Chapter 13

Numerical Modeling and Prediction

13.1. Show that for the barotropic vorticity equation on the Cartesian β-plane (13.26) enstrophy and kinetic energy are conserved when averaged over the whole domain-that is, that the following integral constraints are satisfied:

$$
\frac{d}{d t} \iint \frac{\zeta^{2}}{2} d x d y=0 \quad \frac{d}{d t} \iint \frac{\nabla \psi \cdot \nabla \psi}{2} d x d y=0
$$

Hint: To prove energy conservation, multiply (13.26) through by $-\psi$ and use the chain rule of differentiation.
Solution: Here we may use periodic boundary conditions in x and let $\psi=$ constant at $y=0$ and $y=D$. For enstrophy conservation take ζ times (13.26):

$$
\begin{equation*}
\frac{1}{2} \frac{\partial \zeta^{2}}{\partial t}=-\mathbf{V}_{\psi} \cdot \nabla\left(\frac{\zeta^{2}}{2}\right)-\beta \zeta \frac{\partial \psi}{\partial x}=-\nabla \cdot\left(\frac{\mathbf{V}_{\psi} \zeta^{2}}{2}\right)-\beta \frac{\partial \psi}{\partial x}\left(\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}\right) \tag{1}
\end{equation*}
$$

(2)

Integrating term (1) over the area of the domain and invoking periodicity in x yields $\left.\left(v_{\psi} \zeta^{2} / 2\right)\right|_{0} ^{D}=0$, since $v_{\psi}=\partial \psi / \partial x$, which vanishes at the y boundaries. Term (2) can be written as $-\frac{\beta}{2} \frac{\partial}{\partial x}\left(\frac{\partial \psi}{\partial x}\right)^{2}$, which vanishes when integrated in x. Term (3) can be expanded to $\frac{\beta}{2} \frac{\partial}{\partial x}\left(\frac{\partial \psi}{\partial y}\right)^{2}-\beta \frac{\partial}{\partial y}\left(\frac{\partial \psi}{\partial x} \frac{\partial \psi}{\partial y}\right)$. The first part vanishes when integrated in x and the second part after integration in y.
For energy conservation, the left-hand side gives the rate of change of kinetic energy:
$-\psi \frac{\partial \nabla^{2} \psi}{\partial t}=-\nabla \cdot\left(\psi \nabla \frac{\partial \psi}{\partial t}\right)+\nabla \psi \cdot \nabla \frac{\partial \psi}{\partial t}=\frac{\partial}{\partial t}\left(\frac{\nabla \psi \cdot \nabla \psi}{2}\right)=\frac{\partial}{\partial t}\left(\frac{\mathbf{V}_{\psi} \cdot \mathbf{V}_{\psi}}{2}\right)$, where the term $\nabla \cdot\left(\psi \nabla \frac{\partial \psi}{\partial t}\right)$ vanishes after integration in x and y and application of the boundary conditions.
The right-hand side gives $-\psi \mathbf{V}_{\psi} \cdot \nabla \zeta=-\nabla \cdot\left(\mathbf{V}_{\psi} \psi \zeta\right)+\zeta \psi \nabla \cdot \mathbf{V}_{\psi}+\mathbf{V}_{\psi} \zeta \cdot \nabla \psi$. The first term on the right vanishes after integration over the domain. The second vanishes because \mathbf{V}_{ψ} is nondivergent. The third vanishes because \mathbf{V}_{ψ} is orthogonal to $\nabla \psi$. Finally, the term $\beta \psi \frac{\partial \psi}{\partial x}=\frac{\beta}{2} \frac{\partial \psi^{2}}{\partial x}$ vanishes when integrated over x. Thus, both enstrophy and kinetic energy are conserved on the domain.
13.2. Verify expression (13.31). Use periodic boundary conditions in both x and y.

