Atmosphere, Ocean and Climate Dynamics
Answers to Chapter 9

1. Consider an ocean of uniform density p,.; = 1000 kg m~3.

(a) From the hydrostatic relationship, determine the pressure at a
depth of 1km and at 5km. Fxpress your answer in units of at-
mospheric surface pressure, p; = 1000 mbar = 10° Pa.

Hydrostatic balance is
ﬁp B
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whence, integrating from depth d (z = —d) to the surface (z = h),

p(—=d) = p(h) + gp(d + h) ,

where p is the constant density. Since at a depth of a km or so,
d + h ~ d we may write:

9 81m?s™! x 103kgm ™3 x 103m
9.81m?s ! x 103kgm™3 x 5 x 103m
p(~5km) = (1 + 105% >ps ~ 491p,

(b) Given that the heat content of an elementary mass dm of dry
air at temperature T is ¢, dm (where c, is the specific heat of
air at constant pressure), find a relationship for, and evaluate,
the (vertically integrated) heat capacity (heat content per degree
Kelvin) of the atmosphere per unit horizontal area. Find how deep
an ocean would have to be in order to have the same heat capacity
per unit horizontal area.

If the heat content per unit mass is c¢,7" dm, the heat capacity per
unit mass is ¢, dm. Hence the heat content of a vertically integrated
column, per unit horizontal area, is

/ cpp dz = — / apd (0) ,
0 g



assuming hydrostatic balance, where p(0) is surface pressure = 1000hPa
= 10°Pa, since p(co) = 0. Therefore the vertically integrated heat
capacity of the atmosphere is

1004 x 10°
9.81

The heat capacity per unit area of an ocean of depth D is c,pD, where
¢, = 4187JK kg™! and p = 1000kg m~3 of course are the values for
water. For such an ocean to have the same heat capacity as the at-
mosphere,

=1.02 x 10"JKm™2.

cppD =1.02 x 107JK ' m™?
SO
~1.02x 107
4187 x 1000

This is very shallow! So, a real ocean of depth (say) 4 km has 4000/2.44 =
1639 times the heat capacity of the atmosphere.

=244m .

. Assume that, in the mized layer, mizing maintains a vertically uniform
temperature. A heat flux of 25 Wm =2 is applied at the ocean surface.
Taking a reasonable representative value for the mixed layer depth, de-
termine how long it takes for the mixed layer to warm up by 1°C.
[Use density of water= 1000kg m™3; specific heat of water = 4187.J
kg 'Kl

Adopt a representative value of D = 100m for the mixed layer depth.
Then the heat capacity of the mixed layer per unit area is (where ¢ is
specific heat and p density)

H = cpD
= 4.19 x 10°JK 'm 2.

Therefore the warming rate, when heated by a heat flux of 25Wm™2, is

dar 25

— = ~6.0x 10°Ks™*
it~ 4.19 x 10° 8 5
so the time taken to warm up by 1K is

r = 1.7x107s
~ (0.5 yr.



Hence, e.g., one expects to see a significant time lag of ocean tem-
peratures with respect to solar forcing (i.e., warmest water well after
summer solstice) and, in places where the mixed layer is deep, rela-
tively little seasonal variability of mixed layer temperatures. Where
the mixed layer is shallower than 100 m, the time scale is comparable
with or less than a season, so there will be a larger annual variation of
upper ocean temperature.

. Consider an ocean of uniform density p = 1000 kg m=3. The ocean
surface, which is flat in the longitudinal direction, slopes linearly with
latitude from h = 0.1m above mean sea level (MSL) at 40°N to h =
0.1m below MSL at 50°N. Using hydrostatic balance, find the pressure
at depth d below MSL. Hence show that the latitudinal pressure gradient
Op/dy and the geostrophic flow are independent of depth. Determine
the magnitude and direction of the geostrophic flow at 45°N.

