
Atmosphere, Ocean and Climate Dynamics
Answers to Chapter 12

1. Consider a homogeneous slab of material with a vertical diffusivity, kv,
subject to a flux of heat through its upper surface which oscillates at
frequency ω given by Qnet = Re bQωe

iωt where bQω sets the amplitude of
the net heat flux at the surface. Solve the following diffusion equation
for temperature variations within the slab,

dT

dt
= kv

d2T

dz2

assuming that kv dTdz =
Qnet
ρc
at the surface ( z = 0, where ρ is the density

of the material and c is its specific heat) and that T −→ 0 at great depth
( z = −∞).

(a) Use your solution to show that temperature fluctuations at the

surface have a magnitude of
bQω

ρcγω
where γ =

q
kv
ω
is the e-folding

decay scale of the anomaly with depth.

(b) Show that the phase of the temperature oscillations at depth lag
those at the surface. On what does the lag depend?

(c) For common rock material, kv = 10−6 m2 s−1, ρ = 3000 kgm−3

and c = 1000 J kg−1K−1. Use your answers in (a) to estimate the
vertical scale over which temperature fluctuations decay with depth
driven by (i) diurnal and (ii) seasonal variations in bQω.

If bQω = 100 J s
−1m−2, estimate the magnitude of the temperature

fluctuations at the surface over the diurnal and seasonal cycles.
Comment on your results in view of the fact that the freezing depth
– the depth to which soil normally freezes each winter – is about
1m in the NE of the US. In areas of central Russia, with extreme
winters, the freezing depth can be as much as 3m, compared to, for
example, San Francisco where it is only a few centimeters. In the
Arctic and Antarctic the freezing depth is so deep that it becomes
year-round permafrost. Instead, there is a thaw line during the
summer.
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2. Imagine that the temperature of the ocean mixed layer of depth h, gov-
erned by Eq.(12.1), is forced by air-sea fluxes due to weather systems
represented by a white-noise process Qnet = bQωe

iωt where bQω is the
amplitude of the forcing at frequency ω. Solve Eq.(12.1) for the tem-
perature response T = Re bTωeiωt and hence show that:

bTω = bQω

γO

³
λ
γO
+ iω

´ .
Hence show that it has a spectrum, bTω bT ∗ω, where bT ∗ω is the complex
conjugate, given by Eq.(12.2). Graph the spectrum using a log-log plot
and hence convince yourself that fluctuations with a frequency greater
than λ

γO
are damped.

Substituting bT =
bQ

γO

³
iω+ λ

γO

´ in to Eq.(12.1), we find it is a solution,
yielding a spectrum bT bT ∗ = bQ2

γ2O

³
λ
γO
+iω

´³
λ
γO
−iω

´ = bQ2
γ2O

µ
ω2+

³
λ
γO

´2¶ . The
function 1

1+ω2
is plotted in the figure, where ω has been normalized wrt

the scale λ
γO
.

We see that for ω2 >> 1 (i.e. frequencies greater than λ
γO
) the spectrum

falls off with increasing ω like ω−2 and so has a slope of -2 on the log-log
plot. These timescales are thus damped. At low frequencies such that
ω2 << 1, the curve asymptotes to unity.

3. For the one-layer “leaky greenhouse” model considered in Fig.2.8 of
Chapter 2, suppose that, all else being fixed, the atmospheric absorption
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depends linearly on atmospheric CO2 concentration as

� = �0 + [CO2] �1 ,

where [CO2] is CO2 concentration (in ppm), �0 = 0.734, and �1 =
1.0× 10−4(ppm)−1. Calculate, for this model, the surface temperature:

(a) for the present atmosphere, with [CO2] = 360ppm (see Table 1.2);

(b) in pre-industrial times, with [CO2] = 280ppm; and

(c) in a future atmosphere with [CO2] doubled from its present value.
In Section 2.3.2 we deduced for the “leaky greenhouse” model that
the surface temperature is related to emission temperature by

Ts =

µ
2

2− �

¶ 1
4

Te ,

where Te =
£
(1− αp)

S0
4σ

¤ 1
4 = 255K is the emission temperature

for the Earth. With

� = �0 + [CO2] �1

and the given numbers, we get the following.

a. Present atmosphere. [CO2] = 360ppm→ � = 0.770. So

Ts =

µ
2

1.230

¶1
4

× 255 = 288.0K .

b. Pre-industrial atmosphere. [CO2] = 280ppm→ � = 0.762. So

Ts =

µ
2

1.238

¶1
4

× 255 = 287.5K ,

0.5K cooler than the present.

c. Future atmosphere with doubled CO2. [CO2] = 720ppm→ � =
0.806. So

Ts =

µ
2

1.194

¶1
4

× 255 = 290.1K ,

2.1K warmer than the present.
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4. Faint early sun paradox

The emission temperature of the Earth at the present time in its history
is 255K. Way back in the early history of the solar system, the radiative
output of the Sun was thought to be 25% less than it is now. Assuming
all else (Earth-Sun distance, Earth albedo, atmospheric concentration
of Greenhouse gases etc) has remained fixed, use the one-layer “leaky
greenhouse” model explored in Q.3 to:

(a) determine the emission temperature of the Earth at that time if
Greenhouse forcing then was the same as it is know. Hence deduce
that the earth must have been completely frozen over.

The emission temperature would have been (0.75)
1
4 × Tepresent day

= (0.75)
1
4 × 255K = 237K. According to the leaky greenhouse

model, then, from our answer to Q.3(a) appropriate to present-day

levels of CO2 forcing, we have Ts =
¡
2
2−�
¢ 1
4 Te =

¡
2

1.230

¢ 1
4 237K =

268K. Since this is less than 273K, the freezing point of water,
we conclude that the earth would have been frozen over.

