusing the same RowData object will yield undesired results.

AWIPS II
Software System Design Description (Ver. 5)

CAVE 117
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 Like the FillLayout, RowLayout also has member data that can be set to

fine-tune the placement of the widgets.

 GridLayout

 GridLayout offers more flexibility than RowLayout or Fill Layout.

GridLayout is the most commonly used layout in AWIPS II.

 GridLayout arranges the widgets/Composites in a grid pattern.

 Widgets are added left to right, top to bottom.

 GridLayout uses the GridData class to configure the setting for the layout.

o Each widget must have its own instance of the GridData object.

o Reusing the same GridData object will yield undesired results.

 Like the FillLayout and RowLayout, GridLayout also has member data

that can be set to fine-tune the placement of the widgets.

 The two most commonly used attributes of GridLayout are the number of

columns and a flag to determine if the grid cells should be forced to be the

same width or height.

 A widget may span multiple rows or columns.

 A widget can fill the remaining space horizontally, vertically, or both.

 StackLayout

 The StackLayout stacks all of the Composites on top of each other (think

of a deck of cards where only one card is visible).

 Only the top Composite is visible.

 All of the stack layers occupy the same amount of space.

 FormLayout

 FormLayout is the most complex of all the layouts.

 Like other layouts, FormLayout uses a layout data class (FormData).

 FormData is crucial when using the FormLayout.

o If FormData is not used, then all of the widgets will be placed on top

of each other.

 FormData uses the FormAttachment class to control widget sizing and

placement.

 Up to four FormAttachment instances can be set in the FormData object of

the widget.

 Each instance of the FormAttachment corresponds to one side of the

widget:

o Top, Bottom, Left, and Right.

 FormAttachment defines the following:

o How widgets position themselves with respect to the parent Composite

AWIPS II
Software System Design Description (Ver. 5)

CAVE 118
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

or to other widgets within that Composite.

o How the side of the widget it belongs to positions/sizes itself to the

object it is attached to (parent Composite or other widget).

5. Composite/Group Overview

Composite and Group are containers used to hold widgets and other Groups or

Composites objects. These containers can have a layout applied to them to dictate

how to arrange other containers and widgets.

a. Composite

A Composite is the most commonly used container in AWIPS II. It features

include the following:

 A Composite can have a border to show the boundaries.

 A Composite’s background can have different colors.

 A Composite can only have one layout.

A ScrolledComposite is a container just like a Composite. It has a defined area

that will scroll horizontally/vertically when the widgets will not fit in the

boundaries of the ScrolledComposite.

b. Group

A Group is the same as a Composite except that a Group has a border and a title

that appears in the top-left corner of the Group. Groups are used to group widgets

visually.

The border of the Group can be altered using a “hint” when constructing the

object.

c. SashForm

A SashForm is a container that can have other containers added. A divider in the

SashForm allows the user to resize how the space is divided.

On certain operating systems, the SashForm widget is not visible and is only

represented by what appears to be “dead space.” One approach to making it stand

out is to color the background of the SashForm.

6. Widget/Control Overview

Widgets are objects that are placed on a dialog that the user interfaces with. A Control

subclasses the Widget object. “Widget” and “Control” are terms that are used

AWIPS II
Software System Design Description (Ver. 5)

CAVE 119
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

interchangeably, so, for this documentation, the term “Widget” will be used because

Controls inherit from the Widget class.

Widget characteristics include the following:

 Widgets have a parent (usually a Shell or a Composite/Group).

 Most widgets cannot be sub-classed (cannot be extended). Check the Javadoc

of the widget to determine if it can be sub-classed.

 All widgets have a setData() and getData() methods. The setData() method

stores a plain Java object and the getMethod() will retrieve the object.

 Controls can have a ToolTipText. A ToolTipText is a box that appears when

the mouse hovers over a Control. It usually displays information about the

control.

The following are commonly used widgets:

 Button

 Buttons can display text, an image, or both.

 Button types are determined by setting a “hint” when creating the widget.

 Buttons can change the font of the text.

 On some operating systems, the foreground and background colors can be

changed.

 Common button types include:

o Push. A single click push button widget. SWT.PUSH is passed in when

creating the widget.

o Arrow. Like a push button but displays an arrow icon in the button.

SWT.ARROW is specified in the constructor along with one of the

following: SWT.UP, SWT.DOWN, SWT.LEFT, or SWT.RIGHT.

o Check. Displays a checkbox and text that is used to display an on/off

state. SWT.CHECK is passed in when creating a widget.

o Radio. Displays a radio button and text and displays an on/off state.

Once a radio button is selected, only selecting another radio button can

unselect it. SWT.RADIO is passed in when creating a widget.

o Toggle. A toggle button is a cross between a push button and a check-

box. It maintains an on/off state once it is clicked. SWT.TOGGLE is

passed in when creating a widget.

 Canvas

 A canvas is a widget that is specifically designed for graphics operations.

 A canvas can draw lines, shapes, and text.

 Canvases can receive mouse events.

AWIPS II
Software System Design Description (Ver. 5)

CAVE 120
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 In AWIPS II, canvases have been used to draw custom controls.

 Combo

 A combo widget is a hybrid of a text and a list widget.

 Combo boxes allow users to choose from a list of choices or the user can

enter text not found in the list.

 Combo boxes do not take up as much room as a List control because it

hides its information until it is displayed.

 Only one item at a time may be selected.

 There are three styles available for combo widgets:

o SWT.DROP_DOWN. A combo box where the list “drops down” to

show the available items. A user can type in the combo widget. The

item typed in does not automatically get added into the list. Selecting

an item from the list will erase the item that was typed in.

o SWT.READ_ONLY. Restricts the user from typing in any inputs.

o SWT.SIMPLE. On certain operating systems, this will make the list

always visible. However, this does not work on the Linux platform,

and SWT.SIMPLE works exactly like SWT.DROP_DOWN.

 Label

 This is a non-editable widget that displays text or an image.

 It cannot display an image and text at the same time.

 Labels can have a border.

 The foreground, background, and font can be changed on a label.

 List

 Using hints, a List can have single or multiple selections.

 A List does not specify a border by default so a border needs to be

specified when the object is created.

o Lists will only display strings. In most cases, a List object would be

paired with an array of data where the index in the data array would

match the index in the list.

o List boxes can be created with horizontal and/or vertical scrollbars. If

no scrollbars are specified, the text will be hidden when the control is

resized to be smaller than the area of the text.

 ProgressBar

 A ProgressBar is a widget that is used to visually show progress.

 ProgressBars can be horizontal of vertical

o Horizontal – progression moves from left to right

AWIPS II
Software System Design Description (Ver. 5)

CAVE 121
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

o Vertical – progression moves from bottom to top

 There are two types of ProgressBars:

o SWT.SMOOTH

 Slowly fills the bar until full, and updates based on what the

“selection value” is set to.

 When using the “smooth” style ProgressBar, the ProgressBar is

usually updated by actions that occur in a separate thread.

 Trying to update the ProgressBar in the event loop will yield an

all-or-nothing result as the GUI does not update until the task is

complete.

o SWT.INDERTERMINATE

 The ProgressBar indicator moves back and forth forever until the

ProgressBar is hidden or removed.

 Scale

 The Scale widget is a lot like the Slider widget as it allow the user to slide

a “tab” up and down a scale to adjust a value.

 Unlike Slider, Scale does not have arrow buttons on each side of the

control.

 “Ticks” or “Hashes” are located on both sides of the Scale (Windows

platform only).

 You should specify minimum and maximum values for the Scale.

o Note: When changing the min and max values, make sure the min is

never set to a number higher than the max before the max is set. When

the min value is set higher than the max value, at run time the code

will reset the minimum value. The same thing goes for setting the max

value lower than the min value.

o Example: If min is 0 and max is 100 and you want the min to be 1000

and the max to be 2000, first set the max to 2000 and then set the min

to 1000.

 Scale can be positioned horizontally or vertically.

 ScrollBar

 ScrollBars appear and function like Sliders.

 ScrollBars have a movable thumb that is used to:

o Scroll the contents of the widget.

o Visually represent the position.

 Arrows are located at the end of the ScrollBar to increment or decrement

the ScrollBar.

AWIPS II
Software System Design Description (Ver. 5)

CAVE 122
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 You do not actually create ScrollBars as they are built into widgets.

 To access a ScrollBar from a Widget, use the getVerticalBar() or the

getHorizontalBar().

 Slider

 The Slider control in SWT looks a lot like a ScrollBar.

 The Slider can be in a horizontal or vertical position.

 You can set the minimum and maximum values of the Slider.

 When setting the maximum value of the Slider, you must take into account

the size of the thumb bar.

o Example: If you want to have the Slider go from 0 to 100, you must

add the thumb size to the maximum, i.e., value.

o slider.setMaximum(100 + slider.getThumb()).

 Spinner

 Spinner is a control that allows the user to enter and modify numerical

values.

 Integer or decimal values can be used.

 The Spinner control has up and down arrow buttons that allow the user

increment/decrement the value.

o The amount that is incremented/decremented is configurable.

 Minimum and maximum values of the Spinner can be specified.

 StyledText

 The StyledText widget is a more advanced version on the Text widget.

 The StyledText widget allows a user to type information into a text field.

 StyledText widgets do not have a border by default.

o Use SWT.BORDER to make the Text control have a border.

