
Chapter 7

Baroclinic Development

7.1. Show using Eq. (7.25) that the maximum growth rate for baroclinic instability when β = 0 occurs for k2
= 2λ2

(√
2− 1

)
.

How long does it take the most rapidly growing wave to amplify by a factor of e1 if λ2
= 2 × 10−12 m−2, and UT =

20 m s−1?

Solution: The maximum α occurs at the k for which ∂α/∂k = 0. Thus, ∂α2

∂k = 2α ∂α
∂k = 2kU2

T

[ (
2λ2
−k2

2λ2+k2

)
−

k2

(2λ2+k2)
− k2

(
2λ2
−k2

)
(2λ2+k2)

2

]
= 0, which implies that k4

+ 4k2λ2
− 4λ4

= 0. Thus, k2
max = 2λ2

(√
2− 1

)
, and αmax =

kmaxUT

(
2λ2
−k2

max
2λ2+k2

max

)1/2
=
√

2λUT

(√
2− 1

)
. For the values given above for UT , and λ, αmax = 1.66 × 10−5 s−1, and the

e1 amplification time is α−1
max = 6.04× 104 s, or about 17 hours.

7.2. Solve for ψ ′3 and ω′2 in terms of ψ ′1 for a baroclinic Rossby wave whose phase speed satisfies (7.24). Explain the phase
relationship between ψ ′1, ψ ′3, and ω′2 in terms of the quasi-geostrophic theory. (Note that UT = 0 in this case.)

Solution: Here, c − Um = −β/
(
k2
+ 2λ2

)
and U1 = U3 = Um. Then, from (7.19) and (7.20), A = 0 so that ψ ′1 = −ψ

′

3.

Then, from (7.12),
(
∂
∂t + Um

∂
∂x

) (
ψ ′1 − ψ

′

3

)
=

σδp
f0
ω′2.

Letting ψ ′1 = −ψ
′

3 = A exp [ik (x− ct)] and ω′2 = C exp [ik (x− ct)], substitution gives C = ikf0(Um−c)
σδp (2A), or C = 2ikf0

σδp
βA

(k2+2λ2)
. Thus, if it is assumed that A is real, ψ ′1 = −ψ

′

3 = A cos [k (x− ct)], and ω′2 =
−2kf0βA

σδp(k2+2λ2)
sin [k (x− ct)].

Thus, ψ ′1 andψ ′3 are 180◦ out of phase, and the maximum ω′2 occurs to the west of the maximum ψ ′1 by 90◦ phase. This
implies that the maximum downward motion occurs 90◦ west of the 250 hPa ridge and 750 hPa trough, while the maximum
upward motion is 90◦ east of the 250 hPa ridge and 750 hPa trough. The convergence-divergence pattern thus generates
vorticity changes that partly cancel the planetary vorticity advection so that the speed c of motion of the system is less than
that given by planetary vorticity alone (c = −β/k2).

7.3. For the case U1 = –U3 and k2
= λ2, solve for ψ ′3 and ω′2 in terms of ψ ′1 for marginally stable waves [i.e., δ = 0 in (7.22)].

Solution: Here, Um = 0 and U1 = −U3 = UT , but since δ = 0 and λ2
= k2, (7.22) gives c = − 2β

3λ2 and UT =

β
√

3λ2 . Then, from (7.20),
[
−

2β
3λ2

(
3λ2

)
+ β

]
B = −UTλ

2A, or B = A/
√

3. Hence, ψ ′1 − ψ
′

3 =
(
ψ ′1 + ψ

′

3

)
/
√

3, or

ψ ′3 = ψ ′1(
√

3− 1)/(
√

3+ 1), so that ψ ′1 andψ ′3 are in phase. From (7.10), if we again let ψ ′1 = A exp [ik (x− ct)]
and ω′2 = C exp [ik (x− ct)], we get ik (UT − c)

(
−k2A

)
+ ikβA =

(
f0
/
δp
)

C. Substituting for UT , k, and c, this yields:

C = −iδp
f0
λβ
(√

3−1
3

)
A, and ω′2 =

δp
f0
λβ
(√

3−1
3

)
A sin [k (x− ct)]. The maximum upward motion occurs 90◦ west of the

ridge. The divergence-convergence field partly cancels vorticity advection at both the 250 hPa and 750 hPa levels, since
the advecting winds are westerly at the upper level and easterly at the lower level.

7.4. For the case β = 0, k2
= λ2, and Um = UT , solve for ψ ′3 and ω′2 in terms of ψ ′1. Explain the phase relationships between

ω′2, ψ ′1, and ψ ′3 in terms of the energetics of quasi-geostrophic waves for the amplifying wave.

