
Chapter 12

Middle Atmosphere Dynamics

12.1. Suppose that temperature increases linearly with height in the layer between 20 and 50 km at a rate of 2 K km−1. If the
temperature is 200 K at 20 km, find the value of the scale height H for which the log-pressure height z coincides with
actual height at 50 km. (Assume that z coincides with the actual height at 20 km and let g be a constant.)

Solution: Recalling that d8 = gdz, we get integrating equation (10.3):∫ zT
z0

gdz
T =

( R
H

) ∫ z∗T
z∗0

Dz∗, where z0 = z∗0 = 20 km and T = T0 + γ (z− z0) with γ = 2× 10−3 K m−1. Thus, R
H

(
z∗T − z∗0

)
=

g
γ

ln
[

T0+γ (z−z0)
T0

]
, so to have z∗T − z∗0 = 30 km, we require H =

R(z∗T − z∗0)γ

g ln
[

T0 + γ (z− z0)
T0

] = 287× 30× 2

9.8× ln
(

260
200

) = 6697 m. (This scale

height corresponds to a mean temperature of T = 229 K.)

12.2. Find the Rossby critical velocities for zonal wave numbers 1, 2, and 3 (i.e., for 1, 2, and 3 wavelengths around a latitude
circle). Let the motion be referred to a β-plane centered at 45◦N, scale height H = 7 km, buoyancy frequency N =
2× 10−2 s−1, and infinite meridional scale (l = 0).

Solution: From (12.16) Uc = β
[
k2
+ f 2

0

/(
4N2H2

)]−1
where l = 0. But here k = s

/
(a cosφ) and β = 2� cosφ

/
a.

Thus, Uc = 1.619× 10−11
[
s2
(
4.93× 10−14

)
+ 1.356× 10−13

]−1
. Then,

s Uc (m/s)

1 87.5
2 48.7
3 28.0

12.3. Suppose that a stationary linear Rossby wave is forced by flow over sinusoidal topography with height h(x) = h0 cos(kx),
where h0 is a constant and k is the zonal wavenumber. Show that the lower boundary condition on the streamfunction ψ
can be expressed in this case as (

∂ψ
/
∂z
)
= −hN2/f0.

Using this boundary condition and an appropriate upper boundary condition, solve for ψ(x, z) in the case |m| �
(
1
/

2H
)

using the equations of Section 12.3.1. How does the position of the trough relative to the mountain ridge depend on the
sign of m2?

Solution: Now for topographic forcing w′ = u∂h
/
∂x at z = 0. From the linearized form of the adiabatic thermodynamic

energy equation [see (8.46)], we then have at z = 0:(
∂
∂t + u ∂

∂x

)
∂8′

∂z = −w′N2
= −N2u ∂h

∂x . But 8′ = f0ψ ′, so the lower boundary condition can be expressed for stationary
waves

(
∂
/
∂t = 0

)
as:

∂ψ ′

∂z = −
N2h
f0
= −

N2h0
f0

cos (kx) . But from (12.13),

ψ ′ (x, z) = Re{A exp
[
i(kx+ mz)+ z

/
2H
]
} where A is a complex constant. And m is given by (12.15). The lower

boundary condition then permits determination of A:
∂ψ ′

∂z =Re
{(

im+ 1
2H

)
A exp(ikx)

}
= −

N2h0
f0

cos(kx) , at z= 0. Thus, for m2> 0 and |m| � 1
/

2H, ψ ′ (x, z) =

−
N2h0
mf0

sin (kx+ mz) exp
( z

2H

)
.

For m2 < 0 and |m| � 1
/

2H, ψ ′ (x, z) = N2h0
|m|f0

cos(kx) exp
( z

2H − |m| z
)
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Thus, in the former case the wave propagates vertically and there is a lee-side trough, while in the latter the geopotential
ridge coincides with the mountain ridge and the wave energy decays with height.

12.4. Consider a very simple model of a steady state mean meridional circulation for zonally symmetric flow in a midlatitude
channel bounded by walls at y = 0, π/l and z = 0, π/m. We assume that the zonal mean zonal flow u is in thermal wind
balance and that the eddy momentum and heat fluxes vanish. For simplicity we let ρ0 = 1 (Boussinesq approximation),
and let the zonal force owing to small-scale motions be represented by a linear drag: X = −γ u. We assume that the
diabatic heating has the form J

/
cp =

(
H
/

R
)

J0 cos ly sin mz, and we let N and f be constants. Eqs. (12.1), (12.2), (12.3),
and (12.4) then yield the following:

−f0v
∗
= −γ u (i)

+N2HR−1w∗ = +J
/

cp (ii)

v∗ = −
∂χ∗

∂z
; w∗ =

∂χ∗

∂y
(iiia,b)

f0∂u
/
∂z+ RH−1∂T

/
∂y = 0 (iv)

Assuming that there is no flow through the walls, solve for the residual circulation defined by χ∗, v∗, and w∗.

Solution: From (ii), we immediately get w∗ =
(
J0
/

N2
)

cos (ly) sin (mz). Then from (iii), χ∗ =
(
J0N−2l−1

)
sin(ly) sin(mz)

and v∗ = −
(
J0
/

N2
) (

m
/

l
)

sin (ly) cos (mz).

12.5. For the situation of problem 12.4 solve for the steady state zonal wind and temperature fields u and T .

Solution: Now from equation (i) of problem 12.4 we find that u =
(

f0
γ

)
v∗ = −

(
f0
γ

) (
J0
N2

) (m
l

)
sin (ly) cos (mz). And

application of the thermal wind equation then gives T =

(
f 2
0
γ

) (H
R

) ( J0
N2

) (m
l

)2 cos (ly) sin (mz).

