
Atmosphere, Ocean and Climate Dynamics
Answers to Chapter 8

1. Consider a zonally symmetric circulation (i.e., one with no longitudi-
nal variations) in the atmosphere. In the inviscid upper troposphere,
one expects such a flow to conserve absolute angular momentum, i.e.,
DA/Dt = 0, where A = Ωa2 cos2 ϕ + ua cosϕ is the absolute angular
momentum per unit mass – see Eq.(8.1) – where Ω is the Earth ro-
tation rate, u the eastward wind component, a the Earth’s radius, and
ϕ latitude.

(a) Show, for inviscid zonally symmetric flow, that the relation DA/Dt =
0 is consistent with the zonal component of the equation of mo-
tion (using our standard notation, with Fx the x-component of
the friction force per unit mass)
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− fv = −1

ρ

∂p
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+Fx ,

in (x, y, z) coordinates, where y = aϕ (see Fig.6.19).
For inviscid axisymmetric flow, conservation of angular momen-
tum DA/Dt = 0 implies
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(Here dx = a cosϕ dλ and dy = a dϕ.) Since the planetary term
is independent of x, z, and t,
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where, for the vector component u,
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u− uv

a
tanϕ .

(The last term is a “metric” term, associated with the convergence
of meridians, that has no counterpart in planar geometry.) Hence,
adding the two terms and dividing by a cosϕ, we arrive at

Du

Dt
− fv = 0 ,

which obviously corresponds with the zonal equation of motion in
the case of inviscid (Fx = 0) and axisymmetric (∂p/∂x = 0) flow.

(b) Use angular momentum conservation to describe how the exis-
tence of the Hadley circulation explains the existence of both the
subtropical jet in the upper troposphere and the near-surface Trade
Winds.
In the upper troposphere, the flow leaves the rising branch of
the Hadley cell at the equator ϕ = 0 (cf. Fig. 8.5) with angular
momentum densityA0 = Ωa2, if we assume that the flow rises from
the ground there with no relative motion. If angular momentum
is conserved in the upper level outflow (which we thus assume to
be inviscid and axisymmetric) then at latitude ϕ, we have

A = ua cosϕ+ Ωa2 cos2 ϕ = A0 = Ωa2 ,

so ua cosϕ = Ωa2 (1− cos2 ϕ), i.e.,

u = Ωa
sin2 ϕ

cosϕ
. (1)

Thus, the winds must become westerly in such a way that the
relative angular momentum term ua cosϕ compensates for the de-
crease of the planetary contribution Ωa2 cos2 ϕ as the air moves
away from the equator. The zonal flow will be greatest at the
edge of the cell, where ϕ is greatest, thus producing the subtrop-
ical jet. If the return flow, in the lower troposphere, were inviscid
and thus also conserved angular momentum with Alow = A0, then
at a given latitude the low level flow would be the same as that
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aloft, since in Eq.(1) u is a function of ϕ only. However, in reality
this low-level flow is under the influence of surface friction and A
will therefore be progressively reduced. Thus,

Alow = ulowa cosϕ+ Ωa2 cos2 ϕ < Ωa2

whence

ulow < Ωa
sin2 ϕ

cosϕ
.

At some point (before ϕ → 0) ulow will become negative, and so
the low level flow will be equatorward and eastward there. This
is the region of the Trade winds.

(c) If the Hadley circulation is symmetric about the equator, and its
edge is at 20◦ latitude, determine the strength of the subtropical
jet.
Using the equation derived in part (a), the predicted zonal wind
at 20o latitude is

u = 7.27× 10−5 × 6.37× 106 × sin
2 (20o)

cos(20o)
= 57.6 m s−1 .

(The observed zonal winds are weaker than this. In reality, non-
axisymmetric atmospheric eddies act to reduce angular momen-
tum in the outflow, and hence reduce the strength of the jets.)

2. Consider the tropical Hadley circulation in northern winter, as shown
schematically in Fig.1. The circulation rises at 10◦S, moves northward
across the equator in the upper troposphere, and sinks at 20◦N. As-
suming that the circulation, outside the near-surface boundary layer, is
zonally symmetric (independent of x) and inviscid (and thus conserves
absolute angular momentum about the Earth’s rotation axis), and that
it leaves the boundary layer at 10◦S with zonal velocity u = 0, calculate
the zonal wind in the upper troposphere at (a) the equator, (b) at 10◦N,
and (c) at 20◦N.

