
Chapter 8

The Planetary Boundary Layer

8.1. Verify by direct substitution that the Ekman spiral expression (8.31) is indeed a solution of the boundary layer equations
(8.26) and (8.27) for the case vg = 0.

Solution: u = ug(1− e−γ z cos γ z); v = uge−γ z sin γ z. Thus, ∂
2u
∂z2 = −2ugγ

2e−γ z sin γ z; ∂2v
∂z2 = −2ugγ

2e−γ z cos γ z, and

substituting into (8.26) and (8.27) gives −2γ 2Kug + fug = 0. Hence, γ 2
= f /2K, so solution checks.

8.2. Derive the Ekman spiral solution for the more general case where the geostrophic wind has both x and y components (ug

and vg, respectively), which are independent of height.

Solution: In this case the general solution of (8.20) is u + iv = A exp
[
(if /K)1/2 z

]
+ B exp

[
−(if /K)1/2z

]
+
(
ug + ivg

)
.

Applying the boundary conditions (8.28) for f > 0 gives A = 0 and B = −(ug + ivg). Taking the real and imaginary parts
yields the velocity components in the Ekman layer:

u = ug(1− e−γ z cos γ z)− vge−γ z sin γ z

v = vg(1− e−γ z cos γ z)+ uge−γ z sin γ z.

8.3. Letting the Coriolis parameter and density be constants, show that (8.38) is correct for the more general Ekman spiral
solution obtained in Problem 8.2.

Solution: For ρ constant, from (8.36): w(De) = −
(
∂ug
∂x +

∂vg
∂y

)∫ De
0

(
1− e−γ z cos γ z

)
dz+

(
∂vg
∂x −

∂ug
∂y

)∫ De
0 e−γ z sin γ zdz,

But
(
∂ug
∂x +

∂vg
∂y

)
= 0; ζg =

(
∂vg
∂x −

∂ug
∂y

)
, ∴ w(De) = ζg(K/2f )1/2 (Northern Hemisphere).

8.4. For laminar flow in a rotating cylindrical vessel filled with water (molecular kinematic viscosity ν = 0.01 cm2 s−1), com-
pute the depth of the Ekman layer and the spin-down time if the depth of the fluid is 30 cm and the rotation rate of the tank
is ten revolutions per minute. How small would the radius of the tank have to be in order that the time scale for viscous
diffusion from the side walls to be comparable to the spin-down time?

Solution: De = π/γ , where γ = (�/ν)1/2. But � = 2π/6 s−1, so De = 0.307 cm. Spin-down time is given by τ =
H(1/�ν)1/2 = 293 s. The diffusive time scale is L2/ν, where L is the distance from the wall of the tank. Thus, in one
spin-down time diffusion penetrates a distance L = (293ν)1/2 = 1.7 cm.

8.5. Suppose that at 43◦N the geostrophic wind is westerly at 15 m s−1. Compute the net cross isobaric transport in the planetary
boundary layer using both the mixed layer solution (8.22) and the Ekman layer solution (8.31). You may let |V| = ug in
(8.22), h = De = 1 km, κs = 0.05 m−1 s, and ρ = 1 kg m−3.

Solution: For the mixed layer case the cross isobaric mass flux is M= ρvh kg m−1. But from (8.22)

v= κs
∣∣V∣∣ ug/

(
1+ κ2

s

∣∣V∣∣2) = κsu2
g/
(

1+ κ2
s u2

g

)
= 7.2 m s−1, so mixed layer case gives M= ρvh = 7.2×103 kg m−1 s−1.

For the Ekman layer, γ =π/De, so M=
∫ De

0 ρvdz=
∫ De

0 ρuge−γ z sin γ zdz= ρug (2γ )−1 (1+ e−π )= 2.49 ×
103 kg m−1 s−1.
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8.6. Derive an expression for the wind-driven surface Ekman layer in the ocean. Assume that the wind stress τw is constant and
directed along the x axis. Continuity of turbulent momentum flux at the air-sea interface (z = 0) requires the wind stress
divided by air density must equal the oceanic turbulent momentum flux at z = 0. Thus, if the flux-gradient theory is used
the boundary condition at the surface becomes ρ0K∂u/∂z = τw, ρ0K∂v/∂z = 0, at z = 0, where K is the eddy viscosity
in the ocean (assumed constant). As a lower boundary condition assume that u, v → 0 as z→ −∞. If K = 10−3 m2 s−1

what is the depth of the surface Ekman layer at 43◦N latitude?

