
Atmosphere, Ocean and Climate Dynamics
Answers to Chapter 5

1. Fig.5.5 shows the net incoming solar and outgoing longwave irradiance
at the top of the atmosphere. Note that there is a net gain of radiation
in low latitudes and a net loss in high latitudes. By inspection of the
figure, estimate the magnitude of the poleward energy flux that must be
carried by the atmosphere-ocean system across the 30◦ latitude circle,
to achieve a steady state.

The energy absorbed between the equator and 30◦ latitude is, roughly,
1
2
× 50Wm−2 × 1

4
× 5× 1014m2 = 3. 125× 1015W, roughly comparable

to Fig.5.6. [Note 30◦ latitude divides the hemisphere in to equal areas.]

2. Suppose that the Earth’s rotation axis were normal to the Earth-Sun
line. The solar flux, measured per unit area in a plane normal to the
Earth-Sun line, is S0. By considering the solar flux incident on a
latitude belt bounded by latitudes (ϕ, ϕ+ dϕ), show that F , the 24hr-
averaged solar flux per unit area of the Earth’s surface, varies with
latitude as

F =
S0
π
cosϕ .

The area of parallel solar beam intercepted by latitudes ϕ and ϕ+ dϕ
is 2a cosϕ × dy where dy = adϕ cosϕ. The surface area of the planet
between latitudes ϕ and ϕ+ dϕ is 2πa cosϕ× adϕ. Thus:

F =
2a cosϕ× dy × S0
2πa cosϕ× adϕ

=
2a cosϕ× adϕ cosϕ× S0

2πa2 cosϕ× dϕ
=

S0
π
cosϕ.

(a) Using this result, suppose that the atmosphere is completely trans-
parent to solar radiation, but opaque to infrared such that, sepa-
rately at each latitude, the radiation budget can be represented as
for a “single slab” atmosphere – the “single slab” model is dis-
cussed in Section 2.3.1. Determine how surface temperature varies
with latitude.
Balance at top of the atmosphere in each latitude belt:

(1− αp)
S0
π
cosϕ = A ↑= σT 4a
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Balance at ground in each latitude belt:

(1− αp)
S0
π
cosϕ+A ↓= σT 4s

But A ↑= A ↓= σT 4a hence:

2 (1− αp)
S0
π
cosϕ = σT 4s

and so

Ts =

·
8 cosϕ

π

¸ 1
4
·
(1− αp)S0

4σ

¸ 1
4

=

·
8 cosϕ

π

¸ 1
4

Te

where Te is given by Eq.(2.4).
The solution is plotted as a function of latitude below.
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(b) Calculate the surface temperature at the equator, 30◦, and 60◦ lat-
itude, using data for Earth albedo and S0.

Ts(0
◦) =

£
8 cos 0◦

π

¤ 1
4 255 = 322. 13

Ts(30
◦) =

£
8 cos 30◦

π

¤ 1
4 255 = 310. 75

Ts(60
◦) =

£
8 cos 60◦

π

¤ 1
4 255 = 270. 87

3. Use the hydrostatic relation and the equation of state of an ideal gas
to show that the 1000 − 500mbar “thickness”, ∆z = z(500mbar) −
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z(1000mbar) is related to the mean temperature hT i of the 1000 −
500mbar layer by

∆z =
R hT i
g

ln 2 ,

where

hT i =
R
T d ln pR
d ln p

,

where the integrals are from 500mbar to 1000mbar. (Note that 1000mbar ≡
1000h Pa ≡ 105 Pa).

Combining hydrostatic balance and the ideal gas law, we can write:

∂p

∂z
= − gp

RT

whence
∂z

∂p
= −RT

gp
.

The height of a given pressure surface is dependent on the surface pressure
ps and the average temperature below that pressure surface:

z(p) =
R

g

Z ps

p

T
dp

p
=

R

g

Z ps

p

Td ln p =
R

g
hT i

Z ps

p

d ln p,

using the definition of hT i given in the question.
Thus ∆z = z(500hPa)− z(1000hPa) is given by:

∆z =
R hT i
g

ln 2.

a. Compute the thickness of the surface to 500mbar layer at 30◦ and 60◦

latitude assuming that the surface temperatures computed in Q2b. above
extend uniformly up to 500mbar.

∆z = 287×310. 75
9.81

ln 2 = 6301. 6 at 30◦

∆z = 270. 87×310. 75
9.81

ln 2 = 5947. 4 at 60◦

b. Figs.7.4 and 7.25 (of Chapter 7) show 500mbar and surface pres-
sure analyses for 12GMT on June 21, 2003. Calculate hT i for the
1000mbar to 500mbar layer at the center of the 500mbar trough at
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50 ◦N, 120 ◦W and at the center of the ridge at 40 ◦N, 90 ◦W. [N.B.
You will need to convert from surface pressure, ps, to height of the
1000hPa surface, z1000; to do so use the (approximate) formula

z1000 ∼= 10 (ps − 1000) ,

where z1000 is in meters and ps is in h Pa.] Is hT i greater in the ridge
or the trough? Comment on and physically interpret your result.

We know that:

hT i = g∆z

R ln 2

In the trough: ps = 1008hPa and so z1000 ∼= 10 (1008− 1000) = 80m;
z500 = 5520m.

Thus ∆z = 5520− 80 = 5440m and so hT i = 9.81×5440
287×ln 2 K = 268K.

In the ridge: ps = 1016hPa and so z1000 ∼= 10 (1016− 1000) = 160m;
z500 = 5820m

Thus ∆z = 5820− 160 = 5660m and so hT i = 9.81×5660
287×ln 2 K = 279K.

The ridge, then, is some 11K warmer than the trough. This is reason-
able since in the ridge (trough) air has pushed from the south (north)
and is thus warm (cold).

4. Use the expression for saturated specific humidity, Eq.(4.24) and the
empirical relation for saturated vapor pressure es(T ), Eq.(1.4) (where
A = 6.11mbar and β = 0.067 ◦C−1 and T is in ◦C) to compute from
the graph of T (p) in the tropical belt shown in Fig.4.9, vertical profiles
of saturated specific humidity, q∗(p). You will need to look up values of
R and Rv from Chapter 1.

Compare your q∗ profiles with observed profiles of q in the tropics shown
in Fig.5.15. Comment?

We evaluate:

q∗ =
³

R
Rv

´
es(T )
p
whereRv = 461.39 J kg

−1K−1; R = 287.05 J kg−1K−1

with es = A exp (βT ) where A = 6.11mbar and β = 0.067 ◦C−1.

Thus, evaluating the various numerical factors, we have:

q∗ = 0.622 14× 6.11 exp(0.067×T ◦C)
p(mbar)
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From observations of T (p) at the equator, we evaluate q∗ from the above
equation and compare to observations of q in the following table.

p T (equator) in ◦C q∗ ( g/ kg) q ( g/ kg)
1000 25.6508 21.2 16.49
950 22.6972 18.3 14.56
900 19.9835 16.2 12.52
850 17.6248 14.6 10.67
700 9.33311 10.1 6.04
500 -5.59631 5.2 2.26
400 -15.9016 3.3 1.00
300 -31.2027 1.56 0.31
200
100

Note that at each level in the atmosphere, q . q∗: the air is less than,
but reasonably close to saturation at each level.
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