Solution: $\sum_{m} \sum_{n} F_{m, n}=1 / 2 d \sum_{m} \sum_{n}\left(u_{m+1, n} \zeta_{m+1, n}-u_{m-1, n} \zeta_{m-1, n}\right)$

$$
+1 / 2 d \sum_{m} \sum_{n}\left(v_{m, n+1} \zeta_{m, n+1}-v_{m, n-1} \zeta_{m, n-1}\right)+\beta / 2 d \sum_{m} \sum_{n}\left(\psi_{m+1, n}-\psi_{m-1, n}\right)
$$

Each of the terms on the right consists of a pair of opposite signs with m or n indices differing by 2 . Thus, it is clear that alternate terms cancel in the summation for all m, n provided that boundary conditions are periodic.
13.3. The Euler backward method of finite differencing the advection equation is a two-step method consisting of a forward prediction step followed by a backward corrector step. In the notation of Section 13.2.2, the complete cycle is thus
defined by

$$
\begin{aligned}
\hat{q}_{m}^{*}-\hat{q}_{m, s} & =-\frac{\sigma}{2}\left(\hat{q}_{m+1, s}-\hat{q}_{m-1, s}\right) \\
\hat{q}_{m, s+1}-\hat{q}_{m, s} & =-\frac{\sigma}{2}\left(\hat{q}_{m+1}^{*}-\hat{q}_{m-1}^{*}\right),
\end{aligned}
$$

where \hat{q}_{m}^{*} is the first guess for time step $s+1$. Use the method of Section 13.2.3 to determine the necessary condition for stability of this method.
Solution: Let $\hat{q}_{m}^{*}=A^{s} \exp (i p m) ; \hat{q}_{m, s}=B^{s} \exp (i p m)$. Then substituting into the above equations gives $A^{s}-B^{s}=$ $-B^{s}(\sigma i \sin p) ; B^{s+1}-B^{s}=-A^{s}(\sigma i \sin p)$, where we have used the fact that $2 i \sin p=\exp (i p)+\exp (-i p)$. Thus, eliminating A^{s}, we get $B^{s+1}=B^{s}[1-(\sigma i \sin p)(1-\sigma i \sin p)]$. Letting $\mu=\sigma \sin p$, we obtain $B=1-i \mu(1-i \mu)=$ $1-i \mu-\mu^{2}$. But $|B|=\left|1-i \mu-\mu^{2}\right| \leq 1$ for stability, which requires $\mu^{2} \leq 1$, so $\sigma \leq 1$.
13.4. Carry out truncation error analyses analogous to that of Table 13.1 for the centered difference approximation to the advection equation but for the cases $\sigma=0.95$ and $\sigma=0.25$.

Solution: For $\sigma=0.95$

$L / \delta \boldsymbol{x}$	\boldsymbol{p}	$\theta_{\boldsymbol{p}}$	$\boldsymbol{c}^{\prime} / \mathbf{c}$	$\|D\| /\|C\|$
2	π	π	-	∞
4	$\pi / 2$	1.253	0.840	0.524
8	$\pi / 4$	0.737	0.988	0.149
16	$\pi / 8$	0.372	0.997	0.035
32	$\pi / 16$	0.186	0.997	0.009

For $\sigma=0.25$

$\boldsymbol{L} / \boldsymbol{\delta} \boldsymbol{x}$	\boldsymbol{p}	$\boldsymbol{\theta}_{\boldsymbol{p}}$	$\boldsymbol{c}^{\prime} / \boldsymbol{c}$	$\|\boldsymbol{D}\| /\|\boldsymbol{C}\|$
2	π	π	-	∞
4	$\pi / 2$	0.253	0.644	0.016
8	$\pi / 4$	0.178	0.907	0.008
16	$\pi / 8$	0.096	0.976	0.002
32	$\pi / 16$	0.049	0.994	0.001

13.5. Suppose that the streamfunction ψ is given by a single sinusoidal wave $\psi(x)=A \sin (k x)$. Find an expression for the error of the finite difference approximation $\partial^{2} \psi / \partial x^{2} \approx\left(\psi_{m+1}-2 \psi_{m}+\psi_{m-1}\right) /(\delta x)^{2}$ for $k \delta x=\pi / 8, \pi / 4, \pi / 2$, and π. Here $x=m \delta x$ with $m=0,1,2, \ldots$

