
Atmosphere, Ocean and Climate Dynamics
Answers to Chapter 7

1. Define a streamfunction ψ for non-divergent, two-dimensional flow in
a vertical plane:

∂u

∂x
+

∂v

∂y
= 0

and interpret it physically.

Show that the instantaneous particle paths (streamlines) are defined by
ψ = const, and hence in steady flow the contours ψ = const are particle
trajectories. When are trajectories and streamlines not coincident?

A function ψ = ψ (x, y, t) can be defined such that ∂u
∂x
+ ∂v

∂y
= 0 is always

true. Thus if u = −∂ψ
∂y
; v = ∂ψ

∂x
then

∂u

∂x
+

∂v

∂y
=

∂2ψ

∂y∂x
− ∂2ψ

∂y∂x
= 0.

ψ is called the streamfunction and is a useful way of describing the
flow. Streamlines are everywhere tangential to the local flow at a given
instant – they are what one would see as lines if the fluid were every-
where filled with tiny wind vanes.

The velocity can be written in vector notation

u = (u, v) = bz×∇ψ
where bz is the unit vector in the z direction. Immediately we get:

u ·∇ψ = 0

and so u is parallel to ψ =const and |u| = |∇ψ|, the speed is equal to
the rate of change of ψ in the normal direction.

If ψ = ψ (x, y, t) then at any instant

dψ =
∂ψ

∂x
dx+

∂ψ

∂y
dy = vdx− udy.
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Instantaneous paths are defined by dy
dx
= v

u
and so dψ = 0. In other

words ψ = const along a streamline.

If the flow is steady then streamlines ≡ trajectories (the paths followed
by individual particles of fluid): thus ψ =const define trajectories in
steady flow.

If the flow is not steady then streamlines are not trajectories.

2. What is the pressure gradient required to maintain a geostrophic wind
at a speed of v = 10ms−1 at 45◦N? In the absence of a pressure
gradient show that air parcels flow around circles in an anticyclonic
sense of radius v

f
.

We require a pressure gradient of magnitude: ∂p
∂x
= ρfv = 1kgm−3 ×

2 × 7.27 × 10−5 s−1 × sin (45◦) × 10m s−1 = 1. 028 1 × 10−3 kgm−2 s−2
which is equivalent to a ∆p of 10hPa in 1000 km.

To demonstrate inertial circles, see Section 6.6.4, page 98 and note that
2Ω −→ f .

3. Draw schematic diagrams showing the flow, and the corresponding bal-
ance of forces, around centers of low and high pressure in the midlati-
tude southern hemisphere. Do this

(a) for the geostrophic flow (neglecting friction)
Southern hemisphere (f < 0). Under geostrophic balance, forces
are as shown in Fig.1: Flow is clockwise (cyclonic) around a low
pressure center; anticlockwise (anticyclonic) around a high.

(b) for the subgeostrophic flow in the near-surface boundary layer.
You should modify Fig.7.24 in the case f < 0 and remember that
subgeostrophic flow is directed from high to low pressure.

4. Consider a low pressure system centered on 45◦S, whose sea level pres-
sure field is described by

p = 1000hPa −∆p e−r
2/R2 ,

where r is the radial distance from the center. Determine the struc-
ture of the geostrophic wind around this system; find the maximum
geostrophic wind, and the radius of the maximum wind, if ∆p = 20hPa,
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Figure 1:

R = 500km, and the density at sea level of interest is 1.3kg m−3. [As-
sume constant Coriolis parameter, appropriate to latitude 45◦S, across
the system.]
For p(r) as given, the azimuthal (anticlockwise being positive) geostrophic
flow velocity is u(r), where

u =
1

fρ

∂p

∂r

=
2r

R2
∆p

fρ
e−r

2/R2 .

This is clockwise (u < 0, since f < 0), zero at R = 0 and u → 0 as
R→∞. The function xe−x

2
has its maximum where 1− 2x2 = 0, i.e.,

x = 1/
√
2. So the maximum velocity is found at radius r = R/

√
2 =

500/
√
2 = 354km, and its value there is

|umax| =
√
2

R

∆p

|f | ρe
−1
2

=

r
2

e

2× 103
5× 105 × 1.03× 10−4 × 1.3 ms

−1

= 25.6 ms−1 .

5. Write down an equation for the balance of radial forces on a parcel of
fluid moving along a horizontal circular path of radius r at constant
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Figure 2: The velocity of a fluid parcel viewed in the rotating frame of reference:
vrot = (vθ, vr).

speed vθ (taken positive if the flow is in the same sense of rotation as
the earth).

