
Chapter 4

Circulation, Vorticity, and Potential Vorticity

4.1. What is the circulation about a square of 1000 km on a side for an easterly (that is, westward flowing) wind that decreases
in magnitude toward the north at a rate of 10 m s−1 per 500 km? What is the mean relative vorticity in the square?

Solution: Vorticity is: ζ = ∂v
∂x −

∂u
∂y = 0−

(
10 m s−1

5×105 m

)
= −2× 10−5 s−1

But, C =
∫∫

A ζdA = ζmA =
(
−2× 10−5 s−1

) (
1012 m2

)
= −2× 107 m2 s−1.

4.2. A cylindrical column of air at 30◦N with radius 100 km expands to twice its original radius. If the air is initially at rest,
what is the mean tangential velocity at the perimeter after expansion?

Solution: From the circulation theorem C + (2� sinφ)A = Constant. Thus, Cfinal = 2� sinφ (Ainitial − Afinal) + Cinitial.
But Ainitial = πr2

i , and Afinal = πr2
f . But rf = 2ri. Therefore, Cfinal = 2� sinφ

(
−3πr2

i

)
. Now V = Cfinal

/(
2πrf

)
, so

V = 2� sinφ (−3ri/4) = −5.5 m s−1 (anticyclonic).

4.3. An air parcel at 30◦N moves northward, conserving absolute vorticity. If its initial relative vorticity is 5×10−5 s−1, what is
its relative vorticity upon reaching 90◦N?

Solution: Absolute vorticity is conserved for the column: ζ + f = Constant. Thus, ζfinal = ζinitial+ ( finitial − ffinal). Hence,
ζfinal = −2� sin (π/2)+

[
5× 10−5

+ 2� sin (π/6)
]
= −2.3× 10−5 s−1.

4.4. An air column at 60◦N with ζ = 0 initially stretches from the surface to a fixed tropopause at 10 km height. If the air column
moves until it is over a mountain barrier 2.5 km high at 45◦N, what are its absolute vorticity and relative vorticity as it passes
the mountaintop, assuming that the flow satisfies the barotropic potential vorticity equation?

Solution: By conservation of potential vorticity, (ζ + f )/H = Constant. Now, ζ = 0 initially, so (ζ + f )final =(
Hfinal

/
Hinitial

)
finitial = (7.5/10.0)

(
1.263× 10−4

)
= 9.473× 10−5 s−1. Thus, ζfinal = 9.473× 10−5

− 10.312× 10−5
=

−8.4× 10−6 s−1.

4.5. Find the average vorticity within a cylindrical annulus of inner radius 200 km and outer radius 400 km if the tangential
velocity distribution is given by V = A/r, where A = 106 m2 s−1 and r is in meters. What is the average vorticity within
the inner circle of radius 200 km?

Solution: The line integral for computing the circulation in the annular region is shown in the figure. For the outer circle
Co = (2πro)

(
106/ro

)
= 2π × 106 m2 s−1, and for the inner circle Ci = (2πri)

(
−106/ri

)
= −2π × 106 m2 s−1. (Note

that Ci is taken by going clockwise around the circle, or opposite to direction of V .) Thus, since Co + Ci = 0, the vorticity
vanishes in the annular region. The mean vorticity in the inner cylinder is given by the circulation divided by area for the
inner circle: ζm = C/A =

(
2π × 106 m2 s−1

) /[
π(2× 105)2 m2

] [
π(2× 105)2 m2

]
= 5× 10−5 s−1.

4.6. Show that the anomalous gradient wind cases discussed in Section 3.2.5 have negative absolute circulation in the Northern
Hemisphere and hence have negative average absolute vorticity.

Solution: The absolute circulation is Ca = 2πVR+ fπR2
= 2πR

(
V + fR

/
2
)
, where R is the radius of curvature, which is

negative for the anomalous cases (see Table 3.1). But from (3.15) and Table 3.1, V + fR/2 > 0, so Ca < 0, and ζ̄ + f < 0.
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4.7. Compute the rate of change of circulation about a square in the (x, y) plane with corners at (0, 0), (0, L), (L,L ), and (L, 0) if
temperature increases eastward at a rate of 1◦C per 200 km and pressure increases northward at a rate of 1 hPa per 200 km.
Let L = 1000 km and the pressure at the point (0, 0) be 1000 hPa.