Solution: $\partial^{2} \psi / \partial x^{2}=-A k^{2} \sin k x=-A k^{2} \sin k m \delta x$, but

$$
\begin{aligned}
\psi_{m+1}-2 \psi_{m}+\psi_{m-1} & =A[\sin k(m+1) \delta x-2 \sin k m \delta x+\sin k(m-1) \delta x] \\
& =2 A \sin m k \delta x(\cos k \delta x-1)
\end{aligned}
$$

Thus, the fractional error $=1-\left[2 A \sin m k \delta x(1-\cos k \delta x)(\delta x)^{-2}\right]\left(A k^{2} \sin k m \delta x\right)^{-1}=1-2 k^{-2}(\delta x)^{-2}(1-\cos k \delta x)$, which gives errors of $0.0128,0.050,0.189$, and 0.595 for $k \delta x=\pi / 8, \pi / 4, \pi / 2$, and π, respectively.
13.6. Using the method given in Section 13.2.3, evaluate the computational stability of the following two finite difference approximations to the one-dimensional advection equation:

$$
\begin{equation*}
\hat{\zeta}_{m, s+1}-\hat{\zeta}_{m, s}=-\sigma\left(\hat{\zeta}_{m, s}-\hat{\zeta}_{m-1, s}\right) \tag{a}
\end{equation*}
$$

(b)

$$
\hat{\zeta}_{m, s+1}-\hat{\zeta}_{m, s}=-\sigma\left(\hat{\zeta}_{m+1, s}-\hat{\zeta}_{m, s}\right)
$$

where $\sigma=c \delta t / \delta x>0$. (The schemes labeled (a) and (b) are referred to as upstream and downstream differencing, respectively.) Show that scheme (a) damps the advected field, and compute the fractional damping rate per time step for $\sigma=0.25$ and $k \delta x=\pi / 8$ for a field with the initial form $\zeta=\exp (i k x)$.

Solution: Let $\hat{\zeta}_{m, r}=V_{r} \exp (i k m d)$, where $d=\delta x$. Then upstream differencing gives $V_{r+1}-V_{r}=-\sigma V_{r}\left(1-e^{-i k d}\right)$, $V_{r+1}=V_{r}\left[1-\sigma\left(1-e^{-i k d}\right)\right]$, which implies that $\left|1-\sigma\left(1-e^{-i k d}\right)\right| \leq 1$ for stability. Thus, $[1-\sigma(1-\cos k d)]^{2}+$
$\sigma^{2}(\sin k d)^{2} \leq 1$ or $1-2 \sigma(1-\cos k d)+\sigma^{2}\left(1+\cos ^{2} k d+\sin ^{2} k d-2 \cos k d\right)=1-2 \sigma(1-\cos k d)(1-\sigma) \leq 1$, which implies that $\sigma \leq 1$ for stability.
Downstream differencing gives $V_{r+1}=V_{r}\left[1-\sigma\left(e^{i k d}-1\right)\right]$, which implies that we need $\left|1-\sigma\left(e^{i k d}-1\right)\right|^{2}=$ $(1-\sigma \cos k d+\sigma)^{2}+(\sigma \sin k d)^{2} \leq 1$ for stability. Thus, $1+2 \sigma(1-\cos k d)+\sigma^{2}(1-\cos k d)^{2}+\sigma^{2}(\sin k d)^{2} \leq 1$. But this expression is false for all real values of σ. Thus, the scheme is absolutely unstable.
The fractional damping rate for upstream differencing is given by $\left|V_{r+1} / V_{r}\right|=\left|1-\sigma\left(1-e^{-i k d}\right)\right|$. For $k d=\pi / 8$ and $\sigma=0.25$ this gives 0.985 , so that amplitude decreases by the fraction $1-0.985=0.015$ per time step.
13.7. Using a staggered horizontal grid analogous to that shown in Figure 13.5 (but for an equatorial β-plane geometry) express the linearized shallow water equations (11.27)-(11.29) in finite difference form.

