
Atmosphere, Ocean and Climate Dynamics
Answers to Chapter 9

1. Consider an ocean of uniform density ρref = 1000 kg m
−3.

(a) From the hydrostatic relationship, determine the pressure at a
depth of 1 km and at 5 km. Express your answer in units of at-
mospheric surface pressure, ps = 1000mbar = 105 Pa.
Hydrostatic balance is

∂p

∂z
= −gρ ,

whence, integrating from depth d (z = −d) to the surface (z = h),

p(−d) = p(h) + gρ(d+ h) ,

where ρ is the constant density. Since at a depth of a km or so,
d+ h ' d we may write:

p(−1 km) =

µ
1 +

9.81m2 s−1 × 103 kgm−3 × 103m
105 Pa

¶
ps ' 99ps

p(−5 km) =

µ
1 +

9.81m2 s−1 × 103 kgm−3 × 5× 103m
105 Pa

¶
ps ' 491ps

(b) Given that the heat content of an elementary mass dm of dry
air at temperature T is cpT dm (where cp is the specific heat of
air at constant pressure), find a relationship for, and evaluate,
the (vertically integrated) heat capacity (heat content per degree
Kelvin) of the atmosphere per unit horizontal area. Find how deep
an ocean would have to be in order to have the same heat capacity
per unit horizontal area.

If the heat content per unit mass is cpT dm, the heat capacity per
unit mass is cp dm. Hence the heat content of a vertically integrated
column, per unit horizontal area, isZ ∞

0

cpρ dz = −
cp
g

Z ∞

0

∂p

∂z
dz = cp

p(0)

g
,
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assuming hydrostatic balance, where p(0) is surface pressure= 1000hPa
= 105Pa, since p(∞) = 0. Therefore the vertically integrated heat
capacity of the atmosphere is

1004× 105
9.81

= 1.02× 107JKm−2.

The heat capacity per unit area of an ocean of depth D is cpρD, where
cp = 4187JKkg−1 and ρ = 1000 kg m−3 of course are the values for
water. For such an ocean to have the same heat capacity as the at-
mosphere,

cpρD = 1.02× 107JK−1m−2
so

D =
1.02× 107
4187× 1000 = 2.44m .

This is very shallow! So, a real ocean of depth (say) 4 km has 4000/2.44 =
1639 times the heat capacity of the atmosphere.

2. Assume that, in the mixed layer, mixing maintains a vertically uniform
temperature. A heat flux of 25Wm−2 is applied at the ocean surface.
Taking a reasonable representative value for the mixed layer depth, de-
termine how long it takes for the mixed layer to warm up by 1oC.
[Use density of water= 1000kg m−3; specific heat of water = 4187J
kg−1K−1.]

Adopt a representative value of D = 100m for the mixed layer depth.
Then the heat capacity of the mixed layer per unit area is (where c is
specific heat and ρ density)

H = cρD

= 4.19× 108JK−1m−2.
Therefore the warming rate, when heated by a heat flux of 25Wm−2, is

dT

dt
=

25

4.19× 108 ' 6.0× 10
−8Ks−1,

so the time taken to warm up by 1K is

τ = 1.7× 107s
' 0.5 yr.
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Hence, e.g., one expects to see a significant time lag of ocean tem-
peratures with respect to solar forcing (i.e., warmest water well after
summer solstice) and, in places where the mixed layer is deep, rela-
tively little seasonal variability of mixed layer temperatures. Where
the mixed layer is shallower than 100m, the time scale is comparable
with or less than a season, so there will be a larger annual variation of
upper ocean temperature.

3. Consider an ocean of uniform density ρ = 1000 kg m−3. The ocean
surface, which is flat in the longitudinal direction, slopes linearly with
latitude from h = 0.1m above mean sea level (MSL) at 40oN to h =
0.1m below MSL at 50oN. Using hydrostatic balance, find the pressure
at depth d below MSL. Hence show that the latitudinal pressure gradient
∂p/∂y and the geostrophic flow are independent of depth. Determine
the magnitude and direction of the geostrophic flow at 45oN.

Consider Fig. 1.

Figure 1:

Hydrostatic balance is
∂p

∂z
= −gρ ,
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whence, integrating from depth d (z = −d) to the surface (z = h(y)),

p(−d) = p(h) + gρ(d+ h) ,

where ρ is the constant density. Pressure at the surface is atmospheric
(= ps) and constant, so

∂p

∂y
(z = −d) = gρ

∂h

∂y
, (a)

which is independent of depth. This is because the mass per unit area
above depth d varies horizontally only as a reflection of variations in
surface height.

