
Atmosphere, Ocean and Climate Dynamics
Answers to Chapter 10

1. Consider the “Ekman layer” experiment GFD Lab XII, Section 10.1.2.
Assume the lid rotates cyclonically with respect to the turntable. In
addition to the Ekman layer at the base, there is a second layer at the
lid. In this top Ekman layer, the effect of friction is to drive the flow,
rather than to slow it down as at the base.

(a) Discuss the nature of the Ekman layer at top: illustrate the bal-
ances of forces within it and describe the radial and vertical compo-
nent of flow within it. Discuss the parallel between the top Ekman
layer and the wind-driven boundary layer at the surface of the
ocean.
Since friction drives the flow in the top Ekman layer, the friction
force F will be approximately parallel (rather than antiparallel)
to the flow. For cyclonic rotation, the balance must be as shown
below:

The flow thus spirals out of the cyclone at the surface, rather than
into it as in a bottom boundary layer. Thus, the radial component
of the flow in the tank must look qualitatively as follows:
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– Ekman pumping at the bottom, producing upwelling, which is
absorbed by the Ekman suction at the lid.

(b) Discuss the parallel between the bottom Ekman layer and the at-
mospheric boundary layer.

At the bottom the friction force F will be approximately antiparallel to
the flow (because it opposes, rather than drives the flow), as in Fig.7.24
of our notes. This is just as observed in the atmospheric boundary layer
– see Fig.7.25.

2. Fig.10.11 shows the pattern and magnitude of Ekman pumping acting
on the ocean. Estimate how long it would take a particle of fluid to
move a vertical distance of 1 km if it had a speed wEk. If properties
are diffused vertically at a rate k = 10−5m2 s−1 (typical of the main
thermocline), compare this to the implied diffusive time-scale. Com-
ment.

Typical Ekman pumping vertical velocities are 30my−1. A fluid par-
cel moving at this speed would traverse a distance of 1 km in a time
tadvective =

1 km
30my−1 ' 109 s ' 30 y. The time it takes to diffuse a signal a

distance h is tdiffusive = h2

πk
where k is the diffusivity. Inserting numbers

we obtain a time tdiffusive = 1 km2

π×10−5m2 s−1 ' 3× 1010 s = 800 y. We con-
clude that in the main thermocline advective processes dominate over
diffusive processes.

3. Use the results of Ekman theory to show that when one adds the merid-
ional volume transport in the Ekman layer – given by Eq.(10.5) – to
the meridional transport in the geostrophic interior – obtained from
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Eq.(10.12) – one obtains the Sverdrup transport, Eq.(10.17):
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= Sverdrup transport.

4. Consider the Atlantic Ocean to be a rectangular basin, centered on
35oN, of longitudinal width Lx = 5000km and latitudinal width Ly =
2500km. The ocean is subjected to a zonal wind stress of the form

τx(y) = −τ 0 cos
µ
π
y

Ly

¶
;

τ y(y) = 0 ;

where τ 0 = 0.05Nm−2. Assume a constant value of β = df/dy appro-
priate to 35oN, and that the ocean has uniform density 1000kg m−3.

(a) Determine the magnitude and spatial distribution of the depth-
integrated northward flow velocity in the interior of the ocean.

3



(b) Using the depth-integrated continuity equation, and assuming no
flow at the eastern boundary of the ocean, determine the magnitude
and spatial distribution of the depth-integrated eastward flow in the
interior.

(c) If the return flow at the western boundary is confined to a width
of 100km, determine the depth-integrated flow in this boundary
current.

(d) If the flow is confined to the top 500m of the ocean (and is uniform
with depth in this layer), determine the northward components of
flow velocity in the interior, and in the western boundary current.
(a) Assuming a flat ocean bottom with no stress there, then the
Sverdrup relation applies (Eq.10.13 of our notes), viz.:

V =
1

βρ0

µ
∂τ y
∂x
− ∂τx

∂y

¶
,

where V is the depth-integrated northward flow. Substituting,
with τ y = 0,

V = − 1

βρ0

π

Ly
τ 0 sin

µ
π
y

Ly

¶
= V0 sin

µ
π
y

Ly

¶
,

where, with β(35o) = 2Ω
a
cos 35o = 1.87× 10−11m−1s−1,

V0 = − π × 0.05
1.87× 10−11 × 1000× 2.5× 106 = −3.4m

2s−1.