 StyledText widgets have cut, copy, and paste methods to conveniently cut,

copy, paste text from/into the widget.

 StyleRange:

o A StyledText widget uses the StyleRange object to specify styles for a

range of text in the StyledText widget.

o StyleRange can change the background and foreground colors, font,

font style, underline, and strikeout.

o StyleRange is also used to identify sections of text. StyledText can

contain an array of StyleRanges, each representing a section/range of

text.

AWIPS II
Software System Design Description (Ver. 5)

CAVE 123
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 TabFolder & TabItem

 TabFolders allow several “pages” of information to be stacked on top of

each other, and the “pages” are accessed by clicking on the individual

tabs.

 Depending on the platform, tabs can be displayed on the top or bottom

TabFolder.

o Top is the default.

o The location of the tabs is specified by using a style when creating the

TabFolder.

 Each tab on a TabFolder is a TabItem.

 A TabItem can contain an image, text, or both.

 When creating a TabItem, the parent is the TabFolder.

 The TabItem is also the area that displays Composites/Widgets.

 All of the TabItems will be the same size. The TabItem with the most area

will determine that size for all TabItems.

 To add contents to a TabItem you use the setControl() method.

o Note: The setControl() method takes a single control as an argument.

o Use a Composite (which is subclassed to Control) to display multiple

controls/layouts in a TabItem.

 Table & TableItem

 Tables display data in a tabular format.

 Tables can have table columns, which can display an image, text, or both.

 Each row in a table is a TableItem object.

o A TableItem is an array of data that is displayed in a table row.

o Each “cell” of the TableItem can have its font and

foreground/background colors changed.

 A TableEditor can be used to add widgets like Button, Combo, and Label

to the table.

 The Table is a very simple widget, and anything other than basic

functionality provided by SWT must be handwritten. For example, JAVA

Swing uses abstract table models that can be highly customized and can be

swapped out of a table, it also takes care of the table columns. In SWT, the

Table widget requires a lot of extra coding to take care of managing the

data.

 The Table widget has a virtual capability that will only load the data that is

displayed in the table. The data will not be loaded until the table is

scrolled.

AWIPS II
Software System Design Description (Ver. 5)

CAVE 124
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 Text

 The Text widget allows a user to type information into a text field.

 The Text widget can be a single line or multiple lines.

 Text widgets do not have a border by default.

o Use SWT.BORDER to make the Text widget have a border.

 Text widgets have cut, copy, and paste methods to conveniently cut, copy,

and paste text from/into the widget.

 The Text widget features a password style that replaces the text with

asterisks or a symbol when the user types into the field.

 You can change the font of the text.

 Tray & TrayItem

 The Tray widget represents the system tray from the operating system.

 The TrayItem widget represents icons that can be placed on the system

tray or task bar status area.

 TrayItems can have images, tool tips, and popup menus.

 Tree & TreeItem

 Trees provide a selectable user interface object that displays a hierarchy of

items and issues notification when an item in the hierarchy is selected.

 The children that may be added to instances of Tree must be of type

TreeItem.

 Using a VIRTUAL style creates a Tree whose TreeItems are to be

populated by the client on an on-demand basis instead of up-front. This

can provide significant performance improvements for trees that are very

large or for which the TreeItem population is extensive (for example,

retrieving values from an external source).

7. Menu & MenuItem

Three types of menus are available in SWT:

1. Bar menus. Typically displayed at the top of the parent window (SWT.BAR).

2. Dropdown menus. Menus that drop down from a bar menu, a popup, or another

dropdown menu (SWT.DROP_DOWN).

3. Popup menus. Menus that will display at the mouse cursor location and

disappear when the user selects an item (SWT.POP_UP).

Submenus are menus that appear/popup off of an existing menu item that displays an

arrow on the right side of the menu. Submenus appear when the mouse hovers over

the MenuItem the submenu is associated with.

AWIPS II
Software System Design Description (Ver. 5)

CAVE 125
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

MenuItems that have submenus have a cascade style (SWT.CASCADE).

MenuItems can have a radio or check style.

 A menu item with a radio style behaves like a radio button (SWT.RADIO).

 A menu item with a check style behaves like a check box button

(SWT.CHECK).

A popup menu is just a menu that is assigned to a widget (like a Button or List).

Popup Menus:

 “Pop up” when the right mouse button is clicked.

 Can contain cascading (dropdown) menus, check menu items, radio menu

items, and separators.

 Can be associated with a Shell, composites, or widgets.

8. Events & Listeners

SWT offers two types of listeners: untyped and typed.

 Untyped:

 Untyped listeners can lead to smaller code.

 An untyped event listener can be registered to listen for any type of event.

SWT has two classes for untyped event:

o An interface Listener.

o An event class named Event.

 Typed:

 Typed listeners lead to more modular designs.

 Typed listeners use classes and interfaces specific to each possible event.

 For example, to listen for a button click, register a SelectionListener

implementation with the button using the button’s addSelectionListener()

method.

 All typed events ultimately derive from a common class: TypedEvent.

 Many event classes have a boolean member called “doit” that you can set

to false to cancel the processing of that event.

 SWT provides implementations of every listener interface that has more

than one method. The names of these classes end in Adapter.

9. Font Overview

Instances of the Font class manage operating system resources that define how text

looks when it is displayed.

Fonts may be constructed by providing a device and either name, size, and style

information, or a FontData object that encapsulates this data.

AWIPS II
Software System Design Description (Ver. 5)

CAVE 126
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

Application code must explicitly invoke the Font.dispose() method to release the

operating system resources managed by each instance when those instances are no

longer required.

“System Fonts” returns a reasonable font for applications to use. On some platforms,

this will match the “default font” or “system font” if such can be found. This font

should not be freed because it was allocated by the system, not the application.

Typically, applications that want the default look should simply not set the font on the

widgets they create. Widgets are always created with the correct default font for the

class of user-interface component they represent.

10. Color Overview

Instances of this class manage the operating system resources that implement SWT’s

Red, Green Blue (RGB) color model. To create a color you can either specify the

individual color components as integers in the range 0 to 255 or provide an instance

of an RGB.

Application code must explicitly invoke the Color.dispose() method to release the

operating system resources managed by each instance when those instances are no

longer required.

“System Colors” returns the matching standard color for the given constant, which

should be one of the color constants specified in class SWT. Any value other than one

of the SWT color constants which is passed in will result in the color black. This

color should not be freed because it was allocated by the system, not the application.

11. Built-in SWT Dialogs

SWT has built-in convenience dialogs. Dialogs are used to get quick inputs from the

user.

Some of the available dialogs include the following:

 Message Box Dialog

 Message boxes are used to display messages and to get confirmation from

the user.

 Message boxes display icons along with messages.

o Icon styles may be different between platforms

o If an icon is not supported then a default icon is used

 Message boxes have different button styles that determine which buttons

will be displayed on the message box.

 Color Selection Dialog

AWIPS II
Software System Design Description (Ver. 5)

CAVE 127
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 The Color Selection Dialog is a dialog that allows a user to select a color.

 The look and feel of the Color Dialog is different between each platform.

 When a color is selected a RGB value is returned.

 You can set the title bar text and color before the dialog is displayed.

 When creating a new color (using an existing color object that is not null)

you have to dispose of that color object first.

 Directory Selection Dialog

 The Directory Dialog is an easy way to browse directories.

 You can set the Directory Dialog’s title bar and starting directory before

the dialog is opened.

 A customizable message can also be displayed in the Directory Dialog.

 File Open/File Save Dialog

 The File Dialog is used for selecting files for opening or saving.

 The type of dialog depends on the style specified at creation.

o SWT.OPEN. Open dialog.

o SWT.MULTI. Open dialog that can select multiple files.

o SWT.SAVE. Save dialog.

 Both the Open and Save dialogs can have file filters to restrict the file

types for opening and saving. Two sets of data are used:

o A String array of “file types.”

 Microsoft Excel Spreadsheet Files (*.xls)

o A String array of file extensions.

 “*.xls”

 Note: The list of file types and the file extensions must match. If they do

not, then the correct files will not display according to the file name.

 Font Selection Dialog

 The font dialog allows the user to choose from the available fonts.

 The user can specify the following:

o Font type

o Size

o Font style (Regular, Bold, Italic, Bold Italic)

o Color

o Effects (Strikeout, Underline)

12. CaveSWTDialog

The CaveSWTDialog was created to simplify setting up dialogs and to provide

additional built-in features for CAVE.

AWIPS II
Software System Design Description (Ver. 5)

CAVE 128
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

Base class for CaveSWTDialog does not require the Eclipse workbench to have

started (CAVE does not have to be running to use). In 99% of cases, do not do not

extend this class except for rapid prototyping or if you have perspective independent

standalone components. This extends CaveSWTDialogBase and allows for

perspective dependent dialogs, which requires the workbench to be running.

Always use this class over CaveSWTDialogBase unless you have a standalone

component that uses dialogs.

13. Gotchas

Three things to watch out for are:

1. Not disposing of Color, Image, Font (creates memory leaks).

2. Certain widgets do not translate well across multiple platforms like the Scale

widget.

3. The hints that are provided to widgets may not work depending on the operating

system.

