Middle Atmosphere Dynamics

12.1.

12.2.

12.3.
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Suppose that temperature increases linearly with height in the layer between 20 and 50 km at a rate of 2 Kkm™!. If the
temperature is 200 K at 20 km, find the value of the scale height H for which the log-pressure height z coincides with
actual height at 50 km. (Assume that z coincides with the actual height at 20 km and let g be a constant.)

Solution: Recalling that d® = gdz, we get integrating equation (10.3):

ZET % = (%) fzz{ Dz*, where 79 = z; = 20kmand T = To + y (z — z0) with y =2 x 1073 Km~!. Thus, % (z*} - zg) =

8 In | oty =20 £k : _ _RE -y  _ 287x30x2 _ .
v ln[ To ], so to have 7z — z; = 30km, we require H = gln[T‘)*VT(“ZO)] = s 1n(%) = 6697 m. (This scale
0

height corresponds to a mean temperature of 7 = 229 K.)

Find the Rossby critical velocities for zonal wave numbers 1, 2, and 3 (i.e., for 1, 2, and 3 wavelengths around a latitude
circle). Let the motion be referred to a B-plane centered at 45°N, scale height H = 7 km, buoyancy frequency N =
2 x 10725~ !, and infinite meridional scale (1=0).

Solution: From (12.16) U, = B [k? + f2/(4N?H?)]™" where I = 0. But here k = s/(acos$) and B = 2Qcos ¢ /a.
Thus, U, = 1.619 x 1011 [? (4.93 x 10714) 4 1.356 x 10~13]"" . Then,

S Uc (m/s)
1 87.5
2 48.7
3 28.0

Suppose that a stationary linear Rossby wave is forced by flow over sinusoidal topography with height i (x) = hg cos(kx),
where hg is a constant and k is the zonal wavenumber. Show that the lower boundary condition on the streamfunction ¥
can be expressed in this case as

(v /9z) = —hN* [fo.

Using this boundary condition and an appropriate upper boundary condition, solve for ¥ (x, z) in the case |m| > (1 / 2H )

using the equations of Section 12.3.1. How does the position of the trough relative to the mountain ridge depend on the
; 2

sign of m=~?

Solution: Now for topographic forcing w' = udh / dx at z = 0. From the linearized form of the adiabatic thermodynamic
energy equation [see (8.46)], we then have at z = 0:

([% + ﬁda—x) 38%/ = —wN? = —Nzﬁ%. But ® = fyy’/, so the lower boundary condition can be expressed for stationary
waves (0/0t = 0) as:
W Mh_ —% cos (kx) . But from (12.13),

¥’ (x,z) = Re{Aexp [i(kx + mz) + z/ZH]} where A is a complex constant. And m is given by (12.15). The lower

boundary condition then permits determination of A:
’ 2

% :Re{(im + #)Aexp(ikx)} = - NT:’O cos(kx), at z=0. Thus, for m*>0 and |m| > 1/2H, Y (x,2) =
Nhy -

- WOO sin (kx + mz) exp(%).

For m* < 0 and |m| > 1/2H, ¥ (x,2) = II\Z—G’%’ cos(kx) exp(% — |m|z)

An Introduction to Dynamic Meteorology, Solutions Manual
Copyright © 2013 Elsevier Inc. All rights reserved.

(Chapter 12>7



Solutions Manual

Thus, in the former case the wave propagates vertically and there is a lee-side trough, while in the latter the geopotential
ridge coincides with the mountain ridge and the wave energy decays with height.

12.4. Consider a very simple model of a steady state mean meridional circulation for zonally symmetric flow in a midlatitude
channel bounded by walls at y = 0, 7/l and z = 0, /m. We assume that the zonal mean zonal flow u is in thermal wind
balance and that the eddy momentum and heat fluxes vanish. For simplicity we let po = 1 (Boussinesq approximation),
and let the zonal force owing to small-scale motions be represented by a linear drag: X = —yu. We assume that the
diabatic heating has the form J /c, = (H /R) Jy cos Iy sin mz, and we let N and f be constants. Egs. (12.1), (12.2), (12.3),
and (12.4) then yield the following:

—fov* = —yu @)

+N?*HR™'%w* = +7 /¢, (ii)
ax* ax*

— 5( T aX (iiia,b)
z Y

fodu/dz+RH'T /9y = 0 @iv)

Assuming that there is no flow through the walls, solve for the residual circulation defined by X, v*, and w*.

Solution: From (ii), we immediately get w* = (Jo/N?) cos (Iy) sin (mz). Then from (iii), x* = (JoN~2I~1) sin(ly) sin(mz)
and 7* = —(Jo /N?) (m/1) sin (Iy) cos (mz).