12.6. Find the geopotential and vertical velocity fluctuations for a Kelvin wave of zonal wave number 1, phase speed 40 m s−1,
and zonal velocity perturbation amplitude 5 m s−1. Let N2

= 4× 10−4 s−2.

Solution: From (12.38) 8′ = u′
(
ν
/

k
)
= u′c, so

∣∣8′∣∣ = (40)(5) = 200 m2 s−2 From (12.37) w′ ≈
(
νm
/

N2
)
8′

since |m| � 1
/
(2H). Also, ν = ck = cs

/
a, where s is the planetary wavenumber. Now, m2

≈
(
N
/

c
)2
=

4× 10−4
/

1600 = 25× 10−8, so that |m| = 5× 10−4 m−1. Substituting into the formula for vertical velocity:∣∣w′∣∣ = (40)
(

6.37× 106
)−1 (

5× 10−4
)
(200)

(
4× 10−4

)−1
= 1.57× 10−3 m s−1

12.7. For the situation of Problem 12.6 compute the vertical momentum flux M ≡ ρ0u′w′. Show that M is constant with height.

Solution: Now by definition: ρ0 = ρs exp
(
−z∗

/
2H
)
. Thus,

M= ρs exp
(
−z∗

/
H
)

u′w′. But u′=U0 cos (kx+ mz− νt) exp
(
+z∗

/
2H
)
, and from Problem 12.6, w′=

(
c2km

/
N2
)

U0 cos (kx+ mz− νt) exp
(
+z∗

/
2H
)
. Thus, for ρs = 1 kg m−3

M = ρs

(
U2

0c2km

N2

)
cos2 (kx+ mz− νt) =

(5)2 (40)2
(
5× 10−4

)
(0.5)(

6.37× 106
) (

4× 10−4
)

= 3.92× 10−3 kg m−1s−1

12.8. Determine the form for the vertical velocity perturbation for the Rossby-gravity wave corresponding to the u′, v′, and 8′

perturbations given in (12.44).

Solution: From (12.37) and (12.44), and with |m| � 1
/
(2H):

ŵ ≈ −
(
νm
/

N2
)
8̂ = −v̂

(
iν2m

N2

)
y exp

[
−
β |m| y2

2N

]



52 Solutions Manual

12.9. For a Rossby-gravity wave of zonal wave number 4 and phase speed –20 m s−1, determine the latitude at which the
vertical momentum flux M ≡ ρ0u′w′ is a maximum.

Solution: From problem 12.8 and equation (12.44): u′w′ = Ay2 exp
[
−
β|m|y2

N

]
, where A is a constant. Then ∂u′w′

/
∂y =

0 → y2
(
β |m|

/
N
)
= 1, or ymax = ±νβ

−1
(
1+ kν

/
β
)−1
/

2
, where ν = ck = cs

/
a = (−20) (4)

(
6.37× 106

)−1
s−1.

Thus, ymax = ±
cs

2�
(

1+ 0.5sν
/
�
)1/2 =

±20× 4
(1.458× 10−4)(0.664)1/2

= ±677.7 km, or about 6◦ latitude north and south of the

equator.

12.10. Suppose that the mean zonal wind shear in the descending westerlies of the equatorial QBO can be represented analytically
on the equatorial β-plane in the form ∂u

/
∂z = 3 exp

(
−y2

/
L2
)
, where L = 1200 km. Determine the approximate

meridional dependence of the corresponding temperature anomaly for |y| �L.

Solution: From (12.45) ∂
2T
∂y2 = −

βH
R
∂u
∂z = −

βH3
R exp

(
−

y2

L2

)
. An approximate solution can be obtained by expanding the

y-dependence as follows:

T = T0 + T1 exp
(
−y2/L2

)
+ T2

(
y2/L2

)
exp

(
−y2/L2

)
+ higher-order terms,

where T0, T1, and T2 are constants. Substituting into the above equation and equating terms with the same y dependence

gives 2
L2 (T1 − T2) =

βH3
R and − 6

L4 T2 +
4

L4 T1 −
4

L4 T2 = 0. Thus, T2 =
4

10 T1 and T1 =
( 5

6

) βH3L2

R exp
(
−y2

L2

)
.

12.11. Estimate the TEM residual vertical velocity in the westerly shear zone of the equatorial QBO assuming that radiative
cooling can be approximated by Newtonian cooling with a 20-day relaxation time, the vertical shear is 20 m s−1 per 5 km,
and the meridional half-width is 12◦ latitude.

Solution: In this case the temperature tendency term can be neglected, and (12.2) is an approximate balance between
adiabatic warming and Newtonian cooling:

(
N2H

/
R
)

w∗ ≈ J
/

cp = −α
(
T − T0

)
. But from Problem 12.10, near the

equator we have T − T0 ≈ +
βH3L2

R

( 5
6

)
exp

(
−

y2

L2

)
. Thus, w∗ ≈ −αβ3L2

N2

( 5
6

)
exp

(
−

y2

L2

)
.

Now, α = 1/20 days = 5.8× 10−7 s−1. So,

w∗ ≈ −

(
5
/

6
) (

5.8× 10−7
) (

2.29× 10−11
) (

4× 10−3
) (

1.33× 106
)2(

4× 10−4
) = −1.96× 10−4 m s−1,

or w∗ ≈ −16.9 m day−1 at the equator. (Note that there is subsidence corresponding to the westerly shear phase of the
QBO.)