Consider Fig. 1.
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Figure 1:

Hydrostatic balance is
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whence, integrating from depth d (z = —d) to the surface (z = h(y)),

p(=d) = p(h) + gp(d +h) ,

where p is the constant density. Pressure at the surface is atmospheric
(= ps) and constant, so

dp, __0h
@@——ﬁ—ww, (a)

which is independent of depth. This is because the mass per unit area
above depth d varies horizontally only as a reflection of variations in
surface height.

The geostrophic flow is zonal,

1 Op

fp 0oy

or, using result (a),
__g0h
foy
With the given data, Oh/0y = —0.2/(1.11 x 10°) = —1.8018 x 10~".
Since ¢ = 9.81ms™2, and f = 1.03 x 10~%s7! at 45°N,

9.81 _7 -2 -1
U = T03 <102 x 1.8018 x 107" =1.72 x 10 “ms

at 45°N.
. Consider a straight, parallel, oceanic current at 45°N. For convenience,

we define the x-and y- directions to be along and across the current,
respectively. In the region —L <y < L, the flow velocity is

u = Up cos <%> exp(g)

where z is height (note that z = 0 at mean sea level and decreases
downwards), L = 100km, d = 400m, and Uy = 1.5ms™'. In the
region |y| > L, u= 0.

The surface current is plotted in the following figure:

Making use of the geostrophic, hydrostatic and thermal wind relations:
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Figure 2: A plot of Uio at the surface, z = 0, against %

(a) Determine and sketch the profile of surface elevation as a function

of y across the current.

Geostrophic balance is fu + Soy = 0 and so at the surface %g—g

gg—z = fUycos (%) implying that:

h:/%cos (%) dyz%%onsin (%)

Inserting numbers we find that %% fUp >~ 1m.

1 2

normalised h

A plot of h/ (%%Ug) against £.

(b) Determine and sketch the density difference, p(y,z) — p(0, z).
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The thermal wind equation is: f2% = 9 % and so 2 = 1Prer du
0z ref OY dy g 0z

fp”f Up cos (52) exp(%). Integrating wrt y, we find:

1, )=9(0,2) = T cxp(5) o (1) dy = 251y sin 5
and so varies like h but decays exponentially Wlth depth.

(c) Assuming the density is related to temperature by Fq.(4.4) deter-
mine the temperature difference, T(L,z)—T(—L, z), as a function
of z. Evaluate this difference at a depth of 500 m. Compare with

Fig.9.21.
Since %T;(O,z) =—(T(y,2) — T(0,2)) = —7a—gdU exp(%)sin (32),
at a depth of 500 m we find a temperature change across the chan-

nel of magnitude 2 x (%LU ) exp(=24-

agd
cord with Fig.9.21.

—500

0-) ~ 7°C, roughly in ac-

5. Figure 9.21 is a cross-section (in a plane normal to the flow) across
the Gulf Stream at 38°N.

The figure shows the distribution of temperature as a function of depth
and of horizontal distance across the flow. Assume for the purposes of
this question (all parts) that the flow is geostrophic.

(a) Using hydrostatic balance, and assuming that atmospheric pressure
18 uniform and that horizontal pressure gradients vanish in the
deep ocean, estimate the differences in surface elevation across
the Gulf Stream (i.e., between the positions marked 73° W and
70° W on the figure). Neglect the effect of salinity on density,
and assume that the dependence of density p on temperature T is
adequately described by

p:po[l—a(T—To)] )

where p, is the density at 0°C, and « is the coefficient of thermal
eTpansion.

Hydrostatic balance gives

p
5, = 9P= —gpoll — a(T — Tp)],



so, if the surface elevation (above MSL z = 0) is h(z), and assum-
ing p = p, =constant at the surface

p(5.2) = pat gpy / - o(T - T)] dz

h
= pa+gpo(h—2)—gpoa/ (T —To) dz,

assuming density variations are small. Given no horizontal pres-
sure gradient in the deep ocean, z = —Z, say,

z

dp = p(x + dx, —Zy) — p(x, —Zy) = gpydh — gpoa/ 0T dz .