Solution: For ug = vg = 0, the general solution of (8.20) is u + iv = A exp
[
(if /K)1/2 z

]
+ B exp

[
− (if /K)1/2 z

]
. But,

u + iv → 0 as z → −∞, which gives B = 0. From the surface boundary condition,
(
∂u
∂z

)
z=0
=

τw
ρK = Re

[
A (if /K)1/2

]
and

(
∂v
∂z

)
z=0
= 0 = Im

[
A(if /K)1/2

]
. But,

√
i = [exp(iπ/2)]1/2

= exp(iπ/4) = (1+ i)/
√

2. Thus, the condition on

(∂v/∂z)z=0 implies that Are = −Aim, while the condition on (∂u/∂z)z=0 implies that Are = (τw/2ρKγ ), where γ =
(f /2K)1/2.
∴ u = Areeγ z(cos γ z+ sin γ z); v = Areeγ z(−cos γ z+ sin γ z).
Here De = (π/γ ) = π(2× 10−3/10−4)1/2 = 14.05 m.

8.7. Show that the vertically integrated mass transport in the wind-driven oceanic surface Ekman layer is directed 90◦ to the
right of the surface wind stress in the Northern Hemisphere. Explain this result physically.

Solution: The only forces acting on the water column are the wind stress and the Coriolis force. Thus, the Coriolis force
on the water column must oppose the wind stress vector, so the mass transport must be 90◦ to the right of the surface wind
stress. This can be verified by considering the solution to Problem 8.6:

0∫
−∞

ρudz =

0∫
−∞

ρAreeγ z(cos γ z+ sin γ z)dz = 0, and

0∫
−∞

ρvdz =

0∫
−∞

ρAreeγ z(−cos γ z+ sin γ z)dz = −(τw/f ) kg m−1 s−1

8.8. A homogeneous barotropic ocean of depth H = 3 km has a zonally symmetric geostrophic jet whose profile is given by
the expression ug = U exp[−(y/L)2], where U = 1 m s−1 and L = 200 km are constants. Compute the vertical velocity
produced by convergence in the Ekman layer at the ocean bottom and show that the meridional profile of the secondary
cross-stream motion (v,w) forced in the interior is the same as the meridional profile of ug. What are the maximum values
of v and w if K = 10−3 m2 s−1 and f = 10−4 s−1? (Assume that w and the eddy stress vanish at the surface.)

Solution: wDe = ζg(K/2f )1/2 = −(∂ug/∂y) (K/2f )1/2 =
(
2yU/L2

)
(K/2f )1/2 exp(−y2/L2). Maximum vertical velocity

occurs at y, for which ∂wDe/∂y = 0, or for y = L/
√

2. (wDe)max =

( √
2

2×105

)√
5 exp (−1/2) = 9.6 × 10−3 mm s−1. From

continuity equation for the fluid interior
∫ H

De

(
∂u
∂x +

∂v
∂y

)
dz = −

∫ H
De

(
∂w
∂z

)
dz = −(wH − wDe). But since wH = 0, u is

independent of x, and H � De, this simplifies to
∫ H

0

(
∂v
∂y

)
dz = wDe

∴ v = 1
H

∫
wDedy = −

(U
H

) ( K
2f

)1/2
exp

[
−
( y

L

)2]. Thus, vmax = −(3000)−1(5)1/2 = −0.75 mm s−1 at y = 0.

8.9. Using the approximate zonally averaged momentum equation ∂u/∂t ∼= f v, compute the spin-down time for the zonal jet in
Problem 8.8.

Solution: ∂ug/∂t∼= −(f /H) (K/2f )1/2 ug= −τ
−1ug. Integrating in time gives ug (t) = ug (0) exp (−t/τ). τ =

(H/f ) (2f /K)1/2 = 1.34× 107 s, or about 155 days.

8.10. Derive a formula for the vertical velocity at the top of the planetary boundary layer using the mixed layer expression (8.22).
Assume that

∣∣V∣∣ = 5 m s−1 is independent of x and y and that ug = ug(y). If h = 1 km and κs = 0.05, what value must
Km have if this result is to agree with the vertical velocity derived from the Ekman layer solution at 43◦ latitude with
De = 1 km?
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Solution: From (8.22) u = ug

(
1+ κ2

s

∣∣V∣∣2)−1
; v = κs

∣∣V∣∣ ug

(
1+ κ2

s

∣∣V∣∣2)−1
, and from the continuity equation w (h) =

−
∫ h

0

(
∂v
∂y

)
dz =

−κs
∣∣V∣∣h(

1+κ2
s

∣∣V∣∣2) ∂ug
∂y =

κs
∣∣V∣∣h(

1+κ2
s

∣∣V∣∣2)ζ g. For equality with the Ekman layer result, (8.38) must have
κs
∣∣V∣∣h(

1+κ2
s

∣∣V∣∣2) =(
Km
2f

)1/2
= 235 m. Solving for Km gives Km = 11 m2 s−1.

8.11. Show that Km = kzu∗ in the surface layer.

Solution: From (8.32) Km∂u/∂z = u2
∗. But, ∂u/∂z = u∗/kz. Thus Km = kzu∗.