14. SWT References

Several websites offer help in understanding how to use SWT. They also provide

example code snippets. Here are two helpful links:

 http://www.eclipse.org/swt/. The Eclipse website; provides code snippets and

the Javadoc for the SWT classes.

 http://www.java2s.com/Tutorial/Java/0280__SWT/Catalog0280__SWT.

htm. Website with SWT training.

C. How to Write Dialogs for CAVE Classes

This is a guide to creating a CAVE dialog that does not block the User Interface (UI)

thread. When a dialog is open that blocks the UI thread alerts, other critical

information will not be displayed in a timely manner. Only the main dialog, CAVE,

or the top dialog of a standalone product should be blocking.

1. Problems with Blocking Dialogs

When a blocking dialog’s open() is performed, a return does not happen until the

dialog is disposed. This makes it easy to perform the logic for any results returned by

the open(). The problem is that, apart from this dialog, the main active dialog (CAVE

or a standalone dialog) must be a blocking dialog. The UI thread has problems

handling more than one blocking dialog. Popping-up dialogs, such as an Alert, are

queued up by the UI thread to be opened after the non-main blocking dialog’s open()

http://www.eclipse.org/swt/
http://www.java2s.com/Tutorial/Java/0280__SWT/Catalog0280__SWT.%20htm
http://www.java2s.com/Tutorial/Java/0280__SWT/Catalog0280__SWT.%20htm

AWIPS II
Software System Design Description (Ver. 5)

CAVE 129
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

returns. Thus, a forecaster will not see or hear an alert until after the blocking dialog

is disposed. Having the blocking dialog minimized does not help.

To get around this problem, CAVE has the classes CaveSWTDialog and

CaveJFACEDialog, which can be extended to make non-blocking dialogs. These two

classes are explained in sections 4.C.2 and 4.C.3.

Finally, a blocking dialog may not be modal, and a modal dialog does not have to be

blocking. A modal dialog prevents its parent from being changed while it is open.

Normally, with this behavior, a modal dialog also blocks because nothing much can

be done while it is open. With CaveSWTDialog, a dialog can be made modal and

non-blocking, preventing the problems associated with a blocking dialog but still

having the behavior of a modal dialog.

2. Converting to CAVESWTDialog

Eclipse contains two useful dialog classes; both are named Dialog. To aid in

converting dialogs that extend these classes, CAVE has two classes. If you are

converting a class that extends the Dialog in the org.eclipse.jface.dialogs, see

Section 4.C.3, Converting to CaveJFACEDDialog.

Guidance on converting a dialog that extends the Dialog in the

org.eclipse.swt.widgets package to a CaveSWTDialog follows.

 Verify the MANIFEST.MF for the imports com.raytheon.viz.ui

 Change the class declaration for example:

public class TheDialog extends Dialog … {

to

public class TheDialog extends CaveSWTDialog … {

 Look for a class variable such as: Shell shell and remove it because it will

mask the variable set up by CaveSWTDialog.

 Look for the open() method:

public Object open() {

and convert to:

@Override

protected void initializeComponents(Shell shell) {

This is a method called by CaveSWTDialog to generate the dialog when its open() is

called the first time.

 In this method you may find:

AWIPS II
Software System Design Description (Ver. 5)

CAVE 130
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

Shell parent = getParent();

display = parent.getDisplay();

Most likely there is no need for the parent shell. You can get the display from the

shell:

display = shell.getDisplay();

 The old open() will contain lines such as the following, which need to be

removed:

shell = new Shell(parent, SWT.DIALOG_TRIM | SWT.PRIMARY_MODAL);

shell.setText("The Dialog");

The SWT constant argument should be moved to the second argument of the

constructor's super and the text can also be set there:

public TheDialog(Shell parent, ...){

super(parent, SWT.DIALOG_TRIM | SWT.PRIMARY_MODAL, CAVE.NONE);

 setText("The Dialog");

Notice that the third argument on the super call is for CAVE’s dialog information.

For now it has the placeholder CAVE.NONE, which leaves the dialog in its default

blocking mode. This will be changed later.

 What normally follows in the old open() is the code to set up the dialog’s

display. For the blocking dialog there will be something like:

shell.pack();

shell.open();

while (!shell.isDisposed()) {

 if (!display.readAndDispatch()) {

 display.sleep();

 }

}

This is the blocking loop from the old open(). This code needs to be removed.

 Any code after this loop handles cleanup such as disposing of fonts preparing

any return values. This should be handled by overriding the disposed() method

and placing the code there.

 If the old open() returns a non-null value, use the

setReturnValue(returnValue) method to provide the value it should return

when disposed. See Section 4.C.4, Get Results from a Dialog Using the

ICloseCallback Interface, for more details.

AWIPS II
Software System Design Description (Ver. 5)

CAVE 131
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 If you have buttons that need to close the dialog use the close() method. This

will eventually call the disposed() method.

 At this point you should have a CaveSWTDialog derived dialog that is

blocking and works the same as the old Dialog. This would be a good time to

test it in all the places it is called prior to making it a non-blocking dialog.

 There are many ways in which a dialog can be created and opened. This will

follow a typical example. Others should be similar. Assume we have a method

in the parent for handling the dialog and the old method has the following

pattern:

private void handleTheDialog() {

 TheDialog theDialog = new TheDialog(shell, …);

 theDialog.open();

}

Here, no results of the dialog are used. Because the dialog is currently blocking, the

open() does not return. If the dialog is non-modal, it is possible with this example to

display more than one instance of the dialog. To prevent this, you may see code such

as the following:

private TheDialog theDialog = null; // A class variable

…

private void handleTheDialog(){

 if (theDialog != null){

 theDialog = new TheDialog(shell, …);

 theDialog.open();

 theDialog = null;

 }

}

This will display only the one instance of the dialog when it is blocking. However,

when the dialog becomes non-blocking, the open() immediately returns allowing

multiple instances of the dialog.

 Look for shell listeners that clean things up when the shell is closed. Instead

override the disposed() method and do the cleanup there. Most likely you will

then be able to get rid of the listener:

shell.addShellListener(new Shell Adapter()){

AWIPS II
Software System Design Description (Ver. 5)

CAVE 132
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 @Override

 public void shellClosed(ShellEvent event){

 // Code here move to the disposed() method.

 …

 }

});

 With a CaveSWTDialog derived dialog the open() handles re-creating a dialog

once it is disposed. If it is currently open or hidden, it will bring the dialog to

the top. Thus only one instance of the dialog needs to be created:

private TheDialog theDialog = null;

…

private void handleTheDialog {

 if (theDialog != null || theDialog.isDisposed()){

 theDialog = new TheDialog(shell, …);

 theDialog.open();

 } else {

 theDialog.bringToTop();

 }

}

This allows a single instance of the dialog to be created and forces creation of a new

dialog with everything within the dialog set to its initial state.

 To make the dialog non-blocking go to its constructor, change the

CAVE.NONE to CAVE.DO_NOT_BLOCK.

 Note: The Dialog may obtain information from the parent dialog used by its

constructor or initialization methods. For example, a spell checker may get

information from a StyledText area in the parent dialog. The text may change

between opening of the dialog so changes will need to be done prior to

displaying the dialog. This can be done by overriding this method:

@Override

protected void preOpened() {

 super.preOpened(); // Must do this

 // Any setup prior to dialog display may go here.

}

AWIPS II
Software System Design Description (Ver. 5)

CAVE 133
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

When the dialog open() is called, this method is always invoked just prior to

displaying the dialog.

 See Section 4.C.4, Get Results from a Dialog using the ICloseCallback

Interface, for guidance on how to obtain and use the results from a dialog.

3. Converting to CaveJFACEDDialog

Eclipse contains two useful dialog classes both named Dialog. To aid in converting

dialogs that extend these classes, Cave has two classes. If you are converting a class

that extends the Dialog in the org.eclipse.swt.widgets see the section on converting to

CaveSWTDialog.

Guidance on converting a dialog that extends the Dialog in the

org.eclipse.jface.dialogs package to a CaveJDACEDialog follows.

Normally this type a dialog is modal blocking and expects results to be returned.

Blocking open() returns an integer result of Window.OK if something is to be

performed with the result. To perform the conversion, take the following steps.

 Verify the MANIFEST.MF for the plug-in imports com.raytheon.viz.ui

 Change the class to extend CaveJFACEDDialog instead of Dialog.

 You should now have a blocking dialog that replaces the old dialog.

 Now look at the constructor and look for the following pattern:

public TheJfaceDialog(Shell, shell, Object resultsObject, …) {

 super(shell);

 …

 this.resultsObject = resultsObject;

 …

 }

To simplify your return callback, create a getter method for the resultsObject.

 Like the CaveSWTDialog, the open() method will open the window or, if it is

already displayed, bring it to the top. In the parent where the dialog is used,

you can make a blocking version using the following code pattern:

...

private TheJfaceDialog theJfaceDialog = null; // class

instance variable

…

private void handleTheJfacedDialog {

 if (theJfaceDialog == null) {

AWIPS II
Software System Design Description (Ver. 5)

CAVE 134
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 ResultObject resultObject = new ResultObject(...);

 theJfaceDialog = new JfaceDialog(getShell(),

resultObject,...);

 theJfaceDialog.setBlockingOnOpen(true);

 }

 int state = theJfaceDialog.open();

 if (state == Window.OK) {

 // get the result and do the update here.

