
Chapter 13

Numerical Modeling and Prediction

13.1. Show that for the barotropic vorticity equation on the Cartesian β-plane (13.26) enstrophy and kinetic energy are conserved
when averaged over the whole domain—that is, that the following integral constraints are satisfied:

d

dt

∫∫
ζ 2

2
dxdy = 0

d

dt

∫∫
∇ψ · ∇ψ

2
dxdy = 0

Hint: To prove energy conservation, multiply (13.26) through by −ψ and use the chain rule of differentiation.

Solution: Here we may use periodic boundary conditions in x and let ψ = constant at y = 0 and y = D. For enstrophy
conservation take ζ times (13.26):
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Integrating term (1) over the area of the domain and invoking periodicity in x yields
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0 = 0, since vψ = ∂ψ/∂x,

which vanishes at the y boundaries. Term (2) can be written as−β2
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. The first part vanishes when integrated in x and the second part after

integration in y.
For energy conservation, the left-hand side gives the rate of change of kinetic energy:
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, where the term ∇ ·

(
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vanishes after

integration in x and y and application of the boundary conditions.
The right-hand side gives −ψVψ · ∇ζ = −∇ ·

(
Vψψζ

)
+ ζψ∇ · Vψ + Vψζ · ∇ψ . The first term on the right vanishes

after integration over the domain. The second vanishes because Vψ is nondivergent. The third vanishes because Vψ is

orthogonal to ∇ψ . Finally, the term βψ
∂ψ
∂x =

β
2
∂ψ2

∂x vanishes when integrated over x. Thus, both enstrophy and kinetic
energy are conserved on the domain.

13.2. Verify expression (13.31). Use periodic boundary conditions in both x and y.
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∑
m

∑
n

Fm,n = 1/2d
∑
m

∑
n

(
um+1,nζm+1,n − um−1,nζm−1,n
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)
Each of the terms on the right consists of a pair of opposite signs with m or n indices differing by 2. Thus, it is clear that
alternate terms cancel in the summation for all m, n provided that boundary conditions are periodic.

13.3. The Euler backward method of finite differencing the advection equation is a two-step method consisting of a forward
prediction step followed by a backward corrector step. In the notation of Section 13.2.2, the complete cycle is thus
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defined by

q̂∗m − q̂m,s = −
σ

2

(
q̂m+1,s − q̂m−1,s

)
q̂m,s+1 − q̂m,s = −

σ

2

(
q̂∗m+1 − q̂∗m−1

)
,

where q̂∗m is the first guess for time step s+1. Use the method of Section 13.2.3 to determine the necessary condition for
stability of this method.

Solution: Let q̂∗m = As exp(ipm); q̂m,s = Bs exp(ipm). Then substituting into the above equations gives As
− Bs

=

−Bs (σ i sin p); Bs+1
− Bs

= −As (σ i sin p), where we have used the fact that 2i sin p = exp (ip) + exp (−ip). Thus,
eliminating As, we get Bs+1

= Bs [1− (σ i sin p) (1− σ i sin p)]. Letting µ = σ sin p, we obtain B = 1 − iµ (1− iµ) =
1− iµ− µ2. But |B| = |1− iµ− µ2

| ≤ 1 for stability, which requires µ2
≤ 1, so σ ≤ 1.

13.4. Carry out truncation error analyses analogous to that of Table 13.1 for the centered difference approximation to the
advection equation but for the cases σ = 0.95 and σ = 0.25.

Solution: For σ = 0.95

L/δx p θp c′/c |D|/|C|

2 π π − ∞

4 π/2 1.253 0.840 0.524
8 π/4 0.737 0.988 0.149

16 π/8 0.372 0.997 0.035
32 π/16 0.186 0.997 0.009

For σ = 0.25

L/δx p θp c′/c |D|/|C|

2 π π − ∞

4 π/2 0.253 0.644 0.016
8 π/4 0.178 0.907 0.008

16 π/8 0.096 0.976 0.002
32 π/16 0.049 0.994 0.001

13.5. Suppose that the streamfunction ψ is given by a single sinusoidal wave ψ(x) = A sin(kx). Find an expression for the error
of the finite difference approximation ∂2ψ/∂x2

≈ (ψm+1 − 2ψm + ψm−1)/(δx)2 for kδx = π/8, π/4, π/2, and π . Here
x = mδx with m = 0, 1, 2, . . . .

