
Chapter 11

Tropical Dynamics

11.1. Suppose that the relative vorticity at the top of an Ekman layer at 15◦N is ζ= 2× 10−5 s−1. Let the eddy viscosity
coefficient be Km= 10 m2 s−1, and the water vapor mixing ratio at the top of the Ekman layer be 12 g kg−1. Use the
method of Section 11.3 to estimate the precipitation rate owing to moisture convergence in the Ekman layer.

Solution: P = ρqw (De) = ρqζ
(

Km
2f0

)1/ 2
= (1.1)

(
12× 10−3

) (
2× 10−5

) ( 10
2×3.77×10−5

)1/2
= 9.6 × 10−5 kg m−2 s−1.

Dividing by water density ρw = 103 kg m−3 gives P/ρw = 9.6× 10−8 m s−1 or 8.3 mm/day.

11.2. As mentioned in Section 11.1.3, barotropic instability is a possible energy source for some equatorial disturbances.
Consider the following profile for an easterly jet near the equator:

u (y) = −u0 sin2 [l (y− y0)]

where u0, y0, and l are constants and y is the distance from the equator. Determine the necessary conditions for this profile
to be barotropically unstable.

Solution: β − d2u/dy2 < 0 somewhere for instability. For this case:

d u/dy = −2u0l sin [l (y− y0)] cos [l (y− y0)] , and

d2u/dy2
= 2u0l2

{
sin2 [l (y− y0)]− cos2 [l (y− y0)]

}
.

Thus, 2u0l2 > β for instability at y= y0.

11.3. Show that the nonlinear terms in the balance equation (11.15)

G (x, y) ≡ −∇2
(

1

2
∇ψ · ∇ψ

)
+∇ ·

(
∇ψ∇2ψ

)
may be written in Cartesian coordinates as

G (x, y) = 2

[(
∂2ψ/∂x2

) (
∂2ψ/∂y2

)
−

(
∂2ψ/∂x∂y

)2
]
.

Solution: Let A = −∇2
(
∇ψ·∇ψ

2

)
= −

1
2

(
∂2

∂x2 +
∂2

∂y2

) [(
∂ψ
∂x

)2
+

(
∂ψ
∂y

)2
]

= −
1

2

{
∂

∂x

[
2
∂ψ

∂x

∂2ψ

∂x2
+ 2

∂ψ

∂y

∂2ψ

∂x∂y

]
+
∂

∂y

[
2
∂ψ

∂x

∂2ψ

∂x∂y
+ 2

∂ψ

∂y

∂2ψ

∂y2

]}
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= −
∂2ψ

∂x2

∂2ψ

∂x2
−
∂ψ

∂x

∂

∂x

(
∂2ψ

∂x2

)
−

(
∂2ψ

∂x∂y

)2

−
∂ψ

∂y

∂3ψ

∂x2∂y

−

(
∂2ψ

∂x∂y

)2

−
∂ψ

∂x

∂

∂x

(
∂2ψ

∂y2

)
−

(
∂2ψ

∂y2

)2

−
∂ψ

∂y

∂

∂y

(
∂2ψ

∂y2

)

B = ∇ ·

(
∇ψ∇2ψ

)
=
∂

∂x

(
∂ψ

∂x
∇

2ψ

)
+
∂

∂y

(
∂ψ

∂y
∇

2ψ

)

=
∂2ψ

∂x2
∇

2ψ +
∂ψ

∂x

∂

∂x
∇

2ψ +
∂2ψ

∂y2
∇

2ψ +
∂ψ

∂y

∂

∂y
∇

2ψ.

The sum of A+ B = 2
[(
∂2ψ/∂x2

) (
∂2ψ/∂y2

)
−
(
∂2ψ/∂x∂y

)2]
.

11.4. With the aid of the results of Problem 11.3, show that if f is assumed to be constant, the balance equation (11.15) is
equivalent to the gradient wind equation (3.15) for a circularly symmetric regular low with geopotential perturbation
given by 8 = 80

(
x2
+ y2

)
/L2, where 80 is a constant geopotential and L a constant length scale. Hint: Assume that

ψ(x, y) has the same functional dependence on (x, y) as does 8.

Solution: For cylindrical coordinates (3.15) becomes for a regular low

V = ∂ψ
∂r = −

fr
2 ±

[(
fr
2

)2
+ r ∂8

∂r

]1/ 2

where r =
(
x2
+ y2

)1/ 2
is the distance from the center of the vortex. Thus,

8 = 80
(
r2/L2

)
, and ∂8/∂r = 2r80/L2. Thus, from (3.15) if ψ has the same dependence on r as 8:

(I) ∂ψ
∂r =

2rψ0
L2 = −

fr
2 ±

[(
fr
2

)2
+

2r280
L2

]1/ 2

.