The angular momentum density (in our usual notation) is

M = Ωa2 cos2 ϕ+ ua cosϕ .
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Figure 1:

In the upper tropospheric branch of the circulation, angular momentum
is conserved, so M = M0 is constant. Note that Ωa2 =

¡
2×π
86400

¢ ×
(6.371× 106)2 = 2.952× 109m2s−1. Since at 10◦S, u = 0,

M0 = Ωa2 cos2 (10◦) = Ωa2 cos2
³ π

18

´
= 2.952× 109 × cos2

³ π

18

´
= 2.863× 109m2s−1.

Therefore, at other latitudes,

u =
M0 − Ωa2 cos2 ϕ

a cosϕ
.

(a) At ϕ = 0◦,

u =
M0 − Ωa2

a
= − 8.9× 107

6.371× 106 = −13.9ms−1

Note that this is easterly–air moves further away from the rotation
axis as it goes from 10◦S to the equator.
(b) At ϕ = +10◦,

u =
M0 − Ωa2 cos2

¡
π
18

¢
a cos

¡
π
18

¢ = 0 ,
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since the air has now moved, after crossing the equator, back to the
same distance from the rotation axis as when it started.
(c) At ϕ = +20◦,

u =
2.863× 109 − 2.952× 109 × cos2 ¡π

9

¢
6.371× 106 × cos ¡π

9

¢
= 42.8ms−1.

This is westerly–the air has moved closer to the rotation axis and has
therefore“spun up”.
The profile of u(ϕ) in the upper troposphere is in fact as shown in Fig.

2.
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Figure 2: Plot of u (ms−1) vs latitude (degrees).

3. Consider what would happen if a force toward the pole were applied to
the ring of air considered in Q.1 if it conserved its absolute angular
momentum, A. Calculate the implied relationship between a small dis-
placement δϕ and the change in the speed of the ring δu. How many
kilometers northwards does the ring have to be displaced in order to
change its relative velocity 10ms−1? How does your answer depend on
the equilibrium latitude? Comment on your result.

The angular momentum is (in standard notation):

A = Ωa2 cos2 ϕ+ ua cosϕ = A(u, ϕ) (2)
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Thus:

δA =
∂A

∂u
du+

∂A

∂ϕ
dϕ = 0

if angular momentum is conserved. We see then that (computing the
gradients of A wrt to ϕ and u from Eq.(2):

du

dϕ
= −

∂A
∂ϕ

∂A
∂u

= 2Ωa sinϕ+ u tanϕ = 2Ωa sinϕ

µ
1 +

u

cosϕ

¶
If u were zero initially, δu = 2Ωa sinϕδϕ = fdy, where f is the Coriolis
parameter and dy = adϕ. Hence we obtain the simple result:

δu = fδy

Putting in numbers, we find that: δy = 10m/s
10−4/s = 100km, for a δu =

10m/s. Thus we see that one only has to shift a ring 100km to set up
a strong zonal wind, that will quickly come in to geostrophic balance
with the pressure gradient force.

4. An open dish of water is rotating about a vertical axis at 1 revolution
per minute. Given that the water is 1 ◦C warmer at the edges than at
the center at all depths, estimate, under stated assumptions and using
the data below, typical azimuthal flow speeds at the free surface relative
to the dish. Comment on, and give a physical explanation for, the sign
of the flow.

How much does the free surface deviate from its solid body rotation
form?

Briefly discuss ways in which this rotating dish experiment is a useful
analogue of the general circulation of the Earth’s atmosphere.

Assume the equation of state given by Eq.(4.4) with ρref = 1000 kgm
−3,

α = 2× 10−4K−1 and Tref = 15
◦C, the mean temperature of the water

in the dish. The dish has a radius of 10 cm and is filled to a depth of
5 cm.

Applying the thermal wind equation (7.18), the vertical shear in the
geostrophic azimuthal flow is

∂vg
∂z

=
αg

f

∂T

∂r
.
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For the stated problem, f = 2 (2π/60) = 0.21 s−1 (if we assume the
rotation to be anticlockwise, so that f is positive), and ∂T/∂r ' δT/R
where δT = 1 ◦C is the temperature difference between edge and center,
and the tank radius is R = 0.1m. Hence

∂vg
∂z

' 2× 10−4 × 9.81
0.21

× 1

0.1
= 0.093 s−1 .

