Atmosphere, Ocean and Climate Dynamics Answers to Chapter 1

1. Given that the acceleration due to gravity decays with height from the centre of the earth following an inverse square law, what is the percentage change in g from the earth's surface to an altitude of 100 km ? (See also Q. 6 of Chapter 3.
Writing $g=\frac{\text { const }}{r^{2}}, \delta g=-2 \frac{g \delta r}{r}$ and so:

$$
\frac{\delta g}{g}=-2 \frac{\delta r}{r}
$$

Percentage change in g from the earth's surface to an altitude of 100 km is then $\sim 2 \times \frac{10^{5}}{6 \times 10^{6}} \sim 3 \%$.
2. Compute the mean pressure at the earth's surface given the total mass of the atmosphere, M_{a} (Table 1.3), the acceleration due to gravity, g, and the radius of the earth, a (Table 1.1).

The pressure at the earth's surface is the mass of the atmosphere divided by the surface area of the earth: $p_{s}=\frac{g M}{4 \pi a^{2}}$. Inserting numbers from the Table we find that $p_{s}=\frac{9.81 \times 5.26 \times 10^{18}}{5.09 \times 10^{14}}=1.0138 \times 10^{5} \mathrm{~Pa}$.
3. Express your answer to $Q .2$ in terms of the number of apples per square meter required to exert the same pressure. You may assume that a typical apple weighs 0.2 kg . If the average density of air is 5 apples per m^{3} (in apple units) calculate how high the apples would have to be stacked at this density to exert a surface pressure equal to 1000 h Pa. Compare your estimate to the scale height, H, given by Eq.(3.6) in Section 3.3.

Let the number of apples per square meter be n, each of mass m, then: $n \times m \times g=p_{s}$ or, rearranging:

$$
n=\frac{p_{s}}{m \times g} .
$$

Inserting numbers we find that $n=50,000$ apples. If the average density of air is 5 apples per m^{3} then the column must be 10 km in height. This is roughly equal to the scale height of the atmosphere of 7 km or so.
4. Using (i) Eq.(1.4), which relates the saturation vapor pressure of $\mathrm{H}_{2} \mathrm{O}$ to temperature T, and (ii) the equation of state of water vapor $e=$ $\rho_{v} R_{v} T$ - see discussion in Section 1.3.2 - compute the maximum amount of water vapor per unit volume that air can hold at the surface, where $T_{s}=288 \mathrm{~K}$, and at a height of 10 km where (from Fig.3.1) $T_{10} \mathrm{~km}=220 \mathrm{~K}$. Express your answer in $\mathrm{kg} \mathrm{m}^{-3}$. What are the implications of your results for the distribution of water vapor in the atmosphere?
Form Eq.(1.4) we deduce that at the surface
$e_{s}=6.11 \times 10^{2} \times \exp (0.067 \times(288-273))=1669.2=16.7 \mathrm{~h} \mathrm{~Pa}$.
This implies a density at saturation of $\rho_{v}=\frac{e_{s}}{R_{v} T}=\frac{1670}{461 \times 288}=1.26 \times$ $10^{-2} \mathrm{~kg} \mathrm{~m}^{-3}$.

At a height of $10 \mathrm{~km}, e_{s}=6.11 \times 10^{2} \times \exp (0.067 \times(220-273))=$ 0.18 h Pa and $\rho_{v}=\frac{18}{461 \times 220} \mathrm{~kg} \mathrm{~m}^{-3}=0.02 \times 10^{-2} \mathrm{~kg} \mathrm{~m}^{-3}$, a very small amount of water vapor. We conclude that upper levels of the atmosphere are so cold that they hold very little water vapor.