 ResultObject result = theJfaceDialog.getResultObject();

 ….

 }

Converting this to non-blocking is covered in the next section (4.C.4, Get Results

from a Dialog Using the ICloseCallback Interface).

4. Get Results from a Dialog Using the ICloseCallback Interface

Both the CaveSWTDialog and the CaveJFACEDialog use the ICloseCallback

interface to obtain values from a non-blocking dialog after it is closed. For both types

of dialogs there is a setCloseCallback method. When a non-null interface is passed in

via this method it will be called when the dialog is closed. The interface must

implement a single method:

public void dialogClosed(Object returnValue) {…}

With a dialog that extends CaveJFACEDialog the returnValue will be an instance of

type Integer. With the CaveSWTDialog, the returnValue will be whatever was passed

to the last call of setReturnValue(object). If never called, it will return a null.

The following takes the blocking example in the CaveJFACEDialog and converts it to

a non-blocking dialog. CaveSWTDialog is handled in a similar manner where you

test to see if the returnValue is an instance of what is needed:

...

private TheJfaceDialog theJfaceDialog = null; // class instance

variable

…

private void handleTheJfacedDialog {

if (theJfaceDialog == null || theJfaceDialog.isDisposed()) {

 ResultObject resultObject = new ResultObject(...);

 theJfaceDialog = new JfaceDialog(getShell(),

resultObject,...);

 theJfaceDialog.setBlockingOnOpen(false);

AWIPS II
Software System Design Description (Ver. 5)

CAVE 135
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 theJfaceDialog.setCloseCallback(new IcloseCallback() {

 @Override

 pubic void dialogClosed(Object returnValue) {

 if (returnValue instanceof Integer) {

 int value = (Integer) returnValue;

 if (value == Window.OK) {

 // Perform the update here

 ResultObject resultObject =

theJfaceDialog.getResultObject();

 …

 }

 }

 theJfaceDialog = null;

 }

 });

 theJfaceDialog.open()

 } else {

 theJfaceDialog.bringToTop();

 }

 }

Note: The setBlockingOnOpen(false) forces the open() to be non-blocking.

This is only for dialogs that extend CaveJFACEDialog.

The line theJfaceDialog = null is optional for dialogs with complex setups.

It may be easier to set it to null to force a new instance of it to be created the next

time it is needed.

With a CaveSWTDialog type dialog, the line if (returnValueinstanceof

Integer){ can check for the expected return type object. As long as the

setReturnValue is only called when the dialog has something to return, the result

will be null when the dialog is canceled and nothing will be performed by the

callback.

5. Making a Non-blocking Dialog a Standalone Blocking Dialog

Once a dialog is converted to non-blocking, it will work great in CAVE. Take the

TextWorkstationDlg for example. Its constructor is:

 public TextWorkstationDlg(Shell parent) {

 super(parent, SWT.DIALOG_TRIM | SWT.MIN | SWT.RESIZE,

 CAVE.PERSPECTIVE_INDEPENDENT | CAVE.INDEPENDENT_SHELL

 | CAVE.DO_NOT_BLOCK);

AWIPS II
Software System Design Description (Ver. 5)

CAVE 136
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 setText("Text Workstation");

…

}

Notice the additional CAVE constants in the super’s third argument, which generate

an independent dialog with proper window trimmings for a full-blown window

dialog. The only change was to add:

 |CAVE.DO_NOT_BLOCK

This works great when running in CAVE. Now take a look at

TextWorkstationComponent where it is set up to run as a standalone component:

public class TextWorkstationComponent extends

AbstractCAVEComponent {

 …

 @Override

protected void startInternal(String componentName) throws

Exception {

 SerializationUtil.getJaxbContext();

 TextWorkstationDlg textWorkstationDlg = new

TextWorkstationDlg(

 new Shell(Display.getCurrent()));

 textWorkstationDlg.open();

 }

 …

When this is run by the plug-in, the open() no longer blocks so the method returns

right away. This results in the dialog flashing on the screen and then the program

exits. To prevent this from happening, a new class was created to extend

AbstractCAVEDialogComponent. It contains an additional method to perform the

blocking. So, the above will work with the following changes:

public class TextWorkstationComponent extends

AbstractCAVEDialogComponent {

…

@Override

protected void startInternal(String componentName) throws

Exception {

 SerializationUtil.getJaxbContext();

TextWorkstationDlg textWorkstationDlg = new TextWorkstationDlg(

new Shell(Display.getCurrent()));

textWorkstationDlg.open();

blockUntilClosed(textWorkstationDlg);

 }

 …

AWIPS II
Software System Design Description (Ver. 5)

CAVE 137
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

D. Menu Customization

1. index.xml

CAVE automatically searches for index.xml files in localization under menus/*. This

allows a developer to add a menu simply by adding an index.xml menu under this

location using the Localization perspective and having CAVE pick it up on the next

restart.

2. Using the Localization Perspective

In CAVE, select the “Open Perspective” button -> Localization. This is both the

preferred and the easiest method of editing menus under CAVE -> Menus.

3. Command Menu Items

 xsi:type = “command”

 commandId = the command that was defined in the plugin.xml

 menuText = the text to be seen in the menu

 id = a unique id that describes the menu item

 Example:

<contribute xsi:type="command"

 commandId="com.raytheon.uf.viz.radarapps.rps.rpsListEditor"

 menuText="RPS List Editor..." id="${icao}RPSListEditor" />

4. Bundle Menu Items

 xsi:type = “bundleItem”

 file = name of the bundle in localization to load

 menuText = the text to be seen in the menu

 id = a unique id that describes the menu item

 <contribute xsi:type="bundleItem" file="bundles/DefaultRadar.xml"

 menuText="0.5 Z" id="${icao}058bitZ">

 <substitute key="icao" value="${icao}"/>

 <substitute key="product" value="94"/>

 <substitute key="elevation" value="0.5--0.5"/>

 </contribute>

5. Title Menu Items

 xsi:type = “titleItem”

 titleText = the text to be seen in the menu

 id = a unique id that describes the menu item

 Example:

AWIPS II
Software System Design Description (Ver. 5)

CAVE 138
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

<contribute xsi:type="titleItem" titleText="------ Applications -

-----"
 id="${icao}Applications" />

6. Separators

 xsi:type = “separator”

 id = a unique id that describes the menu item

 Example:

<contribute xsi:type="separator"

id="${icao}applicationsSeparator"/>

7. Submenus

 xsi:type = “subMenu”

 menuText = the text to be seen in the menu

 This surrounds the types that you want to go inside that submenu.

 Example:

 <contribute xsi:type="subMenu" menuText="${icao}">

8. Including Other Menu Files

Other files can be included within menus, and can either be whole submenus or just in

the same menu.

 xsi:type =”subinclude”

 submenu = name of the sub-menu

 fileName = path of the file in localization

 Example:

 <contribute xsi:type="subinclude"

 fileName="menus/radar/baseReflectivityMotion.xml" />

 <contribute xsi:type="subinclude" subMenu="${icao} four panel"

 fileName="menus/radar/baseRadar4Panel.xml" />

9. Variable Substitution

Variable substitution allows for a single variable to be substituted across all levels

inside the xml files. For instance :

 <substitute value="koax" key="icao"/>

Any time that “${icao}” is used from this point on in the calling for xml files, “koax”

will then be substituted and used for the value. Certain plug-ins generate a single file

AWIPS II
Software System Design Description (Ver. 5)

CAVE 139
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

(index.xml) and have all the substitutions in there allowing for dynamic values in the

menus.

10. Automatically Customized Menus

 Radar. Changing the radarsInUse.txt file will regenerate menus on next

CAVE restart. This file has sections for each type of radar (local, dial,

Aggregation Service Routers (ASR), Air Route Surveillance Radar (ARSR),

terminal). This will change what shows up in the top menus as well as under

Radar -> Dial Radars.

 Satellite. Based on the site that CAVE is localized to, the satellite menus will

change to reflect East CONUS vs. West CONUS or non-CONUS.

 Upper Air. Very similar to the radar menus, this is configured based on the

raobSitesInUse.txt file.

E. CAVE Resources

Every item drawn on a display in CAVE is being drawn by a resource. A resource is

divided into two classes, the resource itself and the resource data. The resource data is

responsible for constructing the resource; it is also the part of the resource that is

serialized when displays are saved, The resource is responsible for actually drawing

on the display.

Every resource must extend AbstractVizResource. Every resourceData object must

extend the AbstractResourceData. For data that is being displayed from

PluginDataObjects it is often better to extend AbstractRequestableResourceData

because this class provides some additional help in requesting and managing the data

in D2D. The rest of this document will explain what needs to be done to extend these

Abstract classes in order to get a functional display in CAVE.

1. AbstractVizResource

All resources must extend AbstractVizResource. This is the class that is responsible

for drawing data on the display and any other user interaction. It should use

information from the resource data to determine what needs to be drawn.