Solution: In this case U1 = 2Um, and U3 = 0. From (8.25): c = Um

(
1+ i/

√
3
)

. Let ψm = A exp [ik (x− ct)]ψT =

B exp [ik (x− ct)], ω′2 = C exp [ik (x− ct)], ψ ′1 = E exp [ik (x− ct)], ψ ′3 = F exp [ik (x− ct)], where A, B, C, E, and F
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are all complex coefficients. From (7.16), then k2 (c− Um)A − k2UTB = 0, or B =
(

i
/√

3
)

A. Thus, (E − F) =

i (E + F)
/√

3 and F = E

(
1−i

/√
3
)

(
1+i

/√
3
) = E

(
1− i
√

3
)/

2 . But, ψ ′1 = ψm + ψT andψ ′3 = ψm − ψT , which implies that

A+B = E and A−B = F. Thus, ψ ′1 = Re
{

A
(

1+ i
/√

3
)

exp [ik (x− ct)]
}

, ψ ′3 = Re
{

A
(

1− i
/√

3
)

exp [ik (x− ct)]
}

.

From (8.10). C =
(
δp
f0

)
ik3Um

(
−

4
3

)
A.

ω′2 = −Re
{
δp
f0

k3Um
(
4i
/

3
)

A exp [ik (x− ct)]
}

. Hence, ψ ′3 leads ψ ′1 by 60◦ and ω′2 leads ψ ′3 by 60◦. Hence, trough and

ridge lines tilt to the west with height, and subsidence is centered 60◦ to east of ridge at 750 hPa.

7.5. Suppose that a baroclinic fluid is confined between two rigid horizontal lids in a rotating tank in which β = 0 but friction is
present in the form of linear drag proportional to the velocity (i.e., Fr= −µV). Show that the two-level model perturbation
vorticity equations in Cartesian coordinates can be written as

(
∂

∂t
+ U1

∂

∂x
+ µ

)
∂2ψ ′1

∂x2
−

f

δp
ω′2 = 0

(
∂

∂t
+ U3

∂

∂x
+ µ

)
∂2ψ ′3

∂x2
+

f

δp
ω′2 = 0,

where perturbations are assumed in the form given in (7.9). Assuming solutions of the form (7.18), show that the phase
speed satisfies a relationship similar to (7.22) with β replaced everywhere by iµk, and that as a result the condition for

baroclinic instability becomes UT > µ
(
2λ2
− k2

)− 1
2 .

0

1
Stable

Unstable

1
k2

2λ2

2λ2UT
2

μ2

FIGURE 7.5

Solution: A linear drag of form−µV in the horizontal momentum equation will have the form−µk ·∇×V = −µ∇2ψ in
the vorticity equation. Thus, for the two-level model with β = 0, the linearization proceeds as in the text with the addition
of this term, and the results are as given above. Assuming that solutions exist of the form (7.18) gives

[ik (c− Um)− µ] k2A− ik3UTB = 0[
ik (c− Um)

(
k2
+ 2λ2

)
− µk2

]
B− ikUT

(
k2
− 2λ2

)
A = 0.

These can be combined to yield a quadratic equation in c that is equivalent to (7.21) if we replace β by iµk. Thus, c =

Um − iµ
(
k2
+λ2

)
[k(k2+2λ2)] ± δ

1/2, where δ = − µ2λ4

k2(k2+2λ2)
2 − U2

T

(
2λ2
−k2

)
(k2+2λ2)

. For instability c must have a positive imaginary part.

Thus, δ must be negative and
∣∣δ1/2

∣∣ > µ

(
k2
+λ2

)
[k(k2+2λ2)] , or |δ| > µ2

(
k2
+λ2

)2
[k(k2+2λ2)]2 , which implies from the definition of δ that

U2
T = µ

2
/(

2λ2
− k2

)
for marginal stability. Thus, the marginal stability curve satisfies k2

/
2λ2
= 1− µ2

/(
2U2

Tλ
2
)
. Note

that for k→ 0, U2
T → µ2

/(
2λ2

)
on the marginal curve and for k2

→ 2λ2, U2
T →∞ on the marginal curve.
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7.6. For the case β = 0 determine the phase difference between the 250-mb and 750-mb geopotential fields for the most unstable
baroclinic wave (see Problem 7.1). Show that the 500-mb geopotential and thickness fields are 90◦ out of phase.