Solve for vθ as a function of r and the radial pressure gradient and
hence show that:

(a) if vθ > 0, the wind speed is less than its geostrophic value,

(b) if |vθ| << fr then the flow approaches its geostrophic value and

(c) there is a limiting pressure gradient for the balanced motion when
vθ > −12fr.

Comment on the asymmetry between clockwise and anticlockwise vor-
tices.

There is a 3-way balance of forces in the radial direction between cen-
trifugal, Coriolis and pressure gradient forces:

v2θ
r
+ f = g

∂h

∂r

where h is the height of a pressure surface. This can be re-arranged to
give:

vθ =
g³

f +
vθ
r

´ ∂h
∂r
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a. Thus the observed wind will be less than the geostrophic wind in a
cyclonic situation (vθ > 0).

b. If |vθ| << fr then vθ −→ g
f
∂h
∂r
, the geostrophic value.

c. Solving for vθ we find that:

vθ = −1
2
fr +

µ
1

4
f2r2 + gr

∂h

∂r

¶ 1
2

where the positive root has been chosen. If vθ > −12fr then
¡
1
4
f2r2 + gr ∂h

∂r

¢ 1
2 >

0 and so ∂h
∂r

> − 1
4g
f2r placing a limit on the pressure gradient. Thus

there is no limit on the intensity of cyclones, but there is a limit to how
intense anticyclones can get.

6. (i) A typical hurricane at, say, 30◦ latitude may have low-level winds
of 50ms−1 at a radius of 50km from its center: do you expect this flow
to be geostrophic?

At 30oN, the Coriolis parameter is f = 2Ω sin 30o = Ω = 7.27×10−5s−1,
so the Rossby number for a hurricane with winds 50ms−1 at a radius
of 50km is

R =
50

7.27× 10−5 × 5× 104 ' 13.8 .
This number is not small, so the flow is not expected to be geostrophic.

(ii) Two weather stations near 45◦N are 400km apart, one exactly to the
northeast of the other. At both locations, the 500hPa wind is exactly
southerly at 30ms−1. At the north-eastern station, the height of the
500hPa surface is 5510m; what is the height of this surface at the other
station?

Assuming geostrophic balance (and using our standard notation, in
pressure coordinates)

(u, v) =
g

f

µ
−∂z
∂y

,
∂z

∂x

¶
.

Given that the flow is 30ms−1 southerly, the 500hPa height gradient isµ
∂z

∂x
,
∂z

∂y

¶
=

µ
fv

g
,−fu

g

¶
=

µ
1.03× 10−4 × 30

9.81
, 0

¶
=
¡
3.15× 10−4, 0¢ [dimensionless].
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If ze and zw are the 500hPa heights at the eastern and western stations,
respectively, then, assuming the components of the vector separating
the two stations, δx = xe − xw = 400/

√
2m and δy = ye − yw =

400/
√
2m, are small enough,

δz = ze − zw =
∂z

∂x
δx+

∂z

∂y
δy =

∂z

∂x
δx

= 3.15× 10−4 × 4× 10
5

√
2

= 89m.

Therefore the height at the western station is 5510− 89 = 5421m.
7. Write down an expression for the centrifugal acceleration of a ring of
air moving uniformly along a line of latitude with speed u relative to the
earth, which itself is rotating with angular speed Ω. Interpret the terms
in the expression physically. By hypothesizing that the relative centrifu-
gal acceleration resolved parallel to the earth’s surface is balanced by a
meridional pressure gradient, deduce the geostrophic relationship

fu+
1

ρ

∂p

∂y
= 0

(in our usual notation and where dy = adϕ).

Consider the ring of air moving eastward at speed u relative to the un-
derlying rotating earth shown in the figure.There is a centrifugal acceleration
directed outwards perpendicular to the earth’s axis of rotation, the vector A:

V 2

r
=
(u+ Ωr)2

r
= Ω2r + 2Ωu+

u2

r
(1)

Here V is the ‘absolute’ velocity the fluid has viewed from an observer fixed
in space looking back at the earth. Let’s now consider the terms in turn:

• Ω2r – this is the centrifugal acceleration acting on a particle fixed
to the earth. As discussed above, this acceleration is included in the
gravity which is usually measured and is the reason that the earth is
not a perfect sphere.