—Z

So the elevation difference is

5h:a/ 0T dz .

_ZO

From the figure, I estimate a mean 67T between 73° W and 70°
W of about 5K, averaged over the layer above 1000m depth, and
0T = 0 beneath 1000m. Therefore

z

0T dz ~ 5000 Km
—Z

and so, using o = 2 x 1074K!,
oh =1.0m .

(b) The near-surface geostrophic flow u is related to surface elevation

1 by
_ 95
u==zxVn,

f
where g s gravity and f the Coriolis parameter. FExplain how
this equation is consistent with the geostrophic relationship between
Coriolis force and pressure gradient.

See Section 9.3.1, pg.184.



(c) Assuming (for simplicity) that the Gulf Stream’s velocity is uni-
form down to a depth D = 500m, and that it is zero below this
depth, use the near-surface geostrophic relationship

_ 9~
zx Vh
f

to show that the net (integrated) water transport (i.e., the volume
flux) along the Gulf Stream at this latitude is

gD
o
where Oh is the elevation difference you estimated in part (a).

Fualuate this transport in units of Sverdrups (Sv). [1Sv = 10°m3s™!;
this is a conventional unit of water flow in oceanography.]

V= oh ,

The y—velocity (along the stream) is

_goh
f@x

Integrating across the stream, the net volume flux along the Gulf
Stream is

V = /vdarea)

= f/ —dxdz

where the integral is across the whole region of nonzero velocities.

Hence
T2
Vv = / / — dx dz
f 2

f

where 6h = h(x9)—h(x1) is the height difference across the stream.
Putting in the numbers, noting that f(38N) = 8.96 x 1075s~!

9.81 x 500
= T % 1.0=5.47 x 10"m3s7!
V' = S96x1075 A

= 54.7 Sv.



6. Fig.3 shows the trajectory of a ‘champion’ surface drifter which made
one and a half loops around Antarctica between March, 1995 and March,
2000 (courtesy of Nikolai Mazimenko). Red dots mark the position of
the float at 30 day interval.

(a)

Compute the mean speed of the drifter over the 5-year period.

3 1
The mean speed of the drifter is M = 0.2ms™ !, where

we have used the fact that it is 22,000 km around the path of the
ACC.

Assuming that the mean zonal current at the bottom of the ocean
is zero, use the thermal wind relation (neglecting salinity effects)
to compute the depth-averaged temperature gradient across the
Antarctic Circumpolar Current. Hence estimate the mean tem-
perature drop across the 600 km-wide Drake Passage.

The thermal wind equation is: % = pg - %5 = gaaT. Thus:
oT ou f ‘ f
—dz = —dz = — (usurface - ubottom) = —Ugurface- The
y 0z go ga

depth averaged temperature drop is thus: Z?%ugurface% which, in-

serting numbers, yields 9.81ms}2;125;110—4 7=10.2 ms~ 180k — 7 5K,

If the zonal current of the ACC increases linearly from zero at the
bottom of the ocean to a maximum at the surface (as measured by
the drifter), estimate the zonal transport of the ACC through Drake
Passage assuming a meridional velocity profile as in Fig.2 and that
the depth of the ocean is 4km. The observed transport through
Drake Passage is 1305v. Is your estimate roughly in accord? If
not, why not?

Integrating u = Uy cos( ) ( — i) over the channel and over
depth we obtain a transport of 2 =Up LH which, inserting numbers
yields: —0 2ms~! x 300 km><4km = 1.5279x 108 3571 = 153Sv.
This is not far from the observed volume transport of the ACC,
which is 135Sv or so. Note that here we have only computed
that part of the transport associated with the thermal wind —
we must add on to this the transport associated with the depth
independent (bottom) current which is 7.6Sv for every 1 cms™tof
bottom current.
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Figure 3: The trajectory of a surface drifter which made one and a half loops
around Antarctica between March, 1995 and March, 2000 (courtesy of Nikolai
Maximenko). Red dots mark the position of the float at 30 day intervals.
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