Middle Atmosphere Dynamics

12.1. Suppose that temperature increases linearly with height in the layer between 20 and 50 km at a rate of $2 \mathrm{Kkm}^{-1}$. If the temperature is 200 K at 20 km , find the value of the scale height H for which the log-pressure height z coincides with actual height at 50 km . (Assume that z coincides with the actual height at 20 km and let g be a constant.)
Solution: Recalling that $d \Phi=g d z$, we get integrating equation (10.3):
$\int_{z_{0}}^{z_{T}} \frac{g d z}{T}=\left(\frac{R}{H}\right) \int_{z_{0}^{*}}^{z_{T}^{*}} D z^{*}$, where $z_{0}=z_{0}^{*}=20 \mathrm{~km}$ and $T=T_{0}+\gamma\left(z-z_{0}\right)$ with $\gamma=2 \times 10^{-3} \mathrm{Km}^{-1}$. Thus, $\frac{R}{H}\left(z_{T}^{*}-z_{0}^{*}\right)=$ $\frac{g}{\gamma} \ln \left[\frac{T_{0}+\gamma\left(z-z_{0}\right)}{T_{0}}\right]$, so to have $z_{T}^{*}-z_{0}^{*}=30 \mathrm{~km}$, we require $H=\frac{R\left(z_{T}^{*}-z_{0}^{*}\right) \gamma}{g \ln \left[\frac{T_{0}+\gamma\left(z-z_{0}\right)}{T_{0}}\right]}=\frac{287 \times 30 \times 2}{9.8 \times \ln \left(\frac{260}{200}\right)}=6697 \mathrm{~m}$. (This scale height corresponds to a mean temperature of $T=229 \mathrm{~K}$.)
12.2. Find the Rossby critical velocities for zonal wave numbers 1,2 , and 3 (i.e., for 1,2 , and 3 wavelengths around a latitude circle). Let the motion be referred to a β-plane centered at $45^{\circ} \mathrm{N}$, scale height $H=7 \mathrm{~km}$, buoyancy frequency $N=$ $2 \times 10^{-2} \mathrm{~s}^{-1}$, and infinite meridional scale $(l=0)$.

Solution: From (12.16) $U_{c}=\beta\left[k^{2}+f_{0}^{2} /\left(4 N^{2} H^{2}\right)\right]^{-1}$ where $l=0$. But here $k=s /(a \cos \phi)$ and $\beta=2 \Omega \cos \phi / a$. Thus, $U_{c}=1.619 \times 10^{-11}\left[s^{2}\left(4.93 \times 10^{-14}\right)+1.356 \times 10^{-13}\right]^{-1}$. Then,

\mathbf{s}	$\boldsymbol{U}_{\boldsymbol{c}}(\mathbf{m} / \mathbf{s})$
1	87.5
2	48.7
3	28.0

12.3. Suppose that a stationary linear Rossby wave is forced by flow over sinusoidal topography with height $h(x)=h_{0} \cos (k x)$, where h_{0} is a constant and k is the zonal wavenumber. Show that the lower boundary condition on the streamfunction ψ can be expressed in this case as

$$
(\partial \psi / \partial z)=-h N^{2} / f_{0}
$$

Using this boundary condition and an appropriate upper boundary condition, solve for $\psi(x, z)$ in the case $|m| \gg(1 / 2 H)$ using the equations of Section 12.3.1. How does the position of the trough relative to the mountain ridge depend on the sign of m^{2} ?