Friction at the base of the tank will ensure that vg ' 0 there; hence
the flow velocity at the mean top (z = h0 = 0.05m) will be vg '
0.093×0.05 = 0.0047 m s−1. The flow is anticyclonic (i.e., “westward,”
with the same sense as the tank’s rotation). A cross-section running
from one edge of the tank to the other, across the center, is thus like
that shown in the schematic Fig. 7.19, with a change of sign because
in the present case the temperature increases outward, rather than
decreasing poleward as in the atmosphere. At the surface, the vanishing
of the geostrophic flow implies no horizontal gradient of excess pressure
p0 = p − ρrefΩ

2r2/2 (i.e. the pressure field beyond that required to
balance the centrifugal force); then hydrostatic balance dictates that
pressure decreases more rapidly with height in the center of the tank
than at the warmer, and more dense, edges. Hence the excess pressure
increases with radius at any height above the surface and, consequently,
the geostrophic flow is directed anticyclonically, with low pressure to
its left for f > 0 (cf. Buys-Ballot’s law) and to its right if f < 0.
At the surface, z = h, the geostrophic flow is

vg =
αg

f
h
∂T

∂r
=

g

f

∂h

∂r
.

Hence, integrating, the (small) height difference δh between the edge
and the center (in addition to that corresponding to the centrifugal
term) is

δh = αh0δT = 2× 10−4 × 0.05× 1 = 1× 10−5 m ,

a hardly perceptible difference. (Note that this height difference is
nothing more than that produced by thermal expansion, given the tem-
perature differences between the fluid at the center of the tank at the
edge.)
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Figure 3: Schematic for energetic analysis of the thermal wind considered in Q.5.
Temperature surfaces have slope s1: parcels of fluid are exchanged along surfaces
which have a slope s.

5. Consider the incompressible, baroclinic fluid (ρ = ρ(T )) sketched in
Fig.8.17 in which temperature surfaces slope upward toward the pole at
an angle s1. Describe the attendant zonal wind field assuming it is in
thermal wind balance.

By computing the potential energy before and after interchange of two
rings of fluid (coincident with latitude circles y at height z) along a
surface of slope s, show that the change in potential energy ∆PE =
PEfinal− PEinitial is given by

∆PE = ρrefN
2 (y2 − y1)

2 s (s− s1) ,

where N2 = − g
ρref

∂ρ
∂z
is the buoyancy frequency (see Section 4.4), ρref

is the reference density of the fluid and y1, y2 are the latitudes of the
interchanged rings. You will find it useful to review Section 4.2.3.

The change in potential energy is given by Eq.(4.7) which can be writ-
ten, expressing it in terms of the buoyancy, b = g δρ

ρref
:

∆PE = ρref (z2 − z1) (b2 − b1) (3)

We also have ∆b = ∂b
∂y
∆y + ∂b

∂z
∆z so that

(b2 − b1) =M2 (y2 − y1) +N2 (z2 − z1)
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The slope of the buoyancy surfaces are, setting b2 = b1, s1 =
dy
dz
= −M2

N2 .
Hence if s = (z2−z1)

(y2−y1) is the slope along which the parcels are exchanged,
we may write:

(b2 − b1) = N2 (y2 − y1) (s− s1)

enabling us to express Eq.(3) thus:

∆PE = ρrefN
2 (y2 − y1)

2 s (s− s1) ,

Hence show that for a given meridional exchange distance (y2 − y1):

(a) energy is released if s < s1
The sign of∆PE is the same as the sign of the factor s (s− s1) and
it will be negative, corresponding to the possibility of instability,
if s < s1.

(b) the energy released is a maximum when the exchange occurs along
surfaces inclined at half the slope of the temperature surfaces. This
is the ‘wedge of instability’ discussed in Section 8.3.3 and illus-
trated in Fig.8.10.

For a given exchange distance, (y2 − y1), −∆PE will be a maximum
when s (s− s1) is a maximum, i.e. when s = s1

2
.