(b) Depth-integrated continuity equation is

∂U

∂x
+

∂V

∂y
= 0 ,

where U is the depth-integrated eastward flow. Since ∂U/∂x is
independent of x, and U vanishes at the eastern boundary x = Lx,
we can write this as

U = U1(y)

·
1− x

Lx

¸
,

4



when continuity gives us

−U1
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+ π

V

Ly
cos

µ
π
y
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¶
= 0

whence

U = U1(y)

·
1− x

Lx

¸
= U0

·
1− x

Lx

¸
cos

µ
π
y

Ly

¶
where

U0 = π
Lx

Ly
V0 = −3.4× π × 2 = −21.4 m2s−1.

(c) The flow described by these answers is valid only in the ocean
interior. A return flow must exist at the western boundary. The
longitudinally and depth-integrated northward flow (net volume
flux) in the ocean interior is

V =
Z Lx

0

V dx = V0Lx sin

µ
π
y

Ly

¶
.

If the return boundary flow has velocity Vb, uniform over a width
Lb = 100km, then, since the volume fluxes must be the same,

VbLb = −V = −V0Lx sin

µ
π
y

Ly

¶
,

whence

Vb = Vb0 sin

µ
π
y

Ly

¶
where

Vb0 = −V0Lx

Lb
= 170m2s−1.

(d) If the flow is confined to the top 500m, the northward compo-
nents of the flow are

v =
V0
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µ
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¶
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,
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=
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in the western boundary current.
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5. From your answer to Question 4, determine the net volume flux at 35oN
(the volume of water crossing this latitude per unit time)

(a) for the entire ocean excluding the western boundary current

(b) for the western boundary current only. Give your answers in units
of Sverdrups (Sv) [ 1Sv= 106m3s−1; the Sverdrup is a conventional
unit of water flow in oceanography.

(c) Assume again that the flow is confined to the top 500m of the
ocean. Determine the volume of the top 500m of the ocean and, by
dividing this number by the volume flux you calculated in part (a),
come up with a time scale. Discuss what this time scale means.

(d) Given that the circulation is confined to the top 500m, assume
now that the water in the western boundary current has a mean
temperature of 20oC, while the rest of the ocean has a mean tem-
perature of 15oC. Show that H, the net flux of heat across 35oN,
is

H = ρ0cpV ∆T ,

where V is the volume flux you calculated in question 3 and ∆T is
the temperature difference between water in the ocean interior and
in the western boundary current. [Density of water ρ0 = 1000kg
m−3; specific heat of water cp = 4187J kg−1K−1.] We earlier
found that the Earth’s energy balance requires a poleward heat flux
of around 5× 1015W. Calculate and discuss what contribution the
Atlantic Ocean makes to this flux.

(a) In the channel center at 35oN, y = Ly/2, and sin (πy/Ly) = 1. In
the ocean interior, the net volume flux is, from the answer to 2(c),

V = V0Lx sin

µ
π
y

Ly

¶
,

= V0Lx at 35oN .

Therefore the interior volume flow at 35oN is V(35oN) = V0Lx = −1.7×
107m3s−1 = −17Sv (southward).

(a) (b) The volume flow in the western boundary current must be
the same–that is how I determined the strength of the boundary
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current. A a check, the volume flow in the boundary is

VbLb = Vb = Vb0Lb sin

µ
π
y

Ly

¶
= Vb0Lb at 35oN.

This has the value 170m2s−1 × 100km = 1.7× 107m3s−1 = 17Sv,
directed northward.
(c) The ocean in Q2, has surface area 2500km×5000km = 1.25×
1013m2, and so the volume of the upper 500m of the ocean i 6.25×
1015m3. Therefore we can define a time scale τ where

τ =
volume

volume flux

=
6.25× 1015m3
1.7× 107m3s−1

= 3.68× 108s
= 11.7 years.