Solution: For k2
= 2λ2

(√
2− 1

)
equation (8.25) gives c − Um= iUT

(√
2− 1

)1/2
. From (7.19) we then have[

(c− Um) k2
]

A =

[
iUT

(√
2− 1

)1/2
k2
]

A = k2UTB. Thus, B = i
(√

2− 1
)1/2

A, which from (7.18) implies that if

A is real, ψm = A cos [k (x− ct)] and ψT = −A
(√

2− 1
)1/2

sin [k (x− ct)] so that ψT lags ψm by 1/4 cycle (coldest air is

90◦ west of the trough at 500 hPa). Now, let ψ ′1 = Re
{
ψ̂1 exp [ik (x− ct)]

}
; ψ ′3 = Re

{
ψ̂3 exp [ik (x− ct)]

}
. Then from

the above, ψ̂1 − ψ̂3 = i
(√

2− 1
)1/2 (

ψ̂1 + ψ̂3

)
, or ψ̂3 = ψ̂1

[(√
2− 1

)
− i
√

2
(√

2− 1
)1/2

]
, from which, by noting

that the tangent of the phase is the ratio of imaginary to real parts, we get φ = tan−1

[√
2
(√

2−1
)1/2(√

2−1
)

]
= 65.5◦. So the ψ ′3

field leads ψ ′1 by 65.5◦.

ω ′2

ψ3

ψm

ψ1

ψT

7.7. For the conditions of Problem 7.6, given that the amplitude of ψm is A = 107 m2 s− 1, solve (7.19)–(7.20) to obtain B. Let
λ2
= 2× 10−12 m−2 and UT = 15 m s−1.

Solution: From problem 7.6: |B| =

∣∣∣∣(√2− 1
)1/2

A

∣∣∣∣ = 6.44 × 106 m2 s−1. Thus, the amplitude of B does not depend on

UT or λ2 in this case, and further
∣∣ψ ′1∣∣ = ∣∣ψ ′3∣∣.

7.8. For the situation of Problem 7.7, compute ω′2 using the expression (8.29).

Solution: Now, ζ2 = ∇
2ψm. Thus, if we let ψm = A exp [ik (x− ct)], and ω′2 = C exp [ik (x− ct)], then substi-

tution into (8.29) gives −(k2
+ 2λ2)C =

(
4f0
/
σδp

)
UTk2 (ik)A, which after lettting k2

= 2λ2
(√

2− 1
)

yields C = −(i4f0
/
σδp)λ(

√
2− 1)3/2UTA. Thus, if A is real so that ψm = A cos [k (x− ct)], then ω′2 =(

4f0
/
σδp

)
λ(
√

2− 1)3/2UTA sin [k(x− ct)], so maximum upward motion is 90◦ in phase to east of 500-hPa trough.

7.9. Compute the total potential energy per unit cross-sectional area for an atmosphere with an adiabatic lapse rate given that
the temperature and pressure at the ground are p = 105 Pa and T = 300 K, respectively.

Solution: EP + EI =
cp
cv

EI =
cp
cv

∫
∞

0 (ρcvT)dz =
cp
R

∫
∞

0 pdz. Now, for an adiabatic lapse rate the potential temperature

is constant and equal to the temperature T0 at ps = 1000 hPa. Thus, since by definition θ = T(ps
/

p)R
/

cp , the pressure

dependence on z in this case is
(

p
ps

)
=

(
T
T0

)cp
/

R
=

(
T0+0z

T0

)cp
/

R
, where 0 = −g

/
cp. Thus, total potential energy is given

by cp
cv

EI =
cp
R

zT∫
0

ps

(
T0+0z

T0

)cp
/

R
dz, where zT = −T0

/
0 = cpT0

/
g is the height of the adiabatic atmosphere. From the

above integral cp
cv

EI =
cp
R psT0

(
T0+0z

T0

) cp
R +1 (

0−1

cp
/

R+1

)∣∣∣∣zT

0
=

(
psT0

g

) (
cp

1+R
/

cp

)
= 2.38× 109 J m−2.
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7.10. Consider two air masses at the uniform potential temperatures θ1= 320 K and θ2 = 340 K, which are separated by a vertical
partition as shown in Figure 7.7. Each air mass occupies a horizontal area of A = 104 m2 and extends from the surface
(p0 = 105 Pa) to the top of the atmosphere. What is the available potential energy for this system? What fraction of the
total potential energy is available in this case?

