
Chapter 10

The General Circulation

10.1. Starting with the isobaric version of the thermodynamic energy equation (2.42), derive the log-pressure version (10.5).

Solution: Using the ideal gas law (2.42) can be rewritten as:
(I) DT

Dt −
RT
cppω =

J
cp

, where ω ≡ Dp/Dt. But,

(II) ω
p =

1
p

Dp
Dt =

D ln p
Dt = −

w∗
H , where w∗ ≡ Dz∗/Dt = −HD (ln p)/Dt.

Substituting from (II) into (I) and noting that κ ≡ R/cp gives DT
Dt +

κT
H w∗ = J

cp
.

10.2. Show that in the σ -coordinate system a mass element ρ0dxdydz takes the form −g−1psdxdydσ .

Solution: By definition σ ≡ p/ps. But ps = ps (x, y, t). So, with the aid of the hydrostatic equation: ∂σ
∂z =

1
ps

∂p
∂z = −

ρ0g
ps

.

Thus, psdσ = −ρ0gdz, from which ρ0dxdydz = −psg−1dxdydσ .

10.3. Compute the mean zonal wind u at the 200 hPa level at 30◦N under the assumptions that u = 0 at the equator, and that the
absolute angular momentum is independent of latitude. What is the implication of this result for the role of eddy motions?

Solution: By conservation of angular momentum: �R2
0 = (�+ u/R1)R2

1. But if R0 is the distance from the axis of

rotation at 0◦ and R1 at 30◦, then R1=R0

(√
3/2

)
, and hence, u =

�
(
R2

0−R2
1

)
R1

=
�R0

2
√

3
= 134 m s−1. This is far greater than

the observed velocity, and indicates that there must be an eddy momentum flux divergence between the equator and 30◦

latitudes to balance the tendency of the mean Hadley cell to produce a constant angular momentum profile in the upper
troposphere.

10.4. Show by scale analysis that advection by the mean meridional circulation can be neglected in the zonally averaged equations
(10.11) and (10.12) for quasi-geostrophic motions.

Solution: To estimate terms in (10.11) let scales be |u| ∼ U ∼ 10 m s−1, time scale be 105 s, then ∂u/∂t ∼ 10−4 m s−2,

and from Figure 10.6 note that
∣∣∣∂ (u′v′

)
/∂y

∣∣∣ ≤ 10−4 m s−2 Now |v∂u/∂y| and |w∂u/∂z| < |f0v| for quasi-geostrophic

flow. Thus, for balance f0v ≤ 10−4, and hence |v| ≤ 1 m s−1. Letting the meridional scale be L ∼ 106 m, and the vertical
scale be H ∼ 104 m, we then see that w ∼ (H/L) v ∼ 10−2 m s−1. Thus, |v∂u/∂y| ∼ |w∂u/∂z| ∼ 10−5 m s−2. Hence, the

leading terms are: ∂u
∂t − f0v = −

∂
(

u′v′
)

∂y .

For the thermodynamic equation (10.12), we first observe that from Figure 10.3 that
∣∣∣∂ (v′T ′)/∂y

∣∣∣ ∼ 10−5 K s−1. The

hypsometric equation shows that T ∼ 8/R, while from geostrophy 8 ∼ f0UL ∼ 103 m2 s2, hence, T ∼ 3 K. Thus,
∂T/∂t ∼ 3 × 10−5 K s−1, and w

(
N2H/R

)
∼ 10−2

(
10−4

× 104/287
)
∼ 3 × 10−5 K s−1. But, v∂T/∂y ∼ w∂T/∂z ∼

3× 10−6 K s−1. So these two advection terms can be neglected in a first approximation.

10.5. Show that for quasi-geostrophic eddies the next to last term in square brackets on the right-hand side in (10.15) is
proportional to the vertical derivative of the eddy meridional relative vorticity flux.
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Solution: From geostrophy: f0u′ = −∂8′/∂y and f0v′ = ∂8′/∂x. Thus, ∂u′/∂x+ ∂v′/∂y = 0. So, −
∂
(

u′v′
)

∂y = −u′ ∂v
′

∂y −

v′ ∂u′
∂y = u′ ∂u′

∂x − v′ ∂u′
∂y = −v′ ∂u′

∂y , where we have used the fact that from cyclic continuity in x: u′ ∂u′
∂x =

∂
(
u′2/ 2

)
∂x = 0. And,

v′ζ ′ = v′ ∂v
′

∂x − v′ ∂u′
∂y = −v′ ∂u′

∂y since v′ ∂v
′

∂x =
∂
(
v′2/ 2

)
∂x = 0.

