(Chapter 13>7

Numerical Modeling and Prediction

13.1. Show that for the barotropic vorticity equation on the Cartesian S-plane (13.26) enstrophy and kinetic energy are conserved
when averaged over the whole domain—that is, that the following integral constraints are satisfied:

d Vi -V
/ —dxdy = — // dedy =0
dt 2

Hint: To prove energy conservation, multiply (13.26) through by — and use the chain rule of differentiation.

Solution: Here we may use periodic boundary conditions in x and let ¥ = constant at y = 0 and y = D. For enstrophy
conservation take ¢ times (13.26):
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Integrating term (1) over the area of the domain and invoking periodicity in x yields (v.,,;z /2) |g = 0, since vy = Iy /ox,

which vanishes at the y boundaries. Term (2) can be written as — g % (%‘f ) , which vanishes when integrated in x. Term (3)

A\ 2
can be expanded to g% (%) - ,B% (aali a;é) The first part vanishes when integrated in x and the second part after

integration in y.
For energy conservation, the left-hand side gives the rate of change of kinetic energy:
aV w = -V. (wv%) + Vi - V% = a% (M) = % (%), where the term V - (wv%) vanishes after
1ntegrat10n in x and y and application of the boundary conditions.
The right-hand side gives =¥V - Vi = =V « (Vy%¢) + ¥V « Vi + V£ - V. The first term on the right vanishes

after integration over the domain. The second vanishes because V is nondivergent. The third vanishes because Vy, is

orthogonal to V. Finally, the term By - w_8 a;ﬂ vanishes when integrated over x. Thus, both enstrophy and kinetic
energy are conserved on the domain.

13.2. Verify expression (13.31). Use periodic boundary conditions in both x and y.
Solution: Z ZFm n = 1/2d2 Z (um+1 nCm+1.n — Wn—1,n8m—1 n)

m n

+1/2d22 Um,n+18m,n+1 — Ym,n—18m,n—1 +,3/2dzz Yt — Ym— ln)

m n

Each of the terms on the right consists of a pair of opposite signs with m or n indices differing by 2. Thus, it is clear that
alternate terms cancel in the summation for all m, n provided that boundary conditions are periodic.

13.3. The Euler backward method of finite differencing the advection equation is a two-step method consisting of a forward
prediction step followed by a backward corrector step. In the notation of Section 13.2.2, the complete cycle is thus
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defined by
e o

dm — ém,s = _E (am+l,s - &m—l,s)

N ~ o /. ~

qm,s+1 — qm,s = _E (Q;kn+1 - an—l) ’
where g7, is the first guess for time step s+1. Use the method of Section 13.2.3 to determine the necessary condition for
stability of this method.

Solution: Let g}, = A®exp(ipm); gm.s = B*exp(ipm). Then substituting into the above equations gives A® — B® =
—B* (oisinp); Bt! — B® = —A® (oisinp), where we have used the fact that 2isinp = exp (ip) + exp (—ip). Thus,
eliminating A®, we get Bt = BS[1 — (oisinp) (1 — oisinp)]. Letting 4 = o sinp, we obtain B = 1 — i (1 —ip) =
1 —in — w2 But |B| = |1 —iu — u?| < 1 for stability, which requires u?> < 1,s00 < 1.

Carry out truncation error analyses analogous to that of Table 13.1 for the centered difference approximation to the
advection equation but for the cases 0 = 0.95 and o = 0.25.

Solution: For o = 0.95

L/sx p 0, d/c  |DJ/|C|

- 00
4 /2 1.253 0.840 0.524

8 /4 0.737 0.988 0.149
16 /8 0.372  0.997 0.035
32 n/16 0.186 0.997 0.009

For o = 0.25

L/éx p 6, c/c |D|/|C|

2 b4 b4 - o0

4 /2 0.253 0.644 0.016

8 /4 0.178 0.907 0.008
16 /8 0.096 0.976 0.002
32 7/16  0.049 0.994 0.001

Suppose that the streamfunction ¥ is given by a single sinusoidal wave 1 (x) = A sin(kx). Find an expression for the error
of the finite difference approximation 8%V /x> &~ (Vi1 — 2¥m + Ym_1)/(8x)? for kdx = 7/8, w/4, /2, and . Here
x=méxwithm=0,1,2,....
Solution: 9%y /9x> = —Ak? sin kx = —Ak? sin kmdx, but
Ymt1 — 2%m + Ym—1 = Alsink(m + 1)6x — 2 sin kméx + sink(m — 1)5x]
= 2A sinmkdx(cos kéx — 1).

Thus, the fractional error = 1 — [2A sin mk8x(1 — cos k8x) (8x) ~2](Ak? sin kmdx) 1 = 1 —2k—2(8x)~2(1 — cos k8x), which
gives errors of 0.0128, 0.050, 0.189, and 0.595 for kéx = /8, w /4, 7 /2, and 7, respectively.

Using the method given in Section 13.2.3, evaluate the computational stability of the following two finite difference
approximations to the one-dimensional advection equation:

(a) 2m,s+1 - ém.,s = —0 <2ms - Em—l,s)

(b) 2m,s+1 - Em,s = -0 ($m+l,s - Em,s)

where o = ¢ét/6x > 0. (The schemes labeled (a) and (b) are referred to as upstream and downstream differencing, respec-
tively.) Show that scheme (a) damps the advected field, and compute the fractional damping rate per time step for o = 0.25
and kéx = /8 for a field with the initial form { = exp(ikx).