(b) if the early Earth were not frozen over due to the presence of
elevated levels of CO2, use your answer to Q.3 to estimate how
much CO2 would have had to have been present. Comment on
your answer in view of Fig.12.14.

One requires that Ts =
¡
2
2−�
¢ 1
4 Te = 273K and so, given that Te =

237K,
¡
2
2−�
¢ 1
4 = 273

237
= 1. 15 implying that � = 0.86. If the rule

used in Q.3 applies:

� = �0 + [CO2] �1 ,

where [CO2] is CO2 concentration (in ppm), �0 = 0.734, and �1 =
1.0× 10−4(ppm)−1, then a CO2 concentration of
(0.86− 0.734)×104ppm = (0.86− 0.734)×104 = 1260ppm would
be required to bring the surface temperature up to the freezing
point. This is 1260

280
= 4. 5 times pre-industrial values. According

to Fig.12.14 levels of CO2 may be have 20 times present values in
the distant past, presumably more than enough to keep the surface
of the planet ice-free. In fact the model we have employed here is
useful for illustrating underlying principles, but is not appropriate
for quantitative study.
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5. Bolide impact

There is strong evidence that a large meteorite or comet hit the earth
about 65M y ago near the Yucatan Peninsula extinguishing perhaps
75% of all life on earth – the K-T extinction marking the end of the
Cretaceous (K). It is speculated that the smoke and fine dust gener-
ated by the resulting fires would have resulted in intense radiative heat-
ing of the mid-troposphere with substantial surface cooling (by as much
as 20 ◦C) which could interrupt plant photosynthesis and thus destroy
much of the Earth’s vegetation and animal life.

A slight generalization of the one-dimensional problems considered in
Chapter 2 provide insights in to the problem.

By assuming that a fraction ‘f ’ of the incoming solar radiation in
Fig.2.8 is absorbed by a dust layer and that, as before, a fraction ‘�’ of
terrestrial wavelengths emitted from the ground is absorbed in the layer,
show that:

Ts =

µ
2− f

2− �

¶
Te

where Te is the given by Eq.(2.4).

Assume blackbody radiation and that each component of the atmosphere-
Earth system is in thermal equilibrium. Consider first the surface heat
balance. The net radiative flux per unit area from the surface is σT 4s ,
where σ is the Stefan-Boltzmann constant. The surface gains heat from
solar radiation, at a rate 1

4
S0 (1− αp) (1− f) per unit area, and from

the atmosphere. From Kirchoff’s law, the atmosphere radiates both up
and down, at a rate εσT 4a . So the surface heat balance is

net input per unit area = net loss per unit area

i.e.,
1

4
S0 (1− αp) (1− f) + εσT 4a = σT 4s .

Using the definition of emission temperature,

1

4
S0 (1− αp) = σT 4e ,

the surface balance can be written

(1− f)T 4e + εT 4a = T 4s . (1.1)
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Now, the net loss or gain from space must be zero. The net input per
unit area to the Earth is

1

4
S0 (1− αp) = σT 4e ,

while the net loss per unit area is that from the atmosphere, εσT 4a ,
plus that penetrating the atmosphere from the surface, (1− ε)σT 4s .
Equating gain with loss (and canceling σ),

T 4e = εT 4a + (1− ε)T 4s . (1.2)

Elimination of Ta from (1.1) and (1.2) leaves

Ts =

·
2− f

2− ε

¸ 1
4

Te . (1.3)

While atmospheric absorption of IR (represented by ε) increases surface
temperature, absorption of shortwave solar radiation (represented by
f) decreases Ts, simply by reducing the direct solar input to the surface.

Investigate the extreme case where the dust layer is so black that it has
zero albedo (no radiation reflected, αp = 0) and is completely absorbing
( f = 1) at solar wavelengths.

If the atmosphere remains strongly absorbing in the infrared, ε ∼ 1,
then:

Ts ∼
·
1

2− 1
¸ 1
4

Te ∼ 280K if αp = 0

a substantial cooling. Perhaps we might expect ε to be reduced some-
what because of the increased stability of the atmosphere (cold surface,
hot cloud) which would inhibit convection and hence reduce the water
vapor concentration. Putting ε = 0.8 gives Ts = 268K, an even larger
drop in temperature. Obviously the more ‘transparent’ is the dust layer
to terrestrial wavelengths, the greater the cooling of the surface.

6. Assuming that the land ice over the North American continent at the
Last Glacial Maximum shown in Fig.12.17 had an average thickness of
2 km, estimate the freshwater flux into the adjacent oceans (in Sv) that
would have occurred if it had completely melted in 10 y, 100 y, 1000 y.
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Compare your estimates to the observed freshwater meridional flux in
the ocean, Fig.11.32. Another useful comparative measure is the flux of
the Amazon river, 0.2Sv.

We estimate the surface area occupied by land ice over North America
at the LGM to be 2000 km× 2000 km yielding a volume of 2000 km×
2000 km× 2 km = 8.0× 1015m3 if it had been 2 km thick. If all the ice
melted in 10 y this yields a flux of 8.0×10

15m3

10 y
= 25×107m3 s−1 = 250Sv,

a flux of 25Sv if it melted in 100 y, and a flux of 2.5Sv if it melted in
1000 y. These are all much larger than meridional fresh water fluxes in
the ocean (∼ 1Sv) and typical river fluxes (<<1Sv).
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