The geostrophic flow is zonal,

u = − 1
fρ

∂p

∂y

or, using result (a),

u = −g

f

∂h

∂y
.

With the given data, ∂h/∂y = −0.2/ (1.11× 106) = −1.8018 × 10−7.
Since g = 9.81ms−2, and f = 1.03× 10−4s−1 at 45oN,

u =
9.81

1.03× 10−4 × 1.8018× 10
−7 = 1.72× 10−2ms−1

at 45oN.

4. Consider a straight, parallel, oceanic current at 45◦N. For convenience,
we define the x-and y- directions to be along and across the current,
respectively. In the region −L < y < L, the flow velocity is

u = U0 cos
³πy
2L

´
exp(

z

d
)

where z is height (note that z = 0 at mean sea level and decreases
downwards), L = 100 km, d = 400m, and U0 = 1.5m s−1. In the
region |y| > L, u = 0.

The surface current is plotted in the following figure:

Making use of the geostrophic, hydrostatic and thermal wind relations:
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Figure 2: A plot of u
U0
at the surface, z = 0, against y

L
.

(a) Determine and sketch the profile of surface elevation as a function
of y across the current.
Geostrophic balance is fu+ 1

ρ
∂p
∂y
= 0 and so at the surface 1

ρ
∂p
∂y
=

g ∂h
∂y
= fU0 cos

¡
πy
2L

¢
implying that:

h =

Z
U0
g
cos
³πy
2L

´
dy =

2

π

L

g
fU0 sin

³πy
2L

´
Inserting numbers we find that 2

π
L
g
fU0 ' 1m.

210-1-2

1

0.5

0
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normalised h

y/L

normalised h

y/L

A plot of h/
³
2
π
L
g
U0
´
against y

L
.

(b) Determine and sketch the density difference, ρ(y, z)− ρ(0, z).
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The thermal wind equation is: f ∂u
∂z
= g

ρref

∂ρ
∂y
and so ∂ρ

∂y
=

fρref
g

∂u
∂z
=

fρref
gd

U0 cos
¡
πy
2L

¢
exp(z

d
). Integrating wrt y, we find:

ρ(y, z)−ρ(0, z) = fρref
gd

U0 exp(
z
d
)
R
cos
¡
πy
2L

¢
dy = 2L

π

fρref
gd

U0 exp(
z
d
) sin

¡
πy
2L

¢
and so varies like h but decays exponentially with depth.

(c) Assuming the density is related to temperature by Eq.(4.4) deter-
mine the temperature difference, T (L, z)−T (−L, z), as a function
of z. Evaluate this difference at a depth of 500m. Compare with
Fig.9.21.
Since ρ(y,z)−ρ(0,z)

αρref
= − (T (y, z)− T (0, z)) = −2L

π
f
αgd

U0 exp(
z
d
) sin

¡
πy
2L

¢
,

at a depth of 500m we find a temperature change across the chan-
nel of magnitude 2×

³
2L
π

f
αgd

U0
´
exp(−500

400
) ∼ 7 ◦C, roughly in ac-

cord with Fig.9.21.

5. Figure 9.21 is a cross-section (in a plane normal to the flow) across
the Gulf Stream at 38◦N.

The figure shows the distribution of temperature as a function of depth
and of horizontal distance across the flow. Assume for the purposes of
this question (all parts) that the flow is geostrophic.

(a) Using hydrostatic balance, and assuming that atmospheric pressure
is uniform and that horizontal pressure gradients vanish in the
deep ocean, estimate the differences in surface elevation across
the Gulf Stream (i.e., between the positions marked 73o W and
70o W on the figure). Neglect the effect of salinity on density,
and assume that the dependence of density ρ on temperature T is
adequately described by

ρ = ρ0 [1− α (T − T0)] ,

where ρ0 is the density at 0
◦C, and α is the coefficient of thermal

expansion.
Hydrostatic balance gives

∂p

∂z
= −gρ = −gρ0[1− α(T − T0)],
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so, if the surface elevation (above MSL z = 0) is h(x), and assum-
ing p = pa =constant at the surface

p(x, z) = pa + gρ0

Z h

z

[1− α(T − T0)] dz

' pa + gρ0(h− z)− gρ0α

Z h

z

(T − T0) dz ,

assuming density variations are small. Given no horizontal pres-
sure gradient in the deep ocean, z = −Z0, say,

δp = p(x+ δx,−Z0)− p(x,−Z0) = gρ0δh− gρ0α

Z z

−Z0
δT dz .