Solution: The staggered grid system has the following arrangement:

$V_{m-1, n+1}$		$V_{m, n+1}$		$V_{m+1, n+1}$
$\Phi_{m-1, n}$	$U_{m, n}$	$\Phi_{m, n}$	$U_{m+1, n}$	$\Phi_{m+1, n}$
$V_{m-1, n}$		$V_{m, n}$		$V_{m+1, n}$
$\Phi_{m-1, n-1}$	$U_{m, n-1}$	$\Phi_{m, n-1}$	$U_{m+1, n-1}$	$\Phi_{m+1, n-1}$
$V_{m-1, n-1}$		$V_{m, n-1}$		$V_{m+1, n-1}$

Define mean and difference fields as follows for all variables:

$$
\begin{aligned}
\bar{G}^{x}(m+1 / 2, n) & \equiv \frac{1}{2}[G(m+1, n)+G(m, n)] \\
\delta_{x} G(m+1 / 2, n) & \equiv \frac{1}{\delta x}[G(m+1, n)-G(m, n)]
\end{aligned}
$$

(with analogous definitions for \bar{G}^{y} and $\delta_{y} G$). Then (11.29)-(11.31) can be written as

$$
\begin{aligned}
& \delta_{t} u(m, n)=\beta y_{n} \overline{\bar{v}}^{y}(m-1 / 2, n+1 / 2)-\delta_{x} \Phi(m-1 / 2, n) \\
& \delta_{t} v(m, n)=-\beta y_{n-1 / 2} \overline{\bar{u}}^{y} \\
&(m+1 / 2, n-1 / 2)-\delta_{y} \Phi(m, n-1 / 2) \\
& \delta_{t} \Phi(m, n)=-g h_{e}\left[\delta_{x} u(m+1 / 2, n)+\delta_{y} v(m, n+1 / 2)\right]
\end{aligned}
$$

(where $\delta_{t} G$ stands for a suitable time differencing scheme).
13.8. Verify the equality

$$
\left(\frac{1-i \tan \theta_{p}}{1+i \tan \theta_{p}}\right)=\exp \left(-2 i \theta_{p}\right)
$$

given in (13.22).

Solution:

$$
\frac{1-i \tan \theta}{1+i \tan \theta}=\frac{\cos \theta-i \sin \theta}{\cos \theta+i \sin \theta}=\frac{e^{-i \theta}}{e^{+i \theta}}=e^{-2 i \theta}
$$

13.9. Compute the ratio of the numerical phase speed to the true phase speed, c^{\prime} / c, for the implicit differencing scheme of (13.19) for $p=\pi, \pi / 2, \pi / 4, \pi / 8$, and $\pi / 16$. Let $\sigma=0.75$ and $\sigma=1.25$. Compare your results to those of Table 13.1.

Solution: Now, $\theta_{p}=\tan ^{-1}[\sigma(\sin p) / 2]$, and from below (13.23),

$$
c^{\prime} / c=\left(2 \theta_{p}\right) /(c k \delta t)=\left(2 \theta_{p}\right) /(\sigma p)
$$

		$\sigma=\mathbf{0 . 7 5}$		$\sigma=\mathbf{1 . 2 5}$	
$\boldsymbol{L} / \boldsymbol{\delta} \boldsymbol{x}$	\boldsymbol{p}	$\boldsymbol{\theta}_{\boldsymbol{p}}$	$\boldsymbol{c}^{\prime} / \mathbf{c}$	$\boldsymbol{\theta}_{\boldsymbol{p}}$	$\boldsymbol{c}^{\prime} / \mathbf{c}$
2	π	π	-	π	-
4	$\pi / 2$	0.359	0.609	0.559	0.569
8	$\pi / 4$	0.259	0.880	0.416	0.848
16	$\pi / 8$	0.143	0.968	0.235	0.957
32	$\pi / 16$	0.073	0.992	0.121	0.989