There are three methods that must be implemented (paintInternal, initInternal, and

disposeInternal). There are other methods that can be overridden to provide more

functionality. Descriptions of five methods follow.

 paintInternal. This is the reason you have a resource, to draw something on

the screen. Use the methods of the graphics target to draw whatever needs to

be drawn. You should try to avoid doing anything other than painting in this

method; for example, requesting data over the network or reading a file should

AWIPS II
Software System Design Description (Ver. 5)

CAVE 140
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

not be handled here, because doing so can lead to the whole application

hanging if it takes longer than expected. Often a Job is scheduled within paint

to handle these things, or they can be handled in initInternal.

 initInternal. This method is called before the first time a resource is painted,

and it is called in a background thread. initInternal allows you to perform any

tasks to prepare to paint. You may need to request data or load files in this

method, or you may want to prepare some of the graphics resources you will

be using in paint. For simple or new resources, this method may be very small

or empty.

 disposeInternal. This is the opposite of initInternal. It is the method called on

a resource; the resource will not paint after this. The most important thing here

is to call dispose on any graphics resources you may be using.

 getName. This method allows you to set a name that is displayed in the

legend; in D2D the time will be appended to this name automatically by the

legend resource.

 Inspect. This is the method used to display information when sampling is

enabled. If you implement this method you should use the coordinate provided

to find what you are displaying under or close to that point and return a String

containing any additional information the user might be interested in.

2. AbstractResourceData vs. AbstractRequestableResourceData

The two classes you might be extending for your resource data are

AbstractResourceData and AbstractRequestableResourceData.

If you are writing a data plug-in to display data from PluginDataObjects, it is better to

extend AbstractRequestableResourceData. This is used for almost every datatype in

D2D, including satellite, grib, and radar.

For anything else you want to be displayed, you should extend

AbstractResourceData. The best example of this is maps, although some system

resources also extend this, e.g., the colorbar and legend resources.

a. AbstractResourceData

This is the base class for implementing a resource data; even

AbstractRequestableResourceData extends this class. The two tasks the resource

data must perform are constructing the resource and serializing any data needed to

reload the resource from a bundle.

Constructing the resource can be as simple as calling returning a new resource

object; it is usually not much more complex than this.

AWIPS II
Software System Design Description (Ver. 5)

CAVE 141
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

To be serialized a resource data class will need xml annotations on any part of the

resource data that needs to be persisted. Also your resourceData class should be

added to the com.raytheon.uf.common.serialization.ISerializableObject file.

Here is a brief description of the functions you will want to override if you extend

this class.

 construct. This is the method that generally does the most work; it just needs

to return a resource to draw on the display.

 update. This function was meant to provide updates to your resource, but it is

often unused, except by AbstractRequestableResourceData (see subsection

4.E.2.b, AbstractRequesstableResourceData).

 equals. By implementing equals, a resource data can ensure that the same

resource is not loaded twice on one display. When two resource datas are

equal, the descriptor will only include one in the display.

b. AbstractRequestableResourceData

This is the class to extend if you are writing a data plug-in for D2D. This class

handles many of the details needed to correctly time match and display in D2D.

AbstractRequestableResourceData works by providing a metadata map. This map

limits what data can be requested. When you create a resource data, either through

a bundle or through the product browser you will fill in this map to limit what can

be loaded for a resource. The metadata map is used to populate menu times

automatically for bundle menu items. The metadatamap is used to retrieve

available times for time matching. The metadatamap is used to request

PluginDataObjects for your resource.

When you extend this class you will not need to implement construct or update

from AbstractResourceData, instead you only need to implement

constructResource. constructResource serves the same basic purpose as construct

in AbstractResourceData but it provides you with data object that have already

been retrieved and time matched for your resource. Most of the time this class

will construct a resource and add in the provided data objects before returning it.

When implementing a resource for AbstractRequestableResourceData, you will

still extend AbstractVizResource, but there are some extra things you can do to

work smoothly in D2D:

 Add an IResourceDataChanged listener to the resource data. Many

resources simply extend this interface themselves and add themselves as a

listener. You should listen specifically for DATA_UPDATE changes since

AWIPS II
Software System Design Description (Ver. 5)

CAVE 142
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

this will contain any new data objects you need to display. Updates will be

sent automatically when new data arrives or if the user changes frames or

other time matching options

 Manage the dataTimes list. Every time a new record is added, add the time

to the list. The default remove method will automatically remove old times so

if you override remove be sure to call super. The dataTimes list will be used

by the time matcher along with updates and remove to manage your data for

you.

 Get the current data time. In paint you will need to get the current data time

from the paintProps and display any matching records.

F. CAVE Alert Observer

This is a discussion of how to be notified when an alert has arrived. This can be used

to trigger getting new data in order to update a GUI’s display. This is handled by

using the ProductAlertObsever static methods to add and remove classes that

implement the IAlertObserver interface.

com.raytheon.viz.alerts.observers.ProductAlertObserver is the class with static

methods for adding and removing observer listeners that implement the

IAlertObserver interface. The two static methods are:

 addObserver(String pluginName, IAlertObserver obs)

 removeObserver(String pluginName, IAlertObserver obs)

The ProductAlertObserver handles multiple observer lists based on the pluginName.

com.raytheon.viz.alerts.IAlertObserver is the interface an observer class must

implement in order to register with ProductAlertObserver. It contains a single

method:

 alertArrived(Collection<AlertMessage> alertMessages)

The implementing class can iterate though the alertMessages to determine what

action it must perform.

com.raytheon.uf.viz.cored.AlertMessage contains the alert’s data URI (dataURI)

and a mapping of the decoded String (decodedAlerts).

AWIPS II
Software System Design Description (Ver. 5)

CAVE 143
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

Example. The example in Figure 4-1 shows how AvnFPS updates the viewer tab that

contains the Global Forecast System (GFS) Model Output Statistics (MOS) Guidance

information for a site. The tab name (MAV) is configurable, so it may change.

Figure 4-1. Example: CAVE Alert Observer

Determining the pluginName to use in order to register an observer can be tricky.

You need to determine what DAO was used to obtain the data and look up its bean

information in the appropriate xml file. For our example, this is done by the

BuferMosGFSData DAO. Looking at the spring configuration file bufrmos-

common.xml (see Figure 4-2), find the following bean definition, which has the

pluginName bufrmosGFS.

Figure 4-2. Spring Configuration File (bufrmos-common.xml)

AWIPS II
Software System Design Description (Ver. 5)

CAVE 144
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

com.raytheon.viz.aviation.monitor.GfsMonitorObserver is the class that

implements the IAlertObserver interface for updating the tab. It contains a static

element pluginName that is set to “bufrmosGFS”. The alertArrived method

determines which site, if any, of the sites it can display needs to have its cache data

updated. The currently selected site’s display is also updated. See Figure 4-3 for an

illustration.

 Figure 4-3. GFS Monitor Observer

com.raytheon.viz.aviation.observer.TafMonitorDlg is that class that controls the

dialog display. Its setupMonitoring method registers the observer:

 gfsObserver = new GfsMonitorObserver(this);

 ProductAlertObserver.addObserver(GfsMonitorObserver.pluginName,

gfsObserver);

Its cleanupMonitoring method does the unregister:

ProductAlertObserver.removeObserver(GfsMonitorObserver.pluginName ,

gfsObserver);

AWIPS II
Software System Design Description (Ver. 5)

CAVE 145
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

G. CAVE Features

CAVE uses features projects much differently than EDEX and resembles how Eclipse

RCP intended them to be used. CAVE, includes a feature project for groups of similar

plug-ins; this is one of the first projects that should be created when developing new

plug-ins. An example of this includes com.raytheon.uf.viz.d2d.core.feature, which

is the feature project for all core D2D projects. Another example is

com.raytheon.uf.viz.cots.feature, which is the feature project for COTS projects in

CAVE. Feature projects contain two files, build.properties and feature.xml. The

build.properties file just states what should be included in a binary build and what

should be included in a source build. It will always have the feature.xml file listed.

The feature.xml file contains a list of plug-ins that should be included in the feature

as well as a list of dependencies on other features that this feature has. This

dependency list should not only include features it will directly depend on but also the

features that its dependencies depend on and so on. Because this method of using

feature projects is only meant for CAVE, only viz and common plug-ins should be

added to features. If an EDEX plug-in needs to be added, more than likely the needed

code will need to be moved to the common project.

1. Creating

In most cases, a developer of plug-ins will want to create a feature project for their

plug-ins. To do this, from Eclipse, select File->New->Project... Select the “Plug-in

Development” folder and choose “Feature Project.” The “New Feature” wizard will

open and a project name will need to be entered. The naming convention usually

looks something like:

 <creating_entity_url>.uf.viz.<component_name>.feature

Example: com.raytheon.uf.viz.thinclient.feature

In this example the creating_entity_url is “com.raytheon” and the component_name is

“thinclient.” Once a feature name has been entered, change “Feature Name” to

“<component_name> Feature” and select “Finish” at the bottom of the wizard. Now

that the feature project is created, open the feature.xml file and it should open in the

Eclipse graphical editor’s “Overview” tab. Switch to the “Plug-ins” tab; it is here that

the plug-ins the feature was created for can be added. Next, switch to the

“Dependencies” tab and add the features that are required. The most common features

that all other features depend on are:

com.raytheon.uf.viz.eclipse.feature

com.raytheon.uf.viz.cots.feature

com.raytheon.uf.viz.common.core.feature

AWIPS II
Software System Design Description (Ver. 5)

CAVE 146
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

com.raytheon.uf.viz.core.feature

The developer needs to determine the full list of plug-ins that are depended on and

not in these common features or the feature being created. It is not just the plug-ins

that are directly depended on that must be gathered; the dependencies of those plug-

ins also must be determined, and so on until an entire hierarchical dependency tree

can be seen. At this point the features that the dependency plug-ins are in will need to

be added as dependencies to the developer’s feature.

