Chapter 9

Mesoscale Circulations

9.1. Show by transforming from θ-coordinates to height coordinates that the Ertel potential vorticity P is proportional to $F^{2} N_{s}^{2}-S^{4}$. See equation (9.28).

Solution: $\bar{P}=-g\left[f-\left(\partial \bar{u}_{g} / \partial y\right)_{\theta}\right](\partial \theta / \partial p)$ in θ-coordinates. But, $-\left(\partial \bar{u}_{g} / \partial y\right)_{\theta}=-\left(\partial \bar{u}_{g} / \partial y\right)_{z}+\left(\partial \bar{u}_{g} / \partial \theta\right)(\partial \theta / \partial y)_{z}$, and with the aid of (9.10) $\left(\partial \bar{u}_{g} / \partial \theta\right)=\left(\partial \bar{u}_{g} / \partial z\right)(\partial \theta / \partial z)^{-1}=-\left(g / f \theta_{0}\right)(\partial \theta / \partial y)(\partial \theta / \partial z)^{-1}$. Also, $-g(\partial \theta / \partial p)=\rho^{-1}(\partial \theta / \partial z)$. Thus, substituting into the top expression gives $\bar{P}=\frac{1}{\rho}\left[f-\left(\frac{\partial u_{g}}{\partial y}\right)_{z}\right]\left(\frac{\partial \theta}{\partial z}\right)-\frac{g}{\rho f \theta_{0}}\left(\frac{\partial \theta}{\partial y}\right)^{2}$.
Hence, $\frac{\rho f g}{\theta_{0}} \bar{P}=f\left(f-\frac{\partial u_{g}}{\partial y}\right)\left(\frac{g}{\theta_{0}} \frac{\partial \theta}{\partial z}\right)-\left(\frac{g}{\theta_{0}} \frac{\partial \theta}{\partial y}\right)^{2}=F^{2} N_{s}^{2}-S^{4}$.
9.2 Starting with the linearized Boussinesq equations for a basic state zonal flow that is a function of height, derive (9.35) and verify the form given for the Scorer parameter.

Solution: For steady waves in mean flow $\bar{u}(z)$, eqs. (5.59)-(5.62) become

$$
\begin{align*}
\bar{u} \frac{\partial u^{\prime}}{\partial x}+w^{\prime} \frac{\partial \bar{u}}{\partial z}+\frac{1}{\rho_{0}} \frac{\partial p^{\prime}}{\partial x} & =0 \tag{1}\\
\bar{u} \frac{\partial w^{\prime}}{\partial x}+\frac{1}{\rho_{0}} \frac{\partial p^{\prime}}{\partial z}-\frac{\theta^{\prime}}{\bar{\theta}} g & =0 \tag{2}\\
\frac{\partial u^{\prime}}{\partial x}+\frac{\partial w^{\prime}}{\partial z} & =0 \tag{3}\\
\bar{u} \frac{\partial \theta^{\prime}}{\partial x}+w^{\prime} \frac{d \bar{\theta}}{d z} & =0 \tag{4}
\end{align*}
$$

Taking $\partial(2) / \partial x-\partial(1) / \partial z$ yields

$$
\begin{equation*}
\bar{u} \frac{\partial}{\partial x}\left(\frac{\partial w^{\prime}}{\partial x}-\frac{\partial u^{\prime}}{\partial z}\right)-\frac{\partial \bar{u}}{\partial z}\left(\frac{\partial u^{\prime}}{\partial x}+\frac{\partial w^{\prime}}{\partial z}\right)-w^{\prime} \frac{\partial^{2} \bar{u}}{\partial z^{2}}-\frac{g}{\bar{\theta}} \frac{\partial \theta^{\prime}}{\partial x}=0 . \tag{5}
\end{equation*}
$$

Using (3) and (4), we can eliminate u^{\prime} and θ^{\prime} in (5) to get $\frac{\partial^{2} w^{\prime}}{\partial x^{2}}+\frac{\partial^{2} w^{\prime}}{\partial z^{2}}+\left(\frac{1}{\bar{u}^{2}} \frac{g}{\bar{\theta}} \frac{d \bar{\theta}}{d z}-\frac{1}{\bar{u}} \frac{\partial^{2} \bar{u}}{\partial z^{2}}\right) w^{\prime}=0$, as was to be shown.
9.3. Show that for stationary flow over an isolated ridge in the broad ridge limit $\left(k_{s} \ll m_{s}\right)$, the group velocity vector is directed upward so that energy cannot propagate upstream or downstream of the ridge.

Solution: In the wide ridge limit $m=-N / \bar{u}$, where the minus sign is required to make the group velocity upward. Then substituting into the expression for the horizontal group velocity (7.45a) gives $c_{g x}=\bar{u}+N / m=\bar{u}+N /(-N / \bar{u})=0$.
9.4. An air parcel at 920 hPa with temperature $20^{\circ} \mathrm{C}$ is saturated (mixing ratio $16 \mathrm{~g} \mathrm{~kg}^{-1}$). Compute θ_{e} for the parcel.