Solution: Let g:m,r: V, exp(ikmd), where d=6x. Then upstream differencing gives V.41 — V,= — o V,.(1 — e tkdy,
Vir1 = Vo[l —a(1 —e *)] which implies that |1 — o (1 — e~*4)| < 1 for stability. Thus, [1 — o (1 — coskd)]> +
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o2(sinkd)2 <1or1—20(1 — coskd) + o2(1 + cos? kd + sin’ kd — 2 coskd) = 1 — 20 (1 — coskd)(1 — o) < 1, which
implies that o < 1 for stability.

Downstream differencing gives V,y1=V,[1 — o (e —1)], which implies that we need |1 —o (% —1)|?>=
(1 — o coskd + 0)? + (o sinkd)®> < 1 for stability. Thus, 1 + 20 (1 — coskd) + o2(1 — cos kd)?> + o2(sinkd)*> < 1.
But this expression is false for all real values of o. Thus, the scheme is absolutely unstable.

The fractional damping rate for upstream differencing is given by |V,11/V,| = |1 — o (1 — e~*)|. For kd = 7/8 and
o = 0.25 this gives 0.985, so that amplitude decreases by the fraction 1 — 0.985 = 0.015 per time step.

13.7. Using a staggered horizontal grid analogous to that shown in Figure 13.5 (but for an equatorial S-plane geometry) express
the linearized shallow water equations (11.27)—(11.29) in finite difference form.

Solution: The staggered grid system has the following arrangement:

Vin—1,n+1 Vin,n1 Vint1,n4+1
gm—l,n Unm,n 9m,n Um-H,n Qm.;_],n
Vm—l,n VWL,H Vm+1 n
Qm—l,n—] Um,n—l gm,n—] Um+l,n—l Qm+1,n—l
Vm—l.n—l Vm,n—l Vm+1,n—l

Define mean and difference fields as follows for all variables:

_ 1
§m+uzmzémm+Lm+amm]
1
8,Gm+1/2,n) = 5—[G(m + 1,n) — G(m, n))]
X
(with analogous definitions for G and 8yG). Then (11.29)—(11.31) can be written as
Siu(m, n) = ,Bynﬁy(m —1/2,n+1/2) — 6:P(m — 1/2, n)
Sv(m, n) = —ﬁyn_l/zﬁy(m +1/2,n—-1/2) = 6,®(m,n — 1/2)

8;®(m, n) = —ghe[Syu(m+1/2,n) + dyv(m, n+ 1/2)]

(where §;G stands for a suitable time differencing scheme).

13.8. Verify the equality

I —itan6), (—2i8,)
— ) = exp(—2i
1 + itan6), P ’
given in (13.22).
Solution:
1—itan® cosf —ising e

1 +itan0 cosO +ising et

13.9. Compute the ratio of the numerical phase speed to the true phase speed, ¢’ /c, for the implicit differencing scheme of (13.19)
forp=mn,n/2, n/4, /8, and w/16. Let 0 = 0.75 and o = 1.25. Compare your results to those of Table 13.1.

Solution: Now, 6, = tan~![o (sin p) /2], and from below (13.23),

c'Je = (26,)/(ckst) = (26,)/(op).
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o =0.75 o =125
L /8x p (I c’/c [ c’/c
2 T m - T -
4 /2 0.359 0.609 0.559 0.569
8 /4 0.259 0.880 0.416 0.848
16 /8 0.143 0.968 0.235 0.957
32 /16 0.073 0.992 0.121 0.989

Using the technique of Section 13.2.1, show that the following 4-point difference formula is of fourth order accuracy:

¥ (xp + 8x) — Y (xg — 8x)> B l (1/f(xo 4+ 28x) — Y (xg — 28x)>
28x 3 48x

v’ (x0) ~ ! (
0~ 3
Solution: Subtracting (13.3) from (13.2) gives
/ " (‘Sx)?’ 5
Y00+ 80 — ¥ (0 — 89 = ¥/ )28 + " (x0) - +0 [ (67 (M

while applying the same formula for the interval 26x yields

(28x)3
3

Yo +28%) — (10 — 269) = P (x0) (469 + ¥ (x0)=—— + O [ (280)%]. @)

Now taking 1/6 of (2) plus 4/3 of (1) and solving for ¥ (xp) gives

P (xo + 8) — Yr(xo — 8x>} 1 [WO 280 — ¥ (xo = 25’“)} +o[e0*],
26x 3 46x

Vo) =
X0) = =
73
which is the desired result.
The Dufort-Frankel method for approximating the one-dimensional diffusion equation

9 92
%9 _ %4

ot ox2

can be expressed in the notation of Section 13.2.2 as

2]m,s+l = glm,s—l + r[é\]m—y—l,s - (alm,s+1 + ém,s—l) + glm—l,s]a

where r = 2K381/(5x)*. Show that this scheme is an explicit differencing scheme and that it is computationally stable for
all values of 6z.

Solution: By rearranging terms, the above difference equation can be expressed as (1 + rgms+1 = (1 — Pgms—1 +
r[@m+1.s + Gm—1.s]. This is an explicit algorithm, since g, s+1 depends only on values at times s and s — 1. To examine
stability, we let g,, s = B® exp(ipm), and substitute into the difference equation to get

. - ) _
(1 +7)B2 = (1 — r) + Br(e? + ¢~7), so that B2 — ¢ (’li’j{’)B -{B =0

_ [ rcos 1 2 in2,11/2
Thus, B = (522 + (1 — 2 sin® p]'/2
The largest magnitude of B occurs for p = m, in which case B = —1, so the system is unconditionally computationally
stable.