Solution: Now for topographic forcing $w^{\prime}=\bar{u} \partial h / \partial x$ at $z=0$. From the linearized form of the adiabatic thermodynamic energy equation [see (8.46)], we then have at $z=0$:
$\left(\frac{\partial}{\partial t}+\bar{u} \frac{\partial}{\partial x}\right) \frac{\partial \Phi^{\prime}}{\partial z}=-w^{\prime} N^{2}=-N^{2} \bar{u} \frac{\partial h}{\partial x}$. But $\Phi^{\prime}=f_{0} \psi^{\prime}$, so the lower boundary condition can be expressed for stationary waves $(\partial / \partial t=0)$ as:
$\frac{\partial \psi^{\prime}}{\partial z}=-\frac{N^{2} h}{f_{0}}=-\frac{N^{2} h_{0}}{f_{0}} \cos (k x)$. But from (12.13),
$\psi^{\prime}(x, z)=\operatorname{Re}\{A \exp [i(k x+m z)+z / 2 H]\}$ where A is a complex constant. And m is given by (12.15). The lower boundary condition then permits determination of A :
$\frac{\partial \psi^{\prime}}{\partial z}=\operatorname{Re}\left\{\left(i m+\frac{1}{2 H}\right) A \exp (i k x)\right\}=-\frac{N^{2} h_{0}}{f_{0}} \cos (k x)$, at $z=0$. Thus, for $m^{2}>0$ and $|m| \gg 1 / 2 H, \quad \psi^{\prime}(x, z)=$ $-\frac{N^{2} h_{0}}{m f_{0}} \sin (k x+m z) \exp \left(\frac{z}{2 H}\right)$.
For $m^{2}<0$ and $|m| \gg 1 / 2 H, \psi^{\prime}(x, z)=\frac{N^{2} h_{0}}{|m| f_{0}} \cos (k x) \exp \left(\frac{z}{2 H}-|m| z\right)$

Thus, in the former case the wave propagates vertically and there is a lee-side trough, while in the latter the geopotential ridge coincides with the mountain ridge and the wave energy decays with height.
12.4. Consider a very simple model of a steady state mean meridional circulation for zonally symmetric flow in a midlatitude channel bounded by walls at $y=0, \pi / l$ and $z=0, \pi / m$. We assume that the zonal mean zonal flow \bar{u} is in thermal wind balance and that the eddy momentum and heat fluxes vanish. For simplicity we let $\rho_{0}=1$ (Boussinesq approximation), and let the zonal force owing to small-scale motions be represented by a linear drag: $\bar{X}=-\gamma \bar{u}$. We assume that the diabatic heating has the form $J / c_{p}=(H / R) J_{0} \cos l y \sin m z$, and we let N and f be constants. Eqs. (12.1), (12.2), (12.3), and (12.4) then yield the following:

$$
\begin{gather*}
-f_{0} \bar{v}^{*}=-\gamma \bar{u} \tag{i}\\
+N^{2} H R^{-1} \bar{w}^{*}=+\bar{J} / c_{p} \tag{ii}\\
\bar{v}^{*}=-\frac{\partial \bar{\chi}^{*}}{\partial z} ; \quad \bar{w}^{*}=\frac{\partial \bar{\chi}^{*}}{\partial y} \tag{iiia,b}\\
f_{0} \partial \bar{u} / \partial z+R H^{-1} \partial \bar{T} / \partial y=0 \tag{iv}
\end{gather*}
$$

Assuming that there is no flow through the walls, solve for the residual circulation defined by $\bar{\chi}^{*}, \bar{v}^{*}$, and \bar{w}^{*}.
Solution: From (ii), we immediately get $\bar{w}^{*}=\left(J_{0} / N^{2}\right) \cos (l y) \sin (m z)$. Then from (iii), $\bar{\chi}^{*}=\left(J_{0} N^{-2} l^{-1}\right) \sin (l y) \sin (m z)$ and $\bar{v}^{*}=-\left(J_{0} / N^{2}\right)(m / l) \sin (l y) \cos (m z)$.
12.5. For the situation of problem 12.4 solve for the steady state zonal wind and temperature fields \bar{u} and \bar{T}.

Solution: Now from equation (i) of problem 12.4 we find that $\bar{u}=\left(\frac{f_{0}}{\gamma}\right) \bar{v}^{*}=-\left(\frac{f_{0}}{\gamma}\right)\left(\frac{J_{0}}{N^{2}}\right)\left(\frac{m}{l}\right) \sin (l y) \cos (m z)$. And application of the thermal wind equation then gives $\bar{T}=\left(\frac{f_{0}^{2}}{\gamma}\right)\left(\frac{H}{R}\right)\left(\frac{J_{0}}{N^{2}}\right)\left(\frac{m}{l}\right)^{2} \cos (l y) \sin (m z)$.
12.6. Find the geopotential and vertical velocity fluctuations for a Kelvin wave of zonal wave number 1, phase speed $40 \mathrm{~m} \mathrm{~s}^{-1}$, and zonal velocity perturbation amplitude $5 \mathrm{~m} \mathrm{~s}^{-1}$. Let $N^{2}=4 \times 10^{-4} \mathrm{~s}^{-2}$.