6



Figure 3:

• 2Ωu+ u2

r
- the additional centrifugal acceleration due to motion relative

to the earth. Note that if u
Ωr

<< 1, we may neglect the term in u2.
For the earth Ro =

u
Ωr
∼ 0.02 and so the 2Ωu term dominates. It

is directed outward perpendicular to the axis of rotation and can be
resolved: perpendicular to the earth’s surface - vector B in the diagram
– and parallel to the earth’s surface – vector C in the diagram.

Component B changes the weight of the ring slightly – it is very small
compared to g, the acceleration due to gravity, and so unimportant.
Component C, parallel to the earth’s surface, is the Coriolis acceleration:

2Ω sinϕ× u

So there is a centrifugal force directed toward the equator because of the
motion of the ring of air relative to the earth. It is this force that balances the
pressure gradient force associated with the sloping isobaric surfaces induced
by the pole-equator temperature gradient.
Let’s postulate a balance between the Coriolis force and the pressure-

gradient force directed from equator to pole associated with the tilted isobaric
surfaces – see Fig.4.

ρadϕdz| {z }×
mass

2Ω sinϕu| {z }
acceleration

= − ∂p

∂ϕ
dϕdz| {z }

p_grad
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Figure 4:

Introducing a coordinate y which points northwards on the earth’s surface,
dy = adϕ, the above reduces to:

fu+
1

ρ

∂p

∂y
= 0

where f = 2Ω sinϕ is the Coriolis parameter, which is the answer we seek.

8. The vertical average (with respect to log pressure) of atmospheric tem-
perature below the 200hPa pressure surface is about 265K at the equa-
tor and 235K at the winter pole. Calculate the equator-to-winter-pole
height difference on the 200hPa pressure surface, assuming surface
pressure is 1000hPa everywhere. Assuming that this pressure surface
slopes uniformly between 30o and 60o latitude and is flat elsewhere, use
the geostrophic wind relationship (zonal component) in pressure coor-
dinates,

u = −g

f

∂z

∂y
.

to calculate the mean eastward geostrophic wind on the 200hPa surface
at 45o latitude in the winter hemisphere. Here f = 2Ω sin (lat) is the
Coriolis parameter, g is the acceleration due to gravity, z is the height
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of a pressure surface and dy = a× d(lat) where a is the radius of the
earth is a northward pointing coordinate.

From hydrostatic balance

∂p

∂z
= −gρ ,

we get, using the gas law,

dz = −dp
gρ
= −RT

g

dp

p
.

Integrating from the surface (where z = 0 and p = 1000hPa) to 200hPa,Z z200

0

dz = z200 = −R
g

Z 200

1000

T
dp

p

=
R

g

Z p=1000

p=200

T d ln p

=
R

g
hT i ln

µ
1000

200

¶
,

where hT i is the mean temperature with respect to log pressure. Given
that hT i = 265K at the equator and 235K at the winter pole, the dif-
ference in mean temperatures is ∆ hT i = 30K and the height difference
between pole and equator is therefore

∆z200 =
R

g
∆ hT i ln

µ
1000

200

¶
=

287

9.81
× 30× ln 5

= 1413m,

with the equator being high and the pole low. If this height difference
is concentrated uniformly between 30o and 60o latitude, a distance of
πa/6, where a is the Earth radius, the height gradient there is

∂z

∂y
= −1413× 6

π × 6.37× 106 = −4.2365× 10
−4 .

Using the geostrophic wind relationship (zonal component) in pressure
coordinates,

u = −g

f

∂z

∂y
.
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At 45o, where f = 2Ω sin 45o =
√
2× 7.27× 10−5 = 1.03× 10−4s−1, the

wind is

u =
9.81

1.03× 10−4 × 4.2365× 10
−4

= 40.35ms−1.

9. From the pressure coordinate thermal wind relationship, and approxi-
mating

∂u

∂p
' ∂u/∂z

∂p/∂z
,

show that, in geometric height coordinates,

f
∂u

∂z
' − g

T

∂T

∂y
.

The thermal wind relationship for the zonal flow component is, see Eq.(7.23),

∂u

∂p
=

R

fp

∂T

∂y
.

Using the hydrostatic relationship,

∂u

∂p
' ∂u/∂z

∂p/∂z
= − 1

gρ

∂u

∂z
.

whence
∂u

∂z
' −Rgρ

fp

∂T

∂y
.

But, from the perfect gas law, Rρ/p = 1/T , so

f
∂u

∂z
' − g

T

∂T

∂y
.