But from (11.15) ∇28 = f∇2ψ + 2
[(
∂2ψ/∂x2

) (
∂2ψ/∂y2

)
−
(
∂2ψ/∂x∂y

)2]
, which after substituting the x and y

dependencies of 8 and ψ gives 80 = fψ0 + 2ψ2
0/L2. Solving for ψ0 gives:

(II) ψ0 = −
fL2

4 ±
1
2

[(
fL2

2

)2
+ 2L280

]1/ 2

. Comparing (I) and (II), we see that they differ by the common factor 2r/L2,

so the two expressions are proportional, as was to be shown.

11.5. Starting from the perturbation equations (11.27), (11.28), and (11.29), show that the sum of kinetic plus available potential
energy is conserved for equatorial waves. Hence, show that for the Kelvin wave there is an equipartition of energy between
kinetic and available potential energy.

Solution: Take u′ × (11.27) + v′ × (11.28) + 8′/(ghe)× (11.29). The result is 1
2
∂
∂t

(
u′2 + v′2 + 8′2

ghe

)
+

∂
∂x

(
u′8′

)
+

∂
∂y

(
v′8′

)
= 0. Averaging over a wavelength in x and for−∞ < y <∞, and using the boundary conditions that perturba-

tions vanish for |y| → ∞ yields
∫
+∞

−∞

∫ Lx
0

1
2
∂
∂t

(
u′2 + v′2 + 8′2

ghe

)
dxdy = 0. Thus, the area average

〈
u′2 + v′2 + 8′2

ghe

〉
=

Constant. For Kelvin waves the meridional velocity vanishes and from (11.43) and (11.46) 8′ =
√

gheu′, which
immediately shows that

〈
u′2
〉
=
〈
8′2/ (ghe)

〉
, so that there is equipartition of energy.

11.6. Solve for the meridional dependence of the zonal wind and geopotential perturbations for a Rossby-gravity mode in terms
of the meridional velocity distribution (11.38).

Solution: From (11.35),

8̂ =
−iνghe

ν2 − k2ghe

(
∂ v̂

∂y
−

kβ

ν
yv̂

)
=

iνghe

ν2 − k2ghe

(
β√
ghe
+

kβ

ν

)
yv̂ =

iβyv̂(
ν/
√

ghe − k
)

But from (11.39) ν/
√

ghe − k = β/ν. Thus, 8̂ (y) = iνyv̂ (y), and from (11.31) −iνû = βyv̂ − ik8̂ = (β + kν) yv̂, so
that û (y) = iν−1 (β + kν) yv̂.
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11.7. Use the linearized model (11.48) and (11.49) to compute the meridional distribution of divergence in the mixed layer for
a situation in which the geostrophic wind is given by ug = u0 exp

(
−βy2/2c

)
, vg = 0, where u0 and c are constants.

Solution: From (11.48−49) αu − βyv = 0; αv + βyu = βyug. Thus, u = βyv/α and v=αβyug/
(
α2
+ β2y2

)
. So,

∂v
∂y = αβ

[
(ug+y∂ug/ ∂y)
α2+β2y2 −

2β2y2ug

(α2+β2y2)
2

]
, or ∂v

∂y =
αβu0

(α2+β2y2)
2

[
α2
(

1− βy2

c

)
− β2y2

−
β3y4

c

]
exp

(
−βy2/2c

)
.

11.8. Show that the frequency of the n= 1 equatorial Rossby mode is given approximately by ν = −kβ
(

k2
+ 3β/

√
ghe

)−1
,

and use this result to solve for the û (y) and 8̂ (y) fields in terms of v̂ (y). Hint: Use the fact that the Rossby wave phase
speed is much less than

√
ghe.

Solution: From (11.37), if (ν/k)2 � ghe, then
√

ghe

β

(
−k2
−

kβ
ν

)
≈ 3, which can be solved for ν to give ν =

−kβ
(

k2
+ 3β/

√
ghe

)−1
. From (11.40) the meridional velocity can be expressed as

v̂ (y) = 2v0

(
β√
ghe

)1/2

y exp

[
−

(
β√
ghe

)
y2

2

]
.

Solving (11.35) for 8̂ (y), while again using the fact that ν2/k2
� ghe, yields 8̂ (y) = iν

k2

(
∂v̂
∂y −

k
ν
βyv̂

)
. Substituting

from the expression for v̂ (y) then yields 8̂(y)= 2iv0

(
β
√

ghe

)1/2 (
ν

k2

) [
1− β

(
k
ν
+

1√
ghe

)
y2
]

exp

[
−

(
β
√

ghe

)
y2

2

]
.

Solving (11.31) for û (y) gives û (y) = i (β/ν) yv̂ + (k/ν) 8̂, so that û (y) = 2iv0

(
β
√

ghe

)1/2 (
1
k

)
[

1− β
√

ghe
y2
]

exp

[
−

(
β
√

ghe

)
y2

2

]
. (Note that the zonal wind changes sign at y2

=
√

ghe/β.)