13.10. Using the technique of Section 13.2.1, show that the following 4-point difference formula is of fourth order accuracy:

$$
\psi^{\prime}\left(x_{0}\right) \approx \frac{4}{3}\left(\frac{\psi\left(x_{0}+\delta x\right)-\psi\left(x_{0}-\delta x\right)}{2 \delta x}\right)-\frac{1}{3}\left(\frac{\psi\left(x_{0}+2 \delta x\right)-\psi\left(x_{0}-2 \delta x\right)}{4 \delta x}\right)
$$

Solution: Subtracting (13.3) from (13.2) gives

$$
\begin{equation*}
\psi\left(x_{0}+\delta x\right)-\psi\left(x_{0}-\delta x\right)=\psi^{\prime}\left(x_{0}\right)(2 \delta x)+\psi^{\prime \prime \prime}\left(x_{0}\right) \frac{(\delta x)^{3}}{3}+\mathrm{O}\left[(\delta x)^{5}\right] \tag{1}
\end{equation*}
$$

while applying the same formula for the interval $2 \delta x$ yields

$$
\begin{equation*}
\psi\left(x_{0}+2 \delta x\right)-\psi\left(x_{0}-2 \delta x\right)=\psi^{\prime}\left(x_{0}\right)(4 \delta x)+\psi^{\prime \prime \prime}\left(x_{0}\right) \frac{(2 \delta x)^{3}}{3}+\mathrm{O}\left[(2 \delta x)^{5}\right] \tag{2}
\end{equation*}
$$

Now taking $1 / 6$ of (2) plus $4 / 3$ of (1) and solving for $\psi^{\prime}\left(x_{0}\right)$ gives

$$
\psi^{\prime}\left(x_{0}\right)=\frac{4}{3}\left[\frac{\psi\left(x_{0}+\delta x\right)-\psi\left(x_{0}-\delta x\right)}{2 \delta x}\right]-\frac{1}{3}\left[\frac{\psi\left(x_{0}+2 \delta x\right)-\psi\left(x_{0}-2 \delta x\right)}{4 \delta x}\right]+\mathrm{O}\left[(\delta x)^{4}\right]
$$

which is the desired result.
13.11. The Dufort-Frankel method for approximating the one-dimensional diffusion equation

$$
\frac{\partial q}{\partial t}=K \frac{\partial^{2} q}{\partial x^{2}}
$$

can be expressed in the notation of Section 13.2.2 as

$$
\hat{q}_{m, s+1}=\hat{q}_{m, s-1}+r\left[\hat{q}_{m+1, s}-\left(\hat{q}_{m, s+1}+\hat{q}_{m, s-1}\right)+\hat{q}_{m-1, s}\right],
$$

where $r \equiv 2 K \delta t /(\delta x)^{2}$. Show that this scheme is an explicit differencing scheme and that it is computationally stable for all values of δt.
Solution: By rearranging terms, the above difference equation can be expressed as $(1+r) \hat{q}_{m, s+1}=(1-r) \hat{q}_{m, s-1}+$ $r\left[\hat{q}_{m+1, s}+\hat{q}_{m-1, s}\right]$. This is an explicit algorithm, since $\hat{q}_{m, s+1}$ depends only on values at times s and $s-1$. To examine stability, we let $\hat{q}_{m, s}=B^{s} \exp (i p m)$, and substitute into the difference equation to get $(1+r) B^{2}=(1-r)+B r\left(e^{i p}+e^{-i p}\right)$, so that $B^{2}-\frac{(2 r \cos p)}{(1+r)} B-\frac{(1-r)}{(1+r)}=0$.
Thus, $B=\left(\frac{r \cos p}{1+r}\right) \pm \frac{1}{(1+r)}\left[1-r^{2} \sin ^{2} p\right]^{1 / 2}$.
The largest magnitude of B occurs for $p=\pi$, in which case $B=-1$, so the system is unconditionally computationally stable.