6. Discuss, qualitatively but from basic principles, why most of the Earth’s
desert regions are found at latitudes of 20− 30◦.
Because of the equator-to-pole temperature gradient in the atmosphere,
atmospheric isentropes (surfaces of constant potential temperature)
slope upward toward the poles; there is thus a reservoir of available
potential energy that can drive motions. In the tropics where the Cori-
olis parameter f is weak, the atmosphere behaves qualitatively like a
nonrotating atmosphere would: it overturns, with rising motion where
the temperatures are warmest (at the equator, on the annual average).
However, the poleward flow in the upper troposphere moves into a re-
gion of increasing f , and the effects of rotation become apparent, pro-
ducing a westerly component to the flow. In fact, this flow (if we assume
it to be longitudinally uniform) conserves its absolute angular momen-
tum (relative to an inertial reference frame). If the poleward flow were
to extend all the way to the pole (so that its distance from the rotation
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axis → 0) the westerly component of the flow would become infinite,
which is unphysical. Thus, the flow–the “Hadley circulation”–must
terminate before reaching the poles. In practice, this happens at a lat-
itude between 20 and 30◦. At this poleward edge of the circulation,
the flow descends and returns to the equator in the lower troposphere.
The descending flow at the poleward edge is dry (nearly all the mois-
ture having been rained out in the rising branch) and warm (because
of adiabatic compression). Thus, there is little moisture available for
rain, and the warm overlying atmosphere produces a very stable layer
just above the surface (the Trade Wind inversion), making convection
difficult to achieve. Therefore, there is little rain in these regions, which
form the desert belt in the subtropics.

7. Given that the heat content of an elementary mass dm of air at tem-
perature T is cpT dm (where cp is the specific heat of air at constant
pressure), and that its northward velocity is v:

(a) show that the northward flux of heat crossing unit area (in the
x− z plane) per unit time is ρcpvT ;
Consider the following figure:

In a time δt, the volume of fluid crossing area δA located at
y = y0 in the x − z plane is δy δA, where δy = v δt, and
its mass is δm = ρ δy δA. The heat content of this volume is
cpT × δm = ρcpT × δy × δA = ρcpTv δt δA. Therefore the flux of
heat crossing y0 per unit area per unit time is

δH = ρcpTv.
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(b) hence, using the hydrostatic relationship, show that the net north-
ward heat flux H in the atmosphere, at any given latitude, can be
written

H = cp

Z x2

x1

Z ∞

0

ρ vT dx dz =
cp
g

Z x2

x1

Z ps

0

vT dx dp ,

where the first integral (in x) is completely around a latitude circle
and ps is surface pressure.
Integrating δH = ρcpTv, the net heat flux crossing latitude y0 is
just

H =
Z

δH δA = cp

Z x2

x1

Z ∞

0

ρ vT dx dz ,

where x2 − x1 is the distance around a latitude circle. Using the
hydrostatic relationship, ρ dz = −dp/g, whence

H = −cp
g

Z x2

x1

Z 0

ps

vT dx dp

=
cp
g

Z x2

x1

Z ps

0

vT dx dp ,

where ps is surface pressure.

(c) The figure above (note units of m K s−1) shows the contribution
of eddies to the atmospheric heat flux. What is actually shown is
the contribution of eddies to the quantity vT , which in the above
notation is

vT =
1

x2 − x1

Z x2

x1

vT dx

(i.e., the zonal average of vT ), where x2−x1 = 2πa cosϕ, where a
is the Earth radius and ϕ latitude. Use this figure to estimate the
net northward heat flux by eddies across 45◦N. Compare this with
the requirement (from the Earth’s radiation budget) that the net
(atmosphere and ocean) heat transport must be about 5× 1015W.
From the given figure, I estimate that the vertically averaged con-
tribution of eddies to vT ,

£
vT
¤
(say), is 8Kms−1. From the previ-
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Figure 4:

ous answer, with ∆x = x2 − x1 = 2πa cosϕ = 28300km,

H =
cp
g

Z x2

x1

Z ps

0

vT dx dp

=
cp∆x ps

g

£
vT
¤

=
1004× 2.83× 107 × 105

9.81
× 8W

= 2.3× 1015W.

Therefore atmospheric eddies contribute about one-half of the re-
quired flux. (Note that as this latitude is north of where the
Hadley cell terminates, eddies contribute essentially all of the at-
mospheric contribution at this latitude.)
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