This is a gross measure of the time it takes for the volume flux V
to replenish the upper ocean.
(d) The interior volume flux across 35oN is V, calculated above.
Thus, in the interior, there is an amount V going south in the in-
terior, and an equal amount going north in the western boundary.
Neglecting variations in water density, there is therefore a mass
flux ρ0V going south in the interior–and so (ρ0V) kg of water
crosses 35oN every second–and an equal amount going north in
the western boundary current (so there is, of course, no net mass
transport). That going south has temperature Ti, and heat con-
tent per unit mass cpTi, and so the amount of heat crossing 35oN
per unit time, southward, in the interior is cpρ0VTi. Similarly,
if the temperature at the western boundary is Tb, the northward
transport of heat in the boundary current is cpρ0VTb. Hence the
net northward heat transport is

H = (northward flux in boundary current)

− (southward flux in interior)
= cpρ0V ∆T
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where ∆T = Tb − Ti is the temperature difference between the
boundary current and the open ocean.
Using the numbers from preceding questions, and ∆T = 5o,

H = 4187× 1000× 1.7× 107 × 5
= 0.36× 1015W.

This is a small but significant fraction (about 7%) of the required
net poleward flux (from both ocean and atmosphere) of 5×1015W,
suggesting that the wind-driven circulation of the Atlantic Ocean
plays a role. [Actually, in total the N Atlantic contributes about
1×1015W, and a substantial part of this is due to the thermohaline
circulation.]

6. Describe how the design of the laboratory experiment sketched in Fig.10.18
captures the essential mechanism behind the wind-driven ocean circu-
lation. By comparing Eq.(10.16) with Eq.(10.12), show that the slope
of the bottom of the laboratory tank plays the role of the β−effect: i.e.
bottom slope ←→ 1

tanϕ
h
a
where h is the depth of the ocean and a is the

radius of the earth.

Writing Eq.(10.12) thus: hβ
f
v = wEk and comparing with Eq.(10.16),

and noting the definitions of f and β (Eqs.6.42 and 10.10), one sees
that ∂d

∂y
←→ 1

tanϕ
h
a
. Hence one can use a sloping false bottom in the

laboratory to mimic the effect of the variation of the Coriolis parameter
with latitude. The rotating disc at the surface represents the action of
the wind blowing over the surface of the water.

7. Imagine that the Earth was spinning in the opposite direction to the
present.

(a) What would you expect the pattern of surface winds to look like,
and why (read again Chapter 8)?
If the earth were spinning in the opposite direction, winds in the
northern hemisphere would have the sense of direction that an
observer in the southern hemisphere on the present earth would
detect if they stood facing toward the south pole. The winds
would therefore blow predominantly from the observer’s right to
left. We see then that the sense of direction of the winds would
have reversed.
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Figure 1:

(b) on what side (east or west) of the ocean basins would you expect
to find boundary currents in the ocean, and why?
Boundary currents would occur on the eastern margin of the ocean
basins because the sign of β, the meridional gradient of the plan-
etary vorticity, would be of opposite sign.
If you live in the southern hemisphere perhaps you are not scratch-
ing your head.

8. Use Sverdrup theory and the idea that only western boundary currents
are allowed, to sketch the pattern of ocean currents you would expect to
observe in the basin sketched below in which there is an island. Assume
a wind pattern of the form sketched in the diagram.

The pattern is sketched in the diagram.

9. Fig.5.5 shows the observed net radiation at the top of the atmosphere
as a function of latitude. Taking this as a starting point, describe the
chain of dynamical processes that leads to the existence of anticyclonic
gyres in the upper subtropical oceans. Be sure to discuss the key physical
mechanisms and constraints involved in each step.

One has to discuss (i) the pole-equator temperature gradient and associ-
ated thermal wind balance (Section 8.2.2) (ii) the baroclinic instability

9



of the thermal wind generating middle-latitude synoptic scale systems
(iii) the role of synoptic eddies in meridional angular momentum trans-
port, maintaining middle latitude surface westerlies and tropical east-
erlies (see Section 8.4.2) (iv) the resulting pattern of Ekman pumping
over the ocean (see Section 10.1.3) (v) the Sverdrup response of the
ocean (see Section 10.2 and 10.3).
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