2. Modifying

There may be cases when a new plug-in(s) needs to be added to an existing feature.

Do this rarely, and with extreme caution. It is important to begin by getting a list of

the new plug-in’s dependencies because you must be sure not to add dependencies to

the feature project that will cause a cycle. Once you have a list of dependencies for

your new plug-in, trace through the entire dependency tree and get a list of the

features your plug-in depends on. Then, check to see if your plug-in depends on any

features that are not currently dependencies of the feature you want to add to. If there

are no additional dependencies, you may add the plug-in. If there are additional

dependencies, proceed only with high caution. You should probably look into adding

a new feature project for your plug-in, but if you still wish to add the plug-in to the

feature project, you need to build a complete dependency tree of the additional

feature(s) your plug-in depends on. If none of the dependencies in the tree can be

linked back to the feature you want to add to, you may add the plug-in. Otherwise,

you must create a separate feature for your plug-in.

3. Building/Deploying

Once a feature project has been created, it must be set up to be used when running

from Eclipse and built for distribution. To run CAVE out of Eclipse with the feature

enabled, open the feature.xml file in the project com.raytheon.viz.feature.awips.

developer and switch to the “Included Features” tab. Here the new feature project can

be added as an included feature and the plug-ins referenced in it will be used next

time a “Synchronize/Run” from the developer.product file is done. In order to build

a feature/group of features manually to be deployed, an Eclipse Update Site project

must be created. In Eclipse, go to File->New->Project..., and select “Plug-in

Development/Update Site Project.” Give the update site project a name like:

 <creating_entity_url>.uf.viz.<component_name>.site

Select “Finish” and an Eclipse project should be created with a single file, site.xml.

Open site.xml and select the “Site Map” tab. Add the feature project(s) that should be

built/deployed by the site by selecting “Add Feature...” Note that only the feature

AWIPS II
Software System Design Description (Ver. 5)

CAVE 147
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

projects created by the developer should be added. Also note that now that a feature

project has been added, more options appear in the site.xml editor. Once added, the

features can be built for deploy at any time by selecting the “Synchronize...” button,

then the “Build All” button. Once the build is finished, there will be more folders/files

in the plug-in. The contents of the update site plug-in can now be zipped up or copied

directly to a remote server directory to be installed to CAVE via the p2 director.

H. CAVE Maps

1. Importing Shapefiles

Local shapefiles can be imported into the maps database using the automation tool.

Files should be staged in the following location where LLL is the WFO, e.g., OAX:

/awips2/edex/data/utility/edex_static/site/LLL/shapefiles

The shapefiles should be added in a manner similar to the following:

shape_desc/shapefile.(dbf|shp|shx)

The directory name of shape_desc above will determine the table name into which

the shapefiles will be imported. For example, the following shapefiles will create

mapdata.oax_county schema in the maps database:

/awips2/edex/data/utility/edex_static/site/OAX/shapefiles/OAX_County/OAX_County.dbf

/awips2/edex/data/utility/edex_static/site/OAX/shapefiles/OAX_County/OAX_County.shp

/awips2/edex/data/utility/edex_static/site/OAX/shapefiles/OAX_County/OAX_County.shx

To import the above shapefiles staged into the database, run the following:

./config_awips2.sh shp OAX

This option will also call the config_ffmp_shapefiles script to load the FFMP

shapefiles.

For more details see https://collaborate.nws.noaa.gov/trac/siteconfig/wiki/ADAM.

2. How to Query Maps Database

 com.raytheon.uf.common.geospatial.SpatialQueryFactory. Use this class’

static method create() to obtain an instance of a class that implements

ISpatialQuery.

 com.raytheon.uf.common.geospatial.ISpatialQuery. This interface

contains many overloaded query(...) methods that all return an array of

https://collaborate.nws.noaa.gov/trac/siteconfig/wiki/ADAM

AWIPS II
Software System Design Description (Ver. 5)

CAVE 148
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

SpatialQueryResult[]. It also contains a dbRequest(String sql, String dbname)

that can be used to execute more general sql queries.

 com.raytheon.uf.common.geospatial.SpatialQueryResult. This is a data

class that contains an instance of com.vividsolutiions.jts.geom.Geometry

and a mapping of its attributes.

 com.raytheon.edex.plugin.warning.gis.GeospatialDataGenerator The

static method queryTimeZones(...) is one example of using the above classes

(see Figure 4-4). It performs a query to get timezone information (lines 449-

452) and then modifies the attributes to contain the information.

Figure 4-4. Geospatial Data Generator

I. CAVE: Right-Clicking In Editor

Right-Clicking in the editor enables a pop-up menu that can offer different options to

the user, such as Show Product Legends, Sample, Zoom, and Lat/Lon Readout. It is

important to note that the pop-up menu will appear when the right mouse button is

held down. A simple click will toggle the first menu item, that is, if the mouse click

functionality has not been overwritten, such as in WarnGen. It might be beneficial to

AWIPS II
Software System Design Description (Ver. 5)

CAVE 149
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

add more menu items common to the user in the pop-menu. This addition can make

work for the user convenient and timely.

If a developer wants to add more items, there are two important classes that are used:

1. com.raytheon.viz.ui.cmenu.AbstractRightClickAction; and

2. com.raytheon.uf.viz.d2d.ui.perspectives.D2DPerspectiveManager.

The AbstractRightClickAction object corresponds to each individual menu item while

D2DPerspectiveManager manages which AbstractRightClickAction objects to add to

the pop-up menu.

1. AbstractRightClickAction

For each menu option, an action class needs to be created that extends the abstract

class AbstractRightClickAction. The two key methods that need to be overwritten are

getText and run. The method getText returns the actual text that will be displayed in

the pop-up menu. The method run executes when the menu option is selected. Refer

to LatLonReadoutAction for an example.

2. D2DPerspectiveManager

In the D2DPerspectiveManager, child classes of the AbstractRightClickAction are

created. However, it is the method addContextMenuItems that actually determines

which AbstractRightClickAction to add to the menu. For example, as seen with the

following, legend modes can be used to determine what kind of

ChangeLegendModeAction to add.

 @Override

 public void addContextMenuItems(IMenuManager menuManager,

 IDisplayPaneContainer container, IDisplayPane pane) {

 ...

 D2DLegendResource ld = null;

 ...

 if (container instanceof SideView == false) {

 LegendMode mode = null;

 if (ld != null) {

 mode = ld.getLegendMode();

 if (mode != null) {

 switch (mode) {

 case NONE: {

 menuManager

 .add(getLegendAction(LegendMode.PRODUCT, ld));

 menuManager.add(getLegendAction(LegendMode.MAP, ld));

 break;

AWIPS II
Software System Design Description (Ver. 5)

CAVE 150
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 }

 case PRODUCT: {

 menuManager.add(getLegendAction(LegendMode.HIDE, ld));

 menuManager.add(getLegendAction(LegendMode.MAP, ld));

 break;

 }

 case MAP: {

 menuManager.add(getLegendAction(LegendMode.HIDE, ld));

 menuManager

 .add(getLegendAction(LegendMode.PRODUCT, ld));

 break;

 }

 }

 }

 menuManager.add(sep);

 }

 }

 ...

 }

J. CAVE: Right-Clicking on the Legends

Each legend displayed in the bottom right corner of the editor can correspond to

different maps and resources, such as county boundaries or plots. Right-clicking on

individual legends enables a pop-up menu that can display different menu items to the

user, such as Change Color and Line Style. Developers can add more menu items to

the pop-up menu and update the capabilities of each resource.

1. Adding Menu Items

Menu items can be added to the pop-up menu by updating the file

com.raytheon.viz.ui/plugin.xml (specifically, the extension for the point

com.raytheon.viz.ui.contextualMenu). Each menu item corresponds to a

contextualMenu. For example,

 <extension

 point="com.raytheon.viz.ui.contextualMenu">

 ...

 <contextualMenu

 actionClass="com.raytheon.viz.ui.cmenu.ChangeColorAction"

 capabilityClass="com.raytheon.uf.viz.core.rsc.capabilities.ColorableCapability"

 name="Change Color"

 sortID="10"/>

 ...

 </extension>

AWIPS II
Software System Design Description (Ver. 5)

CAVE 151
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

Notice the attribute actionClass. The value for this attribute should point to a child

class that extends the abstract class AbstractRightClickAction. In

AbstractRightClickAction, the key methods that need to be overwritten are getText

and run. The method getText returns the actual text that will be displayed in the pop-

up menu. The method run executes when the menu option is selected. Refer to

ChangeColorAction for an example.

Another important attribute is the capabilityClass. The value of the capabilityClass

points a child class that extends the abstract class AbstractCapability. In the above

example, the attribute is set to

com.raytheon.uf.viz.core.rsc.capabilities.ColorableCapability. Refer to this class

for an example. Setting the capabilityClass allows the capability to be available when

referenced by the action class when a getCapability is called.

K. Derived Parameters

The derived parameters framework is designed as an extendable way for calculating

custom weather parameters from existing data. It can combine different weather

parameters, from different layers in the atmosphere and even from different sources

to calculate almost anything you might want to see. The most extensive use of

derived parameters is for grid data; however, it is also used for point data.