So the elevation difference is

δh = α

Z z

−Z0
δT dz .

From the figure, I estimate a mean δT between 73o W and 70o

W of about 5K, averaged over the layer above 1000m depth, and
δT = 0 beneath 1000m. ThereforeZ z

−Z0
δT dz ' 5000 Km

and so, using α = 2× 10−4K−1,

δh = 1.0m .

(b) The near-surface geostrophic flow u is related to surface elevation
η by

u =
g

f
bz×∇η ,

where g is gravity and f the Coriolis parameter. Explain how
this equation is consistent with the geostrophic relationship between
Coriolis force and pressure gradient.
See Section 9.3.1, pg.184.
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(c) Assuming (for simplicity) that the Gulf Stream’s velocity is uni-
form down to a depth D = 500m, and that it is zero below this
depth, use the near-surface geostrophic relationship

u =
g

f
bz×∇h

to show that the net (integrated) water transport (i.e., the volume
flux) along the Gulf Stream at this latitude is

V = gD

f
δh ,

where δh is the elevation difference you estimated in part (a).
Evaluate this transport in units of Sverdrups (Sv). [ 1Sv = 106m3s−1;
this is a conventional unit of water flow in oceanography.]
The y−velocity (along the stream) is

v =
g

f

∂h

∂x
.

Integrating across the stream, the net volume flux along the Gulf
Stream is

V =

Z
v d(area)

=
g

f

ZZ
∂h

∂x
dx dz

where the integral is across the whole region of nonzero velocities.
Hence

V =
g

f

Z 0

−D

Z x2

x1

∂h

∂x
dx dz ,

=
gD

f
δh

where δh = h(x2)−h(x1) is the height difference across the stream.
Putting in the numbers, noting that f(38N) = 8.96× 10−5s−1

V =
9.81× 500
8.96× 10−5 × 1.0 = 5. 47× 10

7m3s−1

= 54.7 Sv.
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6. Fig.3 shows the trajectory of a ‘champion’ surface drifter which made
one and a half loops around Antarctica between March, 1995 and March,
2000 (courtesy of Nikolai Maximenko). Red dots mark the position of
the float at 30 day interval.

(a) Compute the mean speed of the drifter over the 5-year period.

The mean speed of the drifter is 22×103 km×1 1
2

5 y
= 0.2m s−1, where

we have used the fact that it is 22, 000 km around the path of the
ACC.

(b) Assuming that the mean zonal current at the bottom of the ocean
is zero, use the thermal wind relation (neglecting salinity effects)
to compute the depth-averaged temperature gradient across the
Antarctic Circumpolar Current. Hence estimate the mean tem-
perature drop across the 600 km-wide Drake Passage.
The thermal wind equation is: f ∂u

∂z
= g

ρref

∂ρ
∂y
= gα∂T

∂y
. Thus:Z

∂T

∂y
dz = f

gα

Z
∂u

∂z
dz =

f

gα
(usurface − ubottom) =

f

gα
usurface. The

depth averaged temperature drop is thus: f
gα
usurface

Ly
H
which, in-

serting numbers, yields 10−4 s−1
9.81ms−2×2×10−4K−10.2ms

−1 600 km
4km

= 1. 5K.

(c) If the zonal current of the ACC increases linearly from zero at the
bottom of the ocean to a maximum at the surface (as measured by
the drifter), estimate the zonal transport of the ACC through Drake
Passage assuming a meridional velocity profile as in Fig.2 and that
the depth of the ocean is 4 km. The observed transport through
Drake Passage is 130Sv. Is your estimate roughly in accord? If
not, why not?
Integrating u = U0 cos

¡
πy
2L

¢ ¡
1− z

H

¢
over the channel and over

depth we obtain a transport of 2
π
U0LH which, inserting numbers

yields: 2
π
0.2m s−1×300 km×4 km = 1. 527 9×108m3 s−1 = 153Sv.

This is not far from the observed volume transport of the ACC,
which is 135Sv or so. Note that here we have only computed
that part of the transport associated with the thermal wind –
we must add on to this the transport associated with the depth
independent (bottom) current which is 7.6Sv for every 1 cm s−1of
bottom current.
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Figure 3: The trajectory of a surface drifter which made one and a half loops
around Antarctica between March, 1995 and March, 2000 (courtesy of Nikolai
Maximenko). Red dots mark the position of the float at 30 day intervals.
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