Solution: ∂2ψ/∂x2
= −Ak2 sin kx = −Ak2 sin kmδx, but

ψm+1 − 2ψm + ψm−1 = A[sin k(m+ 1)δx− 2 sin kmδx+ sin k(m− 1)δx]

= 2A sin mkδx(cos kδx− 1).

Thus, the fractional error= 1− [2A sin mkδx(1− cos kδx)(δx)−2](Ak2 sin kmδx)−1
= 1−2k−2(δx)−2(1− cos kδx), which

gives errors of 0.0128, 0.050, 0.189, and 0.595 for kδx = π/8, π/4, π/2, and π , respectively.

13.6. Using the method given in Section 13.2.3, evaluate the computational stability of the following two finite difference
approximations to the one-dimensional advection equation:

(a) ζ̂m,s+1 − ζ̂m,s = −σ
(
ζ̂m,s − ζ̂m−1,s

)
(b) ζ̂m,s+1 − ζ̂m,s = −σ

(
ζ̂m+1,s − ζ̂m,s

)
where σ = cδt/δx > 0. (The schemes labeled (a) and (b) are referred to as upstream and downstream differencing, respec-
tively.) Show that scheme (a) damps the advected field, and compute the fractional damping rate per time step for σ = 0.25
and kδx = π/8 for a field with the initial form ζ = exp(ikx).

Solution: Let ζ̂m,r =Vr exp(ikmd), where d= δx. Then upstream differencing gives Vr+1 − Vr = − σVr(1− e−ikd),
Vr+1 = Vr[1− σ(1− e−ikd)], which implies that |1− σ(1− e−ikd)| ≤ 1 for stability. Thus, [1− σ(1− cos kd)]2

+
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σ 2(sin kd)2≤ 1 or 1 − 2σ(1− cos kd) + σ 2(1+ cos2 kd + sin2 kd − 2 cos kd) = 1 − 2σ(1− cos kd)(1− σ) ≤ 1, which
implies that σ ≤ 1 for stability.
Downstream differencing gives Vr+1=Vr[1− σ(eikd

− 1)], which implies that we need |1− σ(eikd
− 1)|2=

(1− σ cos kd + σ)2 + (σ sin kd)2 ≤ 1 for stability. Thus, 1 + 2σ(1− cos kd) + σ 2(1− cos kd)2 + σ 2(sin kd)2 ≤ 1.
But this expression is false for all real values of σ . Thus, the scheme is absolutely unstable.
The fractional damping rate for upstream differencing is given by |Vr+1/Vr| = |1− σ(1− e−ikd)|. For kd = π/8 and
σ = 0.25 this gives 0.985, so that amplitude decreases by the fraction 1− 0.985 = 0.015 per time step.

13.7. Using a staggered horizontal grid analogous to that shown in Figure 13.5 (but for an equatorial β-plane geometry) express
the linearized shallow water equations (11.27)–(11.29) in finite difference form.

Solution: The staggered grid system has the following arrangement:

Vm−1,n+1 Vm,n+1 Vm+1,n+1

8m−1,n Um,n 8m,n Um+1,n 8m+1,n

Vm−1,n Vm,n Vm+1,n

8m−1,n−1 Um,n−1 8m,n−1 Um+1,n−1 8m+1,n−1

Vm−1,n−1 Vm,n−1 Vm+1,n−1

Define mean and difference fields as follows for all variables:

G
x
(m+ 1/2, n) ≡

1

2
[G(m+ 1, n)+ G(m, n)]

δxG(m+ 1/2, n) ≡
1

δx
[G(m+ 1, n)− G(m, n)]

(with analogous definitions for G
y

and δyG). Then (11.29)–(11.31) can be written as

δtu(m, n) = βynv
xy
(m− 1/2, n+ 1/2)− δx8(m− 1/2, n)

δtv(m, n) = −βyn−1/2uxy
(m+ 1/2, n− 1/2)− δy8(m, n− 1/2)

δt8(m, n) = −ghe[δxu(m+ 1/2, n)+ δyv(m, n+ 1/2)]

(where δtG stands for a suitable time differencing scheme).