1. The XML Files

Derived parameters is controlled largely by xml configuration files that contain

instruction on how to derive parameters. These xml files will be in

localization/derivedParameters/definitions/*.xml. There is one file per parameter

and typically the name of the file is the same as the parameter abbreviation. Here is

an example of the contents of DpD.xml

<DerivedParameter unit="K" name="Dew point depression" abbreviation="DpD">

 <Method name="Difference">

 <Field abbreviation="T"/>

 <Field abbreviation="DpT"/>

 </Method>

</DerivedParameter>

This definition defines a parameter named Dew point depression, which is known

internally as DpD with units K. To calculate Dew point depression you take the

difference of the T parameter and the DpT parameter, which is temperature and

dewpoint.

AWIPS II
Software System Design Description (Ver. 5)

CAVE 152
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

2. The Python Files

The actual mathematical and logical operations that can be performed with derived

parameters are completely configurable and extendable using python scripts. These

python scripts will be in localization/derivedParameters/functions/*.py. In the

previous section dew point depression was calculated using a Difference method.

This method is defined in a python script Difference.py. For these scripts the file

name is always the method name that is used in the XML.

A script must provide a function definition named execute that contains the logic for

that method. The values are passed into python as numpy numeric arrays. The numpy

library includes many common operations that can be useful for doing calculations

quickly. It is also possible to use any features of the python language top calculate

derived parameters.

3. Advanced XML

The DpD example of XML was very basic; there are many additional XML attributes

that can be used to control how derived parameters work and where the data comes

from.

The DerivedParameter element is at the root of the XML document for any derived

parameter definition. All of the important attributes were given in the DpD example.

The abbreviation attribute is used within derived parameters as an id for a parameter.

The name attribute is something nicely formatted for display to the user. The units

attributes is used for unit conversion and style rules. A DerivedParameter may

contain many Method elements, when a derived parameter is requested each method

is tried until one is found that is valid and for which the data type has all available

fields.

For a Method element, in addition to the name you can also provide several other

attributes, including the following:

 Levels. Limit which levels that method applies to; for example, if you specify

levels=”500MB” and the user requests data on the 700MB level, then that

method will be skipped over. The valid values for this attribute are controlled

by the LevelMappingFile.xml. Each key can serve as a value for levels, or you

can provide a comma separated list of these keys. In addition to providing

specific levels you can also provide a master level name; for example,

levels=”MB” will apply that method to only MB levels. If no levels attribute

is provided then the method can be applied to any level for which the fields

are available.

AWIPS II
Software System Design Description (Ver. 5)

CAVE 153
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 Models. This is simply a space-separated list of the sources for which the

method is valid.

 dtime and ftime. These are time modifiers. Both are boolean attributes. When

either of these is set to true, then fields can specify a time shift that will be

used to request data from a different time than the derived parameter. This is

useful for doing a parameter change over time or an accumulation over time.

The difference between dTime and fTime is that fTime will only apply the

time shift to forecast time so ref time must be the same for all fields and

dTime will grab any data with a shifted valid time(ref time + forecast time).

There are two types of fields that a method can have:

 A ConstantField element, which has a single attribute, value, which is a

number to use for that argument; and

 A Field element, which is used to guide derived parameters in selecting data

to use in a method. A Field element can have several attributes:

 abbreviation specifies which parameter to request for the field; this

attribute is required.

 level is used to specify which level load data for this field. It must be a

single key from the LevelMappingFile.xml. If no level is provided then

when a derived parameter is requested it will use data on whatever level is

being requested, when a level is provided it uses that level instead.

 model is used to import data between different sources; it must contain a

single valid source.

 timeShift is used to request data from a different time than the derived

parameter. The time Shift is provided in seconds, a negative value will

request past data and a positive value will request future data, usually only

useful with forecast data.

Using localization derived parameters XML definitions can be overridden by a site or

a user. When an override is provided the methods in the override are evaluated first

before using the base files. The base files are not ignored; they are just lowered in

priority.

All Style Rules are managed by the StyleManager. Each instance of the

StyleManager can provide the style rules and preferences for those rules. To get the

Style Rules from the StyleManager you need to provide the StyleType and the

MatchCriteria. The StyleType is an enum of available types. There are several places

in the code where the MatchCriteria are created. StyleRule preferences are defined in

xml configuration files. Most configuration file names end in StyleRules.xml. For

examples, search the baseline for *StyleRules.xml.

AWIPS II
Software System Design Description (Ver. 5)

CAVE 154
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

StyleRule sr =

StyleManager.getInstance().getStyleRule(StyleType.Imagery,

matchCriteria);

 ImagePreferences prefs = sr.getPreferences();

ArrowPreferences are used to set the scale of a GriddedVectorDisplay.

GraphPreferences are used to set label and line preferences for a graph.

ImagePreferences are used to set preferences on the CAVE display image.

In AWIPS II, gridded icon displays can be configured using derived parameters. For

example, the PTyp parameter displays as icons and is defined in the PTyp.xml

derived parameter file. Many of the definitions for this parameter use the PTyp

method, which is defined in PTyp.py. Within PTyp.py the input parameters are

combined and then mapped to very specific integer values. These values are what

determines the symbols to display. These values map to the AWIPS II Weather

symbols font, which is defined in /awips2/cave/etc/plotModels/WxSymbols.svg. In

order to change what symbols display, all you need to do is create a site-level

PTyp.xml that contains a new method definition to map to the symbols you want.

Within the definition you can use any of the existing python functions or create a new

one that maps exactly how you like it.

4. The Derived Parameter Tree and Inventory

In code the two most important data structures used within derived parameters are

DataTree and Inventory. The DataTree is a data structure that maps a source,

parameter, and level to a LevelNode. LevelNodes are the leaves of the tree and they

contain the information for getting data for that source/parameter/level combination.

An Inventory object holds the DataTree, and dynamically populates it with derived

definitions when they are requested. The Inventory object is typically created by an

IDataCubeAdapter that is initialized when data is requested for a plug-in.

The AbstractInventory class is meant to provide a base Inventory implementation

which plug-ins can extend to use derived parameters. The most important method to

implement is createBaseTree. This method is used on initialization to determine what

base parameters a plug-in can provide as arguments to derived parameter. The leaves

of this base tree should be AbstractRequestableLevelNodes that are specific to that

plug-in. An implementation of AbstractRequestableLevelNode will need to be

capable of requesting data for a datatype. The two responsibilities of an

AbstractRequestableLevelNode are to be able to time query available data and to be

able to request data. The actual data request is handled by creating

AWIPS II
Software System Design Description (Ver. 5)

CAVE 155
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

AbstractRequestableData objects. These objects are very similar to a

PluginDataObject; they contain metadata about a specific record, the

source/parameter/level and a datatime. They also contain the logic needed for

requesting the raw data when it is needed.

Derived parameters are added to the DataTree in the AbstractInventory.walkTree

method. This method allows you to provide a specific set of sources, parameters, and

levels and they will be resolved to AbstractRequestableLevelNodes using the

DataTree and derived parameter definitions. When calling walkTree you should try to

be as specific as possible in what is requested to ensure it returns quickly and does not

create unneeded derivations. For more information on how walk tree functions, see

the java doc on that method.

Derived parameters are added to the DataTree as an instance of

AbstractRequestableLevelNode. The most important such class is DerivedLevelNode,

and its operation provides a basic overview of how all these nodes function. When a

DerivedLevelNode is created it is supplied with other nodes that serve as the

arguments to derived parameters. These other nodes can be other derived parameters

or they can be the base nodes for a data type. When a request for a time query is made

to a DerivedLevelNode, it first time queries each of its dependency nodes, combines

these times and returns only times for which all dependencies are available. When a

data request is made on a DerivedLevelNode it first requests data for all the

dependency nodes, and then passes this data to the correct python script and retrieves

a result record that can be returned. Because derived nodes have dependency nodes

and some of those nodes can be derived nodes with their own dependencies, the

whole thing forms a tree like structure, so each level node on the DataTree is its own

derivation tree.

The way grid handles derived parameters is using request constraints. Whenever a

time query is made to the data cube adapter, the adapter passes these constraints to the

inventory which uses them to find all possible source/parameter/level options that

match those constraints and uses walkTree to get all matching level nodes. The data

cube adapter time queries each node and returns the result. When data records are

requested a similar process is followed, to get RequestableDataObjects which are

wrapped in GribRecords.

L. CAVE Graphics Tips

Keep the following tips in mind when working with graphics in CAVE:

 Dispose of anything with a dispose method.

AWIPS II
Software System Design Description (Ver. 5)

CAVE 156
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 This includes Wireframe Shapes, Images, Fonts, and shaded shapes.

 Failing to dispose may leak memory or graphics memory. It is very

difficult to identify leaking graphics memory but it will slow down CAVE.

 For VizResources dispose of graphics objects in disposeInternal or

whenever you no longer need an object and might be losing a reference to

that object.

 Avoid creating graphics resources every time you paint.

 Things like fonts, wireframe shapes, shaded shapes, and images should be

created when they are needed and reused as long as they remain

unchanged.

o If you have a different image or shape for every time in a resource you

should keep around all the different resources, you should not dispose

and re-create every time the user changes frames; this can lead to very

slow looping.