Solution: From (12.38) $\Phi^{\prime}=u^{\prime}(\nu / k)=u^{\prime} c$, so $\left|\Phi^{\prime}\right|=(40)(5)=200 \mathrm{~m}^{2} \mathrm{~s}^{-2}$ From (12.37) $w^{\prime} \approx\left(\nu m / N^{2}\right) \Phi^{\prime}$ since $|m| \gg 1 /(2 H)$. Also, $v=c k=c s / a$, where s is the planetary wavenumber. Now, $m^{2} \approx(N / c)^{2}=$ $4 \times 10^{-4} / 1600=25 \times 10^{-8}$, so that $|m|=5 \times 10^{-4} \mathrm{~m}^{-1}$. Substituting into the formula for vertical velocity:

$$
\left|w^{\prime}\right|=(40)\left(6.37 \times 10^{6}\right)^{-1}\left(5 \times 10^{-4}\right)(200)\left(4 \times 10^{-4}\right)^{-1}=1.57 \times 10^{-3} \mathrm{~m} \mathrm{~s}^{-1}
$$

12.7. For the situation of Problem 12.6 compute the vertical momentum flux $M \equiv \rho_{0} \overline{u^{\prime} w^{\prime}}$. Show that M is constant with height.

Solution: Now by definition: $\rho_{0}=\rho_{s} \exp \left(-z^{*} / 2 H\right)$. Thus,
$M=\rho_{s} \exp \left(-z^{*} / H\right) \overline{u^{\prime} w^{\prime}}$. But $u^{\prime}=U_{0} \cos (k x+m z-v t) \exp \left(+z^{*} / 2 H\right)$, and from Problem 12.6, $w^{\prime}=\left(c^{2} k m / N^{2}\right)$ $U_{0} \cos (k x+m z-v t) \exp \left(+z^{*} / 2 H\right)$. Thus, for $\rho_{s}=1 \mathrm{~kg} \mathrm{~m}^{-3}$

$$
\begin{aligned}
M & =\rho_{s}\left(\frac{U_{0}^{2} c^{2} k m}{N^{2}}\right) \overline{\cos ^{2}(k x+m z-v t)}=\frac{(5)^{2}(40)^{2}\left(5 \times 10^{-4}\right)(0.5)}{\left(6.37 \times 10^{6}\right)\left(4 \times 10^{-4}\right)} \\
& =3.92 \times 10^{-3} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}
\end{aligned}
$$

12.8. Determine the form for the vertical velocity perturbation for the Rossby-gravity wave corresponding to the u^{\prime}, v^{\prime}, and Φ^{\prime} perturbations given in (12.44).
Solution: From (12.37) and (12.44), and with $|m| \gg 1 /(2 H)$:

$$
\hat{w} \approx-\left(v m / N^{2}\right) \hat{\Phi}=-\hat{v}\left(\frac{i v^{2} m}{N^{2}}\right) y \exp \left[-\frac{\beta|m| y^{2}}{2 N}\right]
$$

12.9. For a Rossby-gravity wave of zonal wave number 4 and phase speed $-20 \mathrm{~m} \mathrm{~s}^{-1}$, determine the latitude at which the vertical momentum flux $M \equiv \rho_{0} \overline{u^{\prime} w^{\prime}}$ is a maximum.