Solution: Using the results of problem 7.9, we have for the total energy in the initial state:
(

ps
g

)
cpA

(1+R
/

cp)
(θ1 + θ2) =(

105
)
(1004)

(
104

)
(9.8)(9/7) (320+ 340) = 5.259 × 1013 J. To compute the energy in the final state of minimum total potential energy

(with the warm air on top of the cold air) note that with the aid of the hydrostatic equation the total energy can be expressed

as an integral of temperature with respect to pressure: cp
cv

EI = cp
∫
∞

0 (ρT)dz = −
cp
g

∫ 0
ps

Tdp. But T = θ
(

p
ps

)R
/

cp
. Thus,

for unit area cp
cv

EI = −2A

[
cp
g

ps/2∫
ps

θ1

(
p
ps

)R
/

cp
dp+

cp
g

0∫
ps/2s

θ2

(
p
ps

)R
/

cp
dp

]
, where the 2A factor comes from multiplying

energy per unit area times the total area. Evaluating these integrals yields 2Acpps

g(1+R
/

cp)

[
θ1
(
1− 0.59/7

)
+ θ2

(
0.59/7

)]
= 5.23×

1013 J. But available potential energy is the difference between the initial and final total potential energies= 5.259×1013
−

5.230× 1013
= 2.9× 1011 J. The percent of total potential energy that is available is

(
0.029

/
5.259

)
× 100 = 0.55%.

7.11. For the unstable baroclinic wave that satisfies the conditions given in Problems 7.6, 7.7, and 7.8, compute the energy
conversion terms in (8.38) and (8.39) and hence obtain the instantaneous rates of change of the perturbation kinetic and
available potential energies.

Solution: From (7.38) dK′
/

dt = −(2f0
/
δp)ω′2ψT . Let ψm = A cos [k (x− ct)]. Then from Problem 7.6

ψT = −(
√

2− 1)1/2A sin [k (x− ct)] and from Problem 8.8, ω′2 =
(
4f0
/
σδp

)
λ(
√

2− 1)3/2UTA sin [k (x− ct)]. But

sin2 [k (x− ct)] = 0.5, so that ω′2ψT = −

(√
2− 1

)2
A2
(
2f0
/
σδp

)
λUT . Thus, dK′

/
dt = 4

(√
2− 1

)2
A2λ3UT , where

we have used the fact that λ2
= f 2

0

/(
σδp2

)
. For λ = 1.2 × 10−6 m−1, UT = 15 m s−1, and A = 107 m2 s−1,

dK
/

dt = 1.78× 10−3 J kg−1 s−1.

Similarly, from (7.39) the eddy potential energy generation term is 4λ2UTψT
(
∂ψm

/
∂x
)
= 2λ2UTA2k

(√
2− 1

)1/2
=

2λ3UTA2
√

2
(√

2− 1
)
= 3.04× 10−3 J kg−1 s−1. Thus, dP′

/
dt = 3.04× 10−3

− 1.78× 10−3
= 1.26× 10−3 J kg−1 s−1.

7.12. Starting with (7.62) and (7.64) derive the phase speed c for the Eady wave given in (7.70).

Solution: Substituting from (7.67) into (7.64) and (7.65) gives: ik(3z− c)
[
−
(
k2
+ l2

)
9 + ε d29

dz2

]
= 0, and

ik(3z− c) d9
dz − ik93 = 0. From these (7.68) follows immediately. Substituting the general solution (7.69) into

(7.68) at z =0 gives B = −(cα
/
3)A. Using this relation and substituting (7.69) into (7.68) at z = H then gives

α(3H − c)
(
coshαH − cα

3
sinhαH

)
− 3(sinhαH − cα

3
coshαH) = 0, which can be rewritten as a quadratic in c:

c2
−3Hc+

(
32H
α

coshαH
sinhαH −

32

α2

)
= 0, from which the solution for phase speed given in (7.70) follows.

7.13. Unstable baroclinic waves play an important role in the global heat budget by transferring heat poleward. Show that for the
Eady wave solution the poleward heat flux averaged over a wavelength

v′T ′ =
1

L

L∫
0

v′T ′dx

is independent of height and is positive for a growing wave. How does the magnitude of the heat flux at a given instant
change if the mean wind shear is doubled?