 Use bulk rendering whenever it is possible.

 Most methods of IGraphicsTarget have methods that draw a single item

and methods that draw a group of items all at once; using the grouped

methods will increase graphics performance considerably.

 The single draw methods are only intended to be used if you are drawing

only a few things.

o In general, if a single resource is calling IGraphicsTarget.draw*

more than a dozen times, you should try to determine if any of the

draw methods can be used in bulk instead.

o It is almost never a good idea to be calling IGraphicsTarget.draw*

inside a loop; instead, add items to a List and call draw all at once.

 You can combine multiple drawLine and/or drawRectangle calls by

creating a wireframe shape and adding lines to that.

o wireframe shapes are more efficient than DrawableLine objects

because they are compiled to move the data onto the graphics card.

 Use I*ImageCallback objects to retrieve data for images.

 Callbacks were designed to let the target efficiently manage memory so

that large amounts of data can be loaded without running out of java heap

space.

 Read the javadoc on IColorMapDataRetrievalCallback and

IRenderedImageCallback for more information

AWIPS II
Software System Design Description (Ver. 5)

CAVE 157
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 Use IWireframeShape.allocate whenever possible.

 If you have an idea how much memory you will need after you create the

shape, then allocate before adding any points.

o If you need more space than allocated, it will allocate extra memory

for you without errors.

o All unused space will be freed once compile is called.

o Use IWireframeShape.addLabel only when it is applicable.

 The reason a wireframe shape contains labels is so that the lines are not

drawn on top of the labels. There will be a gap in the lines where the label

is. An example of this is contours.

 If you are drawing lines and labels that are not related, it is much better to

handle them separately. This would be the case for graphs and charts.

 Remember that you are not guaranteed to be the only resource drawn.

 To know if you need more optimization, you should ensure that your

resource can pan, zoom, and loop smoothly.

 If your resource is good in a single pane, you should try it in a four panel;

many unoptimized resources slow down significantly when switched to

four panels.

If in D2D, load your resource in some side panels as well. Start everything looping

and make sure you can still smoothly pan and zoom.

AWIPS II
Software System Design Description (Ver. 5)

DATA FLOW 158
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

5. DATA FLOW

AWIPS II uses a standard mechanism for ingesting raw data and making that data

available to all components of the system. The basic concept is to convert all data on

ingest into a simple standard format of metadata records and matching data records.

Figure 5-1 displays a top-level view of how the data flows from the Satellite

Broadcast Network (SBN) system all the way to the CAVE display component. This

data flow is generic and applies to all data types that come over the SBN. Local radar,

Local Data Acquisition and Dissemination (LDAD) data, and manual data flow are

special cases. These special cases vary on the front end but follow the standard

pattern once the data gets to EDEX. The following describes the standard data flow

with some extra detail later for the manual ingest special case and the EDEX-to-

CAVE interface.

Figure 5-1. Standard AWIPS Data and Notification Flow

A. Standard AWIPS Data and Notification Flow

Figure 5-1shows the major steps and components involved in the data flow that

originates from the SBN.

AWIPS II
Software System Design Description (Ver. 5)

DATA FLOW 159
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

 Local Data Manager (LDM) with the SBN module interfaces directly with the SBN

satellite receiver over a multicast User Datagram Protocol (UDP) interface from a

DVB-S. The LDM control file (pqact.conf) determines the location and file name of

where the raw data gets written to in the “Raw File Store.”

 AWIPS II adds a component to LDM to generate data arrival notifications. EDEX

Bridge runs in a separate process and interfaces directly with LDM. If specified in the

LDM control file, after each data file is written to the raw archive a notification

message is sent to the External Dropbox queue to be consumed by wake-up EDEX.

 The “Distribution Service” in EDEX listens continuously to the “External Dropbox”

queue and wakes up when a notification arrives. The job of the Distribution Service is

to route the data arrival notification to the appropriate plug-in queue to wake up the

ingest pipeline. This routing is controlled by the plug-in’s distribution XML file,

which is stored in the localization file system. Contained within the distribution XML

are WMO header and file name regular expressions filters that specify the files that

the plug-in is designed to ingest.

 The data plug-in endpoint wakes up from the notification sent by the “Distribution

Service.” Generic ingest services use the plug-in’s injected decoder and other data

specific support capabilities to extract metadata and records from the raw file. The

raw file is accessed directly from the “Raw File Store.”

 Metadata is stored as PostgreSQL records with specific fields identified to form the

URI reference.

 Data records are stored in the HDF5 following a schema controlled by the URI. A log

message is generated for the EDEX log file and the data URI is sent to the

notification queue to wake up CAVE. This ends the ingest portion of the data flow.

B. How Does Ingested Data Get Into CAVE?

Data gets to CAVE through an HTTP-based web service. By using a web service,

CAVE can either connect to EDEX over the internet or connect locally over a LAN

using the same interface. To improve performance the “apache Thrift” FOSS package

serializes request objects into binary data. Figure 5-2 displays the CAVE-to-EDEX

interface.

AWIPS II
Software System Design Description (Ver. 5)

DATA FLOW 160
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

Figure 5-2. CAVE to EDEX Interface Through Thrift

 CAVE data requests originate through operator actions such as menu selections or

automatically through ingest event notifications as described earlier.

 An implementation of the IServerRequest interface is used for all CAVE requests to

EDEX. AWIPS II contains many implementations, a few of which are shown in

Figure 5-2.

 All requests go through the ThriftClient to get to EDEX.

 EDEX processes all CAVE requests through the RemoteRequestServer service. The

service uses IRequestHandler implementations to process requests. Many handler

implementations exist in AWIPS II to deal with the various ways metadata and data

need to be returned to CAVE.

 The data plug-ins contribute data access objects (DAO) that are used by the handler

implementations to retrieve specific data records.

C. Special Case Ingest Using Manual Dropped-in Files

One of the most useful special cases is that of manual ingest. Manual ingest is useful

for testing and small deployments that do not have an LDM. The nice thing about

AWIPS II
Software System Design Description (Ver. 5)

DATA FLOW 161
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

manual ingest is that the standard ingest pipelines are reused and the only change is

how notifications originate, as shown in Figure 5-3.

 Figure 5-3. Manual Ingest Data Flow Using Distribution Server

 Data flow originates with files dropped into the “{edex.home}/data/manual”

endpoint on an EDEX box. It does not matter how the files get there.

 A special EDEX plug-in is listening to this file endpoint using a standard apache

Camel file sniffer component.

 The “manualingest” plug-in moves the dropped-in file to the raw archive. Files

disappearing from the file endpoint indicate that EDEX is running and files are

getting sniffed up.

 A notification to the external dropbox queue is sent to start the ingest pipeline from

the “manualingest” plug-in.

 From this point on ingest is identical to the standard ingest used by the LDM as

described earlier.

AWIPS II
Software System Design Description (Ver. 5)

 ACRONYMS AND ABBREVIATIONS A-1
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

APPENDIX A. ACRONYMS AND ABBREVIATIONS

ADE Eclipse/AWIPS Development Environment

AMQP Advanced Messaging Queuing Protocol

API Application Program Interface

ARSR Air Route Surveillance Radar

ASR Aggregation Service Routers

AWIPS Advanced Weather Interactive Processing System

CAVE Common AWIPS Visualization Environment

CONUS Conterminous/Contiguous/Commercial United States

COTS Commercial off the shelf

D2D Display Two Dimensional

DAO Data Access Object

DVB Digital Video Broadcast

EDEX Enterprise Data Exchange

ESB Enterprise Service Bus

FOSS Free and Open Source Software

FQDN Fully Qualified Domain Name

GFE Graphical Forecast Editor

GFS Global Forecast System

GNU GNUs Not Unix

GRIB Gridded Binary

GUI Graphical User Interface

HDF5 Hierarchical Data Format 5-multi-object file format for the transfer of graphical

and numerical data between computers

HQL Hibernate Query Language

HTTP Hypertext Transfer Protocol

JAR Java Archive

JAXB Java Architecture for XML Binding

JEP Java Embedded Python

JMS Java Messaging Service

JVM Java Virtual Machine

JTS Java Transaction Service

LDM Local Data Manager

LSB Linux Standards Base

MOS Model Output Statistics

MPE Multi-Programming Executive

AWIPS II
Software System Design Description (Ver. 5)

 ACRONYMS AND ABBREVIATIONS A-2
 AWP.DSN.A2.SSDD-05.00 / 21 November 2014

 Hard copies uncontrolled. Verify effective date prior to use.

NWS National Weather Service

OCONUS Outside Conterminous/Contiguous/Commercial United States

OSGi Open Services Gateway initiative

PDO Plug-in Data Object

PYPIES Python Processing Isolated Enhanced Storage

QPID Queue Processor Interface Daemon

RCP Rich Client Platform

RGB Red, Green, Blue

RPM Redhat Package Manager

SOA Service Oriented Architecture

SBN Satellite Broadcast Network

SEDA Staged Event Driven Architecture

SHEF Standard Hydrometeorology Exchange

SQL Structured Query Language

SSDD Software System Design Description

SWT Standard Widget Toolkit

UDP User Datagram Protocol

UI User Interface

URI Uniform Resource Identifier

UUID Universally Unique Identifier

VIZ Visualization

XML eXtensible Markup Language

YUM Yellowdog Updater Modified