Solution: $\theta_{e}=\theta \exp \left[\left(L_{c} q_{s}\right) /\left(c_{p} T\right)\right]$, where $\theta=T\left(p_{s} / p\right)^{R / c_{p}}$. Then, $\ln \theta_{e}=\ln T+\frac{R}{c_{p}} \ln \left(\frac{p_{s}}{p}\right)+\left(\frac{L_{c} q_{s}}{c_{p} T}\right)=\ln (293.15)+$ $\frac{2}{7} \ln \left(\frac{1000}{920}\right)+\left[\frac{2.5 \times 10^{6}\left(16 \times 10^{-3}\right)}{(1004)(293.15)}\right]$ so that $\ln \theta_{e}=5.84$, and $\theta_{e}=344 \mathrm{~K}$.
9.5. Suppose that the mass of air in an entraining cumulus updraft increases exponentially with height so that $m=m_{0} e^{z / H}$, where $H=8 \mathrm{~km}$ and m_{0} is the mass at a reference level. If the updraft speed is $3 \mathrm{~m} \mathrm{~s}^{-1}$ at 2 km height, what is its value at a height of 8 km assuming that the updraft has zero net buoyancy?

Solution: From eq. (9.52) a neutrally buoyant updraft has $T_{c l d}=T_{e n v}$ so that $\frac{d}{d z}\left[\ln \left(w^{\prime 2}\right)\right]=-\left(2 \frac{d \ln m}{d z}\right)$, which for $m=$ $m_{0} \exp (z / H)$ with $H=8 \mathrm{~km}$ gives $\left.\ln \left(w^{2}\right)\right|_{z=2} ^{z=8}=-\left(\frac{2}{H}\right)(8-2)=-\frac{12}{8}$.
$w=3 \mathrm{~m} \mathrm{~s}^{-1}$ at $z=2 \mathrm{~km}$. Thus, $w=1.42 \mathrm{~m} \mathrm{~s}^{-1}$ at 8 km .
9.6. Verify the approximate relationship between moist static energy and θ_{e} given by (9.41).

Solution: Forming the differential of the second line of the solution to 9.5 (assuming that L_{c} is constant) and multiplying through by $c_{p} T$ yields $c_{p} T d \ln \theta_{e}=c_{p} d T-(R T / p) d p+L_{c} d q_{s}-L_{c} q_{s} d \ln T$. Substituting from the ideal gas law and the hydrostatic relation gives $(-R T / p) d p=g d z$. But $\frac{L_{c} d q_{s}}{L_{c} q_{s} d \ln T}=\frac{d \ln q_{s}}{d \ln T}$, and $\left|\frac{d \ln q_{s}}{d \ln T}\right| \gg 1$ (as can be verified from a thermodynamic diagram). Thus, $c_{p} T d \ln \theta_{e} \approx c_{p} d T+g d z+L_{c} d q_{s}=d h$.
9.7. The azimuthal velocity component in some hurricanes is observed to have a radial dependence given by $v_{\lambda}=V_{0}\left(r_{0} / r\right)^{2}$ for distances from the center given by $r \geq r_{0}$. Letting $V_{0}=50 \mathrm{~m} \mathrm{~s}^{-1}$ and $r_{0}=50 \mathrm{~km}$, find the total geopotential difference between the far field $(r \rightarrow \infty)$ and $r=r_{0}$, assuming gradient wind balance and $f_{0}=5 \times 10^{-5} \mathrm{~s}^{-1}$. At what distance from the center does the Coriolis force equal the centrifugal force?
Solution: From eq. (9.61) $\frac{V_{0}^{2} r_{0}^{4}}{r^{5}}+\frac{f V_{0} r_{0}^{2}}{r^{2}}=\frac{\partial \Phi}{\partial r}$. Integrating in r gives: $\int_{r_{0}}^{\infty} d \Phi=r_{0}^{4} V_{0}^{2} \int_{r_{0}}^{\infty} r^{-5} d r+f V_{0} r_{0}^{2} \int_{r_{0}}^{\infty} r^{-2} d r$. Thus, $\Phi(\infty)-\Phi\left(r_{0}\right)=V_{0}^{2} / 4+f V_{0} r_{0}$, or $\Phi(\infty)-\Phi\left(r_{0}\right)=50^{2} / 4+\left(5 \times 10^{-5}\right)(50)\left(5 \times 10^{4}\right)=750 \mathrm{~m}^{2} \mathrm{~s}^{-2}$. The two terms on the left in (9.61) are equal when $\frac{V_{0}^{2} r_{0}^{4}}{r^{5}}=\frac{f V_{0} r_{0}^{2}}{r^{2}}$, or $r^{3}=\frac{V_{0} r_{0}^{2}}{f}$, so $r=135.7 \mathrm{~km}$.
9.8. Starting with (9.61) derive the angular momentum form of the gradient wind balance for an axisymmetric vortex given by (9.62).

Solution: By definition $M_{\lambda}=v_{\lambda} r+f r^{2} / 2$, so $v_{\lambda}=-f r / 2+M_{\lambda} / r$. Thus, $\frac{v_{\lambda}^{2}}{r}=\frac{f^{2} r}{4}-\frac{f M_{\lambda}}{r}+\frac{M_{\lambda}^{2}}{r^{3}}$, and $f v_{\lambda}=-\frac{f^{2} r}{2}+\frac{f M_{\lambda}}{r}$.
Thus, the gradient wind can be expressed as $\left(\frac{v_{\lambda}^{2}}{r}+f v_{\lambda}\right)=\frac{M_{\lambda}^{2}}{r^{3}}-\frac{f^{2} r}{4}=\frac{\partial \Phi}{\partial r}$.