13.8. Verify the equality

(
1− i tan θp

1+ i tan θp

)
= exp(−2iθp)

given in (13.22).

Solution:

1− i tan θ

1+ i tan θ
=

cos θ − i sin θ

cos θ + i sin θ
=

e−iθ

e+iθ
= e−2iθ

13.9. Compute the ratio of the numerical phase speed to the true phase speed, c′/c, for the implicit differencing scheme of (13.19)
for p = π , π/2, π/4, π/8, and π/16. Let σ = 0.75 and σ = 1.25. Compare your results to those of Table 13.1.

Solution: Now, θp = tan−1[σ(sin p)/2], and from below (13.23),

c′/c = (2θp)/(ckδt) = (2θp)/(σp).
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σ = 0.75 σ = 1.25

L /δx p θp c’ /c θp c’ /c

2 π π – π –
4 π/2 0.359 0.609 0.559 0.569
8 π/4 0.259 0.880 0.416 0.848

16 π/8 0.143 0.968 0.235 0.957
32 π/16 0.073 0.992 0.121 0.989

13.10. Using the technique of Section 13.2.1, show that the following 4-point difference formula is of fourth order accuracy:

ψ ′(x0) ≈
4

3

(
ψ(x0 + δx)− ψ(x0 − δx)

2δx

)
−

1

3

(
ψ(x0 + 2δx)− ψ(x0 − 2δx)

4δx

)
Solution: Subtracting (13.3) from (13.2) gives

ψ(x0 + δx)− ψ(x0 − δx) = ψ
′(x0)(2δx)+ ψ

′′′(x0)
(δx)3

3
+ O

[
(δx)5

]
, (1)

while applying the same formula for the interval 2δx yields

ψ(x0 + 2δx)− ψ(x0 − 2δx) = ψ ′(x0)(4δx)+ ψ
′′′(x0)

(2δx)3

3
+ O

[
(2δx)5

]
. (2)

Now taking 1/6 of (2) plus 4/3 of (1) and solving for ψ ′(x0) gives

ψ ′(x0) =
4

3

[
ψ(x0 + δx)− ψ(x0 − δx)

2δx

]
−

1

3

[
ψ(x0 + 2δx)− ψ (x0 − 2δx)

4δx

]
+ O

[
(δx)4

]
,

which is the desired result.

13.11. The Dufort-Frankel method for approximating the one-dimensional diffusion equation

∂q

∂t
= K

∂2q

∂x2

can be expressed in the notation of Section 13.2.2 as

q̂m,s+1 = q̂m,s−1 + r[q̂m+1,s − (q̂m,s+1 + q̂m,s−1)+ q̂m−1,s],

where r ≡ 2Kδt/(δx)2. Show that this scheme is an explicit differencing scheme and that it is computationally stable for
all values of δt.

Solution: By rearranging terms, the above difference equation can be expressed as (1+ r)q̂m,s+1 = (1− r)q̂m,s−1 +

r[q̂m+1,s + q̂m−1,s]. This is an explicit algorithm, since q̂m,s+1 depends only on values at times s and s − 1. To examine
stability, we let q̂m,s = Bs exp(ipm), and substitute into the difference equation to get
(1+ r)B2

= (1− r)+ Br(eip
+ e−ip), so that B2

−
(2r cos p)
(1+r) B− (1−r)

(1+r) = 0.

Thus, B =
(

r cos p
1+r

)
±

1
(1+r) [1− r2 sin2 p]1/2.

The largest magnitude of B occurs for p = π , in which case B = −1, so the system is unconditionally computationally
stable.




