
Chapter 9

Mesoscale Circulations

9.1. Show by transforming from θ -coordinates to height coordinates that the Ertel potential vorticity P is proportional to
F2N2

s − S4. See equation (9.28).

Solution: P = −g
[
f −

(
∂ug/∂y

)
θ

]
(∂θ/∂p) in θ -coordinates. But, −

(
∂ug/∂y

)
θ
= −

(
∂ug/∂y

)
z +

(
∂ug/∂θ

)
(∂θ/∂y)z, and

with the aid of (9.10)
(
∂ug/∂θ

)
=
(
∂ug/∂z

)
(∂θ/∂z)−1

= −(g/f θ0) (∂θ/∂y) (∂θ/∂z)−1. Also, −g (∂θ/∂p) = ρ−1 (∂θ/∂z).

Thus, substituting into the top expression gives P = 1
ρ

[
f −

(
∂ug
∂y

)
z

] (
∂θ
∂z

)
−

g
ρf θ0

(
∂θ
∂y

)2
.

Hence, ρfg
θ0

P = f
(

f −
∂ug
∂y

) (
g
θ0

∂θ
∂z

)
−

(
g
θ0

∂θ
∂y

)2
= F2N2

s − S4.

9.2 Starting with the linearized Boussinesq equations for a basic state zonal flow that is a function of height, derive (9.35) and
verify the form given for the Scorer parameter.

Solution: For steady waves in mean flow u (z), eqs. (5.59)–(5.62) become

u
∂u′

∂x
+ w′

∂u

∂z
+

1

ρ0

∂p′

∂x
= 0 (1)

u
∂w′

∂x
+

1

ρ0

∂p′

∂z
−
θ ′

θ
g = 0 (2)

∂u′

∂x
+
∂w′

∂z
= 0 (3)

u
∂θ ′

∂x
+ w′

dθ

dz
= 0. (4)

Taking ∂ (2)/∂x−∂ (1)/∂z yields

u
∂

∂x

(
∂w′

∂x
−
∂u′

∂z

)
−
∂u

∂z

(
∂u′

∂x
+
∂w′

∂z

)
− w′

∂2u

∂z2
−

g

θ

∂θ ′

∂x
= 0. (5)

Using (3) and (4), we can eliminate u′ and θ ′ in (5) to get ∂
2w′

∂x2 +
∂2w′

∂z2 +

(
1
u2

g
θ

dθ
dz −

1
u
∂2u
∂z2

)
w′ = 0, as was to be shown.

9.3. Show that for stationary flow over an isolated ridge in the broad ridge limit (ks�ms), the group velocity vector is directed
upward so that energy cannot propagate upstream or downstream of the ridge.

Solution: In the wide ridge limit m = −N/u, where the minus sign is required to make the group velocity upward. Then
substituting into the expression for the horizontal group velocity (7.45a) gives cgx = u+ N/m = u+ N/(−N/u) = 0.

9.4. An air parcel at 920 hPa with temperature 20◦C is saturated (mixing ratio 16 g kg−1). Compute θe for the parcel.

Solution: θe = θ exp
[
(Lcqs)/

(
cpT

)]
, where θ = T ( ps/p)R/cp . Then, ln θe = ln T + R

cp
ln
(

ps
p

)
+

(
Lcqs
cpT

)
= ln (293.15) +

2
7 ln

(
1000
920

)
+

[
2.5×106

(
16×10−3

)
(1004)(293.15)

]
so that ln θe = 5.84, and θe = 344 K.
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9.5. Suppose that the mass of air in an entraining cumulus updraft increases exponentially with height so that m = m0ez/H , where
H = 8 km and m0 is the mass at a reference level. If the updraft speed is 3 m s−1 at 2 km height, what is its value at a height
of 8 km assuming that the updraft has zero net buoyancy?

Solution: From eq. (9.52) a neutrally buoyant updraft has Tcld = Tenv so that d
dz

[
ln
(
w′2
)]
= −

(
2 d ln m

dz

)
, which for m =

m0 exp (z/H) with H = 8 km gives ln
(
w2
)∣∣z=8

z=2 = −

(
2
H

)
(8− 2) = − 12

8 .

w = 3 m s−1 at z = 2 km. Thus, w = 1.42 m s−1 at 8 km.

9.6. Verify the approximate relationship between moist static energy and θe given by (9.41).

Solution: Forming the differential of the second line of the solution to 9.5 (assuming that Lc is constant) and multiplying
through by cpT yields cpTd ln θe = cpdT−(RT/p) dp+Lcdqs−Lcqsd ln T . Substituting from the ideal gas law and the hydro-

static relation gives (−RT/p) dp = gdz. But Lcdqs
Lcqsd ln T =

d ln qs
d ln T , and

∣∣∣ d ln qs
d ln T

∣∣∣ � 1 (as can be verified from a thermodynamic

diagram). Thus, cpTd ln θe ≈ cpdT + gdz+ Lcdqs = dh.

9.7. The azimuthal velocity component in some hurricanes is observed to have a radial dependence given by vλ = V0(r0/r)2 for
distances from the center given by r ≥ r0. Letting V0 = 50 m s−1 and r0 = 50 km, find the total geopotential difference
between the far field (r → ∞) and r = r0, assuming gradient wind balance and f0 = 5 × 10−5 s−1. At what distance from
the center does the Coriolis force equal the centrifugal force?

Solution: From eq. (9.61)
V2

0 r4
0

r5 +
f V0r2

0
r2 =

∂8
∂r . Integrating in r gives:

∫
∞

r0
d8 = r4

0V2
0

∫
∞

r0
r−5dr + f V0r2

0

∫
∞

r0
r−2dr. Thus,

8(∞)−8(r0) = V2
0/4+ fV0r0, or 8(∞)−8(r0) = 502/4+

(
5× 10−5

)
(50)

(
5× 104

)
= 750 m2s−2. The two terms on

the left in (9.61) are equal when
V2

0 r4
0

r5 =
f V0r2

0
r2 , or r3

=
V0r2

0
f , so r = 135.7 km.

9.8. Starting with (9.61) derive the angular momentum form of the gradient wind balance for an axisymmetric vortex given by
(9.62).

Solution: By definition Mλ = vλr + fr2/2, so vλ = −fr/2+Mλ/r. Thus,
v2
λ

r =
f 2r
4 −

fMλ

r +
M2
λ

r3 , and f vλ = −
f 2r
2 +

fMλ

r .

Thus, the gradient wind can be expressed as

(
v2
λ

r + f vλ

)
=

M2
λ

r3 −
f 2r
4 =

∂8
∂r .