Solution: From problem 12.8 and equation (12.44): $\overline{u^{\prime} w^{\prime}}=A y^{2} \exp \left[-\frac{\beta|m| y^{2}}{N}\right]$, where A is a constant. Then $\partial \overline{u^{\prime} w^{\prime}} / \partial y=$ $0 \rightarrow y^{2}(\beta|m| / N)=1$, or $y_{\max }= \pm \nu \beta^{-1}(1+k \nu / \beta)^{-1 / 2}$, where $v=c k=c s / a=(-20)(4)\left(6.37 \times 10^{6}\right)^{-1} \mathrm{~s}^{-1}$. Thus, $y_{\max }= \pm \frac{c s}{2 \Omega(1+0.5 \mathrm{sv} / \Omega)^{1 / 2}}=\frac{ \pm 20 \times 4}{\left(1.458 \times 10^{-4}\right)(0.664)^{1 / 2}}= \pm 677.7 \mathrm{~km}$, or about 6° latitude north and south of the equator.
12.10. Suppose that the mean zonal wind shear in the descending westerlies of the equatorial QBO can be represented analytically on the equatorial β-plane in the form $\partial u / \partial z=\Lambda \exp \left(-y^{2} / L^{2}\right)$, where $L=1200 \mathrm{~km}$. Determine the approximate meridional dependence of the corresponding temperature anomaly for $|y| \ll L$.

Solution: From (12.45) $\frac{\partial^{2} \bar{T}}{\partial y^{2}}=-\frac{\beta H}{R} \frac{\partial \bar{u}}{\partial z}=-\frac{\beta H \Lambda}{R} \exp \left(-\frac{y^{2}}{L^{2}}\right)$. An approximate solution can be obtained by expanding the y-dependence as follows:

$$
\bar{T}=T_{0}+T_{1} \exp \left(-y^{2} / L^{2}\right)+T_{2}\left(y^{2} / L^{2}\right) \exp \left(-y^{2} / L^{2}\right)+\text { higher-order terms }
$$

where T_{0}, T_{1}, and T_{2} are constants. Substituting into the above equation and equating terms with the same y dependence gives $\frac{2}{L^{2}}\left(T_{1}-T_{2}\right)=\frac{\beta H \Lambda}{R}$ and $-\frac{6}{L^{4}} T_{2}+\frac{4}{L^{4}} T_{1}-\frac{4}{L^{4}} T_{2}=0$. Thus, $T_{2}=\frac{4}{10} T_{1}$ and $T_{1}=\left(\frac{5}{6}\right) \frac{\beta H \Lambda L^{2}}{R} \exp \left(\frac{-y^{2}}{L^{2}}\right)$.
12.11. Estimate the TEM residual vertical velocity in the westerly shear zone of the equatorial QBO assuming that radiative cooling can be approximated by Newtonian cooling with a 20-day relaxation time, the vertical shear is $20 \mathrm{~m} \mathrm{~s}^{-1}$ per 5 km , and the meridional half-width is 12° latitude.
Solution: In this case the temperature tendency term can be neglected, and (12.2) is an approximate balance between adiabatic warming and Newtonian cooling: $\left(N^{2} H / R\right) \bar{w}^{*} \approx \bar{J} / c_{p}=-\alpha\left(\bar{T}-T_{0}\right)$. But from Problem 12.10, near the equator we have $\bar{T}-T_{0} \approx+\frac{\beta H \Lambda L^{2}}{R}\left(\frac{5}{6}\right) \exp \left(-\frac{y^{2}}{L^{2}}\right)$. Thus, $\bar{w}^{*} \approx-\frac{\alpha \beta \Lambda L^{2}}{N^{2}}\left(\frac{5}{6}\right) \exp \left(-\frac{y^{2}}{L^{2}}\right)$.
Now, $\alpha=1 / 20$ days $=5.8 \times 10^{-7} \mathrm{~s}^{-1}$. So,

$$
\bar{w}^{*} \approx-\frac{(5 / 6)\left(5.8 \times 10^{-7}\right)\left(2.29 \times 10^{-11}\right)\left(4 \times 10^{-3}\right)\left(1.33 \times 10^{6}\right)^{2}}{\left(4 \times 10^{-4}\right)}=-1.96 \times 10^{-4} \mathrm{~m} \mathrm{~s}^{-1}
$$

or $\bar{w}^{*} \approx-16.9 \mathrm{mday}^{-1}$ at the equator. (Note that there is subsidence corresponding to the westerly shear phase of the QBO.)