Thus, −
∂
(

u′v′
)

∂y = v′ζ ′, or
∂
(
v′ζ ′

)
∂z = −

∂
∂z

[
∂
(

u′v′
)

∂y

]

10.6. Starting from equations (10.16)–(10.19), derive the governing equation for the residual streamfunction (10.21).

Solution: Taking f0
∂(10.17)
∂z +

R
H
∂(10.18)
∂y and applying the thermal wind relationship: f0∂u/∂z = −RH−1∂T/∂y gives

− f 2
0
∂v∗

∂z
+ N2 ∂w∗

∂y
= f0

∂G

∂z
+
κ

H

∂J

∂y
(A)

But, by definition ρ0v
∗
= −∂χ∗/∂z and ρ0w∗ = ∂χ∗/∂y so substituting into (A) and multiplying be ρ0 gives: ∂

2χ∗

∂y2 +

ρ0f 2
0

N2
∂
∂z

(
1
ρ0

∂χ∗

∂z

)
=

ρ0
N2

[
f0
∂G
∂z +

κ
H
∂J
∂y

]
.

10.7. Using the observed data given in Figure 10.13 of the text, compute the time required for each possible energy transformation
or loss to restore or deplete the observed energy stores. (A watt equals 1 J s−1.)

Solution: Dividing the energy stores by each possible transformation and source/sink gives replacement/depletion times as
shown in the diagram (in seconds).
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FIGURE 10.7

10.8. Compute the surface torque per unit horizontal area exerted on the atmosphere by topography for the following distribution
of surface pressure and surface height:

ps = p0 + p̂ sin kx, h = ĥ sin(kx− γ )

where p0 = 1000 hPa, p̂ = 10 hPa, ĥ = 2.5 × 103 m, γ = π /6 rad, and k = 1/(a cosφ). Here, φ = π /4 radians is the
latitude, and a is the radius of the earth. Express the answer in kg s−2.

Solution: Using angle brackets to designate the longitudinal average, from (10.43): Torque = −(a cosφ) 〈ps∂h/∂x〉 =

−(a cosφ)
〈(

p0 + p̂ sin kx
) (

ĥk cos (kx− γ )
)〉

Torque = −(a cosφ)p̂ĥk
〈
sin kx cos kx cos γ + sin2 kx sin γ

〉
= −(p̂ĥ/2) sin γ = −(103)

(
2.5× 103/2

)
sin (π/6) =

−6.25× 105 kg s−2.

10.9. Starting from (10.66) and (10.67) show that the group velocity relative to the ground for stationary Rossby waves is
perpendicular to the wave crests and has a magnitude given by (10.69).
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Solution: For stationary waves (10.65) shows that u = β/
(
k2
+ l2

)
. Substituting this expression into (10.66) and (10.67)

we get cgy = 2ukl/
(
k2
+ l2

)
and cgx= u + u

(
k2
− l2

)
/
(
k2
+ l2

)
= 2uk2/

(
k2
+ l2

)
. Then cgy/cgx= tanα= l/k, and

tanφ=Ly/Lx= k/ l= cot (π/2− φ) = cotα. Thus, φ + α = 90◦ as was to be shown.

10.10. Consider a thermally stratified liquid contained in a rotating annulus of inner radius 0.8 m, outer radius 1.0 m, and depth
0.1 m. The temperature at the bottom boundary is held constant at T0. The fluid is assumed to satisfy the equation of state
(10.75) with ρ0 = 103 kg m−3 and ε = 2 × 10−4 K−1. If the temperature increases linearly with height along the outer
radial boundary at a rate of 1◦C cm−1 and is constant with height along the inner radial boundary, determine the geostrophic
velocity at the upper boundary for a rotation rate of� = 1 rad s−1. (Assume that the temperature depends linearly on radius
at each level.)

Solution: From equation (10.76) ∂ug
∂z =

( εg
2�

)
∂T
∂r where the r-coordinate is taken to be the distance from the inner wall. Then

T (r, z) = T0 + (r/L) [z (dT/dz)], with dT/dz the temperature gradient along the outer wall. Thus, ∂ug
∂z =

( εg
2�

) ( dT
dz

) ( z
L

)
,

and

ug =

( εg

2�L

)(dT

dz

) H∫
0

zdz =

(
2× 10−4

)
(9.8)

(2) (0.2)
(100)

(0.1)2

2
= 0.00245 m s−1.

10.11. Show by considering ∂u/∂t for small perturbations about the equilibrium points in Figure 10.18 that point B is an unstable
equilibrium point while points A and C are stable.

Solution: ∂u/∂t = −D(u)− κ(u− U), so for equilibrium D(u) = −κ(u− U). From Figure 10.17 it is clear that for points
A and C the following hold:

If δu > 0 then D(u) > κ(u− U) so ∂u/∂t < 0
If δu < 0 then D(u) < κ(u− U) so ∂u/∂t > 0

In both cases, ∂u/∂t is opposite in sign to δu so the perturbation is damped and equilibrium is stable.
For Point B:

If δu > 0 then D(u) < κ(u− U) so ∂u/∂t > 0
If δu < 0 then D(u) > κ(u− U) so ∂u/∂t < 0

In both cases, ∂u/∂t is same sign as δu so the perturbation amplifies and equilibrium is unstable.