Solution: We can let ψ ′ = 9(z) cos ly exp[ik (x− ct)]. Thus, for a growing wave ψ ′ = [9r cos k(x− crt)−
9i sin k (x− crt)] (cos ly) exp (kcit). This implies that v′ = ∂ψ ′

/
∂x = [−9rk sin k(x− crt)−9ik cos k(x− crt)] (cos ly)

exp(kcit), and T ′ ∝ ∂ψ ′
/
∂z =

[
d9r
dz cos k (x− crt)− d9i

dz sin k (x− crt)
]
(cos ly) exp (kcit). Then v′T ′ ∝ −9i

d9r
dz +9r

d9i
dz
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(since sin2 kx = cos2 kx = 1
/

2, and sin kx cos kx = 0). But from (7.70) 9 (z) = A sinhαz+B coshαz, and B =
−(cα

/
3)A. Thus, if we let A be real: 9r = A

[
sinhαz−

(
crα

/
3
)

coshαz
]

and 9i = −(ciα
/
3)A coshαz. Thus,

−9i
d9r
dz + 9r

d9i
dz =

ciα
2A2

3

(
cosh2 αz− sinh2 αz

)
=

ciα
2A2

3
, which is positive for ci > 0, and is independent of height.

Furthermore, since from (7.71) ci ∝ 3, we confirm that v′T ′ does not depend on the magnitude of the shear.

7.14. Assuming that the coefficient A in (7.69) is real obtain an expression for the geostrophic streamfunction ψ ′ (x, y, z∗, t) for
the most unstable mode in the Eady stability problem for the case k = m. Use this result to derive an expression for the
corresponding vertical velocity w* in terms of A.

Solution: The wavelength of maximum growth for k = l is given in the text below equation (7.72). From this result we
find αm ∼= 1.6. From the lower boundary condition we immediately find B = −cαA

/
3, where c = cr + ici. Then from

(7.67) and (7.70) the streamfunction is

ψ
(
x, y, z∗, t

)
= Re

{
A
(
sinhαz∗ − cα/3 coshαz∗

)
cos ly exp [ik (x− ct)]

}
, or

ψ
(
x, y, z∗, t

)
= A cos ly exp (kcit) [Gr cos k (x− crt)− Gi sin k (x− crt)] , where

Gr = sinhαmz− (crαm/3) coshαmz; Gi = −
(
ciαm

/
3
)

coshαmz

Substitution into (7.65) then yields for the vertical velocity:

w∗ =
f0
N2

ARe

{
ik

[
−α3z∗ coshαz∗ −

(
c2
− c3z∗ −

32

α2

)
α2

3
sinhαz∗

]
exp [ik (x− ct)]

}
.

7.15. For the neutral baroclinic wave disturbance in the two-layer model given by (7.75a,b) derive the corresponding ω′2 field.
Describe how the convergence and divergence fields associated with this secondary circulation influence the evolution of
the disturbance.

Solution: From (7.29), (7.75a) and the definition of λ, we can write(
∂2

∂x2
− 2λ2

)
ω′2 = −

δp

f0

(
4λ2UT

∂3ψm

∂x3

)
= −

δp

f0
4λ2UT

(
2µA1k3

1+ µ

)[
sin kx cos (kµUT t)−

1

µ
cos kx sin(kµUT t)

]
.

Thus, ω′2 =
δp
f0

8λ2UTµA1k3

(k2+2λ2)(1+µ)

[
sin kx cos(kµUT t)− 1

µ
cos kx sin(kµUT t)

]
.

During growth phase upward motion is centered east of the upper level trough, so convergence at the lower level concen-
trates negative vorticity east of initial trough and leads to development at the lower level. At time of maximum amplification
upward motion is 90◦ east of the trough and the divergence-convergence pattern cancels vorticity advection at both upper
and lower layers, so the system remains stationary.

7.16. For the situation of Problem 7.15 derive expressions for the conversion of zonal available potential energy to eddy available
potential energy and the conversion of eddy available potential energy to eddy kinetic energy.

Solution: From (7.39) the conversion of mean to eddy available potential energy is given by 4λ2UTψT∂ψm
/
∂x. Substitut-

ing from (7.75) then yields
d(P′+K′)

dt = 8λ2UTµkA2
1

(
1−µ
1+µ

)
sin(kµUT t) cos(kµUT t). The conversion from eddy available

potential energy to eddy kinetic energy is given from (7.39) as 2 f0
δpω
′

2ψT . Substituting from (7.75) and the solution of

Problem 7.15, we then get dK′
dt = 8λ2UTµkA2

1

(
2k2

k2+2λ2

) (
1−µ
1+µ

)
sin(kµUT t) cos(kµUT t). The ratio of the growth of total

eddy energy to growth of eddy kinetic energy is thus
(
k2
+ 2λ2

)/(
2k2

)
< 1 for k2 > 2λ2. Thus, for neutral modes kinetic

energy increases more rapidly than total eddy energy, indicating that eddy available potential energy decreases in time. This
is consistent with the evolution toward a barotropic structure.