The winter polar stratosphere is dominated by the “polar vortex,” a strong
westerly circulation at about 60o latitude around the cold pole, as depicted
schematically in the figure. (This circulation is the subject of considerable
interest, as it is within the polar vortices–especially that over Antarctica in
southern winter and spring–that most ozone depletion is taking place.)
Assuming that the temperature at the pole is (at all heights) 50K colder at 80o
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latitude than at 40o latitude (and that it varies uniformly in between), and
that the westerly wind speed at 100hPa pressure and 60o latitude is 10ms−1,
use the thermal wind relation to estimate the wind speed at 1hPa pressure
and 60o latitude.

Assuming geostrophic flow, thermal wind balance gives

∂u

∂p
= − R

fp
bz×∇T .

For uniform temperature gradient

∂T

∂y
= − 50

4.44× 106 = −1.1× 10
−5Km−1

we have
δu

δ ln p
= −R

f

∂T

∂y
.

At 60o latitude, f = 2Ω sin 60o = 1.26× 10−4s−1, whence

u1 − u100 =
287

1.26× 10−4 × 1.1× 10
−5 × ln 100 = 115ms−1.

Given that u100 = 10ms−1, we get u1 = 125ms−1.

10. Starting from Eq.(7.24), show that the thermal wind equation can be
written in terms of potential temperature, Eq.(4.17), thus:µ

∂ug
∂p

,
∂vg
∂p

¶
=

1

ρfθ

Ãµ
∂θ

∂y

¶
p

,−
µ
∂θ

∂x

¶
p

!
.
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Taking the x component of Eq.(7.24) we have, using Eq.(4.17):

∂ug
∂p

=
R

fp

µ
∂T

∂y

¶
p

=
R

fp

µ
∂

∂y

·
θ

µ
p

po

¶κ¸¶
p

=
R

fp

µ
p

po

¶κµ
∂θ

∂y

¶
p

=
1

fρT

µ
p

po

¶κµ
∂θ

∂y

¶
p

=
1

ρfθ

µ
∂θ

∂y

¶
p

where we have also used the ideal gas law.

11. Fig.7.30 shows, schematically, the surface pressure contours (solid) and
mean 1000hPa-500hPa temperature contours (dashed), in the vicinity
of a typical northern hemisphere depression (storm). “L” indicates
the low pressure center. Sketch the directions of the wind near the
surface, and on the 500hPa pressure surface. (Assume that the wind at
500hPa is significantly larger than at the surface.) If the movement of
the whole system is controlled by the 500hPa wind (i.e., it simply gets
blown downstream by the 500hPa wind), how do you expect the storm
to move? [Use density of air at 1000hPa = 1.2kg m−3; rotation rate of
Earth = 7.27× 10−5s−1; gas constant for air = 287J kg−1]
Note that the contour interval in Fig.7.30 was, bymistake, not indicated
but is 2hPa for the surface pressure and 2 ◦C for temperature.

Assuming geostrophic flow just above the surface boundary layer,

u =
1

fρ
bz×∇p

At 45oN, f = 2Ω sin 45o = 1.0 × 10−4s−1. At point C (storm center),
∇p = 0, so |u1000|C = 0 there. At point A, distance between 2hPa
isobars is about 70km, so

|u1000|A =
1

(1.2)× (1.0× 10−4)
200

7× 104 = 24ms
−1 .

At point B, separation of isobars is about 40km, so

|u1000|B =
1

(1.2)× (1.0× 10−4)
200

4× 104 = 42ms−1 .

The winds are cyclonic, and along isobars, as shown by the thin solid
arrows.
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From the thermal wind equation,

∂u

∂p
= − R

fp
bz×∇T

we have

u500 − u1000 = −R
f

Z bz×∇T d ln p

=
R

f
bz×∇ hT i ln 2

where hT i is the 1000-500hPa mean temperature. Near point B, the
separation between T contours is about 50km, whence

|u500 − u1000|B =
287

1× 10−4
2

5× 104 ln 2 = 80ms
−1 .

Since I have chosen point A to be where the isobars/height contours
are parallel, the low-level and thermal winds are antiparallel, so

|u500|B = 38ms−1 .
The wind vectors at 500hPa are shown by the heavy arrows. Near point
A, the separation is about 60km, and

|u500 − u1000|A =
287

1× 10−4
2

6× 104 ln 2 = 66ms
−1 .

The 1000hPa flow and thermal wind are parallel, so

|u500|A = 90ms−1 .
At point C, the T contour separation is also about 60km, so

|u500 − u1000|C = 66ms−1 .
Since the low-level flow is zero,

|u500|C = 66ms−1 .

The storm center therefore should move approximately northeastwards
at about 66ms−1.
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