12.5. For the situation of problem 12.4 solve for the steady state zonal wind and temperature fields % and T.

Solution: Now from equation (i) of problem 12.4 we find that u = <f70) 7* = —(fy‘)) (%) (%) sin (ly) cos (mz). And

_ 2
application of the thermal wind equation then gives T = (f% (%) (1%) (%)2 cos (Iy) sin (mz).

12.6. Find the geopotential and vertical velocity fluctuations for a Kelvin wave of zonal wave number 1, phase speed 40 m s~ !,

and zonal velocity perturbation amplitude 5 m s™'. Let N> = 4 x 10~%s72.

Solution: From (12.38) ® = u'(v/k) = u'c, so |®'| = (40)(5) = 200m?s~? From (12.37) w ~ (vm/N?)®’
since |m| > 1/(2H). Also, v = ck = cs/a, where s is the planetary wavenumber. Now, m* ~ (N /c)2 =
4 x 107* /1600 = 25 x 1078, so that |m| = 5 x 10~*m™". Substituting into the formula for vertical velocity:

W] = (40) (6.37 x 106)_1 (5 x 10—4> (200) (4 X 10—4) 157 %10 ms!

12.7. For the situation of Problem 12.6 compute the vertical momentum flux M = pou’w’. Show that M is constant with height.

Solution: Now by definition: pg = ps exp(—z* / 2H). Thus,
M = psexp(—z* /H) u'w'. But u' =Uycos (kx + mz — vt) exp(+z* /2H), and from Problem 12.6, w' = (c’km/N?)
Up cos (kx + mz — vr) exp(+z*/2H). Thus, for ps = 1kg m3

U2c%km (5)? (40)% (5 x 107%) (0.5)
M= ( 0N2 ) cost (et vy = (6.37 x 10°) (4 x 1074)

=3.92x 103 kgm's7!
12.8. Determine the form for the vertical velocity perturbation for the Rossby-gravity wave corresponding to the «’, v/, and @’
perturbations given in (12.44).

Solution: From (12.37) and (12.44), and with |m| > 1/(2H):

2

: 2
WA —(vm/Nz) S =—9 (”])v;n)yexp |:—/3 l;;\']y i|
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Solutions Manual

For a Rossby-gravity wave of zonal wave number 4 and phase speed —20 m s™!, determine the latitude at which the
vertical momentum flux M = pou’w’ is a maximum.

Solution: From problem 12.8 and equation (12.44): u'w’ = Ay® exp [—ﬂ‘%—‘yz], where A is a constant. Then du'w’ / dy =

0 — Y2 (B1m|/N) =1, 0r ymax = £08~" (1 +ku/f3)*‘/2, where v = ck = ¢s/a = (—20) (4) (6.37 x 106) " s~

_ cs _ +20 x 4 _ o .
Thus, ymax = :I:2Q<1 +0.5sv/Q) = a5 10-) 066 = +677.7km, or about 6° latitude north and south of the

equator.

Suppose that the mean zonal wind shear in the descending westerlies of the equatorial QBO can be represented analytically
on the equatorial B-plane in the form du / 0z = Aexp (— y? / Lz), where L = 1200km. Determine the approximate
meridional dependence of the corresponding temperature anomaly for |y| < L.

Solution: From (12.45) 2

y-dependence as follows:

oy 2 = —f%[ g—z = —ﬁH—A exp ( i ) An approximate solution can be obtained by expanding the

T =Ty+Tiexp (—yz/L2) + 1> (yz/Lz) exp (—yz/L2> + higher-order terms,

where Ty, T1, and T, are Constants Substituting into the above equation and equating terms with the same y dependence

2
gives L—22 (T1 —Th) = ’SHA and — T2 + I%Tl — Z‘—4T2 = 0. Thus, T = T1 and T = ( ) ﬁHIQ\L exp (Z—yz)

Estimate the TEM residual vertical velocity in the westerly shear zone of the equatorial QBO assuming that radiative
cooling can be approximated by Newtonian cooling with a 20-day relaxation time, the vertical shear is 20 m s~ ! per 5 km,
and the meridional half-width is 12° latitude.

Solution: In this case the temperature tendency term can be neglected, and (12 2) is an approximate balance between
adiabatic warming and Newtonian cooling: (NH/R)w* ~ J/c, = —a (T — Tp). But from Problem 12.10, near the

equator we have T — T ~ +’3HAL ( ) ex p( 2) Thus, W* ~ _aﬁN_Asz (6) exp (_ﬁ>
Now, @ = 1/20 days = 5.8 x 1077571, So,

(5/6) (5.8 x 1077) (2.29 x 101 (4 x 1073) (1.33 x 10°)’
(4 x 1074)

Wt —

= —1.96 x 1074ms*1,

orw* &~ —16.9 mday*1 at the equator. (Note that there is subsidence corresponding to the westerly shear phase of the
QBO.)