Solution: From the circulation theorem, DC
/

Dt = −
∮

RTd ln p. But ln p changes only for the North-South segments of
the square, so if δT and δp are the temperature and pressure differences,

DC

Dt
= −RδT ln

[
(p0 + δp)

p0

]
= −(287)(5)(0.005) = −7.2 m2 s−2

T0 T0 + 5°C

p0 = 1000 hPa

p1 = 1005 hPa

FIGURE 4.7

4.8. Verify the identity (4.14) by expanding the vectors in Cartesian components.

Solution: (V · ∇)V = u
∂V
∂x
+ v

∂V
∂y
= i

[
u
∂u

∂x
+ v

∂u

∂y

]
+ j

[
u
∂v

∂x
+ v

∂v

∂y

]
,

∇

(
V · V

2

)
= ∇

(
u2
+ v2

2

)
= i

∂

∂x

(
u2
+ v2

2

)
+ j

∂

∂y

(
u2
+ v2

2

)
= i

[
u
∂u

∂x
+ v

∂v

∂x

]
+ j

[
u
∂u

∂y
+ v

∂v

∂y

]
k× Vζ = k× (iu+ jv)

[
∂v
∂x −

∂u
∂y

]
, but k× i = j, and k× j = −i. Thus,

k× Vζ = j
[
u ∂v
∂x − u ∂u

∂y

]
− i

[
v ∂v
∂x − v ∂u

∂y

]
, and by inspection

∇
(V·V

2

)
+ k× Vζ = (V · ∇)V, which was to be proved.

4.9. Derive a formula for the dependence of depth on radius for an incompressible fluid in solid-body rotation in a cylindrical
tank with a flat bottom and free surface at the upper boundary. Let H be the depth at the center of the tank, � the angular
rotation rate of the tank, and a the radius of the tank.

Solution: Centrifugal force must balance the pressure gradient force. Let the depth be h, then �2r = g
(
∂h
/
∂r
)
. Thus,

dh = �2rdr
/

g. Integrating from the center outward gives
∫ h(r)

H dh =
∫ r

o

(
�2r

/
g
)

dr, which yields h (r) = H+
(
�2r2

/
2g
)
.
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4.10. By how much does the relative vorticity change for a column of fluid in a rotating cylinder if the column is moved from
the center of the tank to a distance 50 cm from the center? The tank is rotating at the rate of 20 revolutions per minute, the
depth of the fluid at the center is 10 cm, and the fluid is initially in solid-body rotation.

Solution: Potential vorticity is conserved:
(
ζ0+2�

H0

)
=

(
ζ1+2�

H1

)
with H0 = 10 cm and H1 = H0+�

2r2
/

2g (from Problem

4.9). But, ζ0 = 0 and � = 2.09 rad/s. Thus, ζ1 =

(
H1−H0

H0

)
2� = (5.57)(4.18)

(10) = 2.3 s−1.

4.11. A cyclonic vortex is in cyclostrophic balance with a tangential velocity profile given by the expression V =V0(r/r0)
n, where

V0 is the tangential velocity component at the distance r0 from the vortex center. Compute the circulation about a streamline
at radius r, the vorticity at radius r, and the pressure at radius r. (Let p0 be the pressure at r0 and assume that density is a
constant.)

Solution: C= 2πVr= 2πV0rn+1
/

rn
0, ζ = ∂V

∂r +
V
r =

1
r
∂(rV)
∂r =

V0
rn
0r
∂
(
rn+1

)
∂r = (n+ 1) V0

rn
0

rn−1
= (n+ 1) V

r , Now, cyclo-

strophic balance implies V2

r =
1
ρ
∂p
∂r , which may be integrated to give

∫ p
p0

dp
ρ
=
∫ V2

0 r2n−1

r2n
0

dr, so that p−p0
ρ
=

V2
0

r2n
0(

r2n
−r2n

0
2n

)
=

V2
−V2

0
2n .

4.12. A westerly zonal flow at 45◦ is forced to rise adiabatically over a north-south–oriented mountain barrier. Before striking the
mountain, the westerly wind increases linearly toward the south at a rate of 10 m s−1per 1000 km. The crest of the mountain
range is at 800-hPa, and the tropopause, located at 300 hPa, remains undisturbed. What is the initial relative vorticity of the
air? What is its relative vorticity when it reaches the crest if it is deflected 5◦ latitude toward the south during the forced
ascent? If the current assumes a uniform speed of 20 m s−1during its ascent to the crest, what is the radius of curvature of
the streamlines at the crest?

Solution: By potential vorticity conservation
(

f0+ζ0
δp0

)
=

(
f1+ζ1
δp1

)
. But, ζ0 = −∂u

/
∂y = 10−5 s−1, f0 = 2� sin

(
π
/

4
)
=

1.03× 10−4 s−1, δp0 = 700 hPa, f1 = 2� sin
(
2π
/

9
)
= 9.37× 10−5 s−1, δp1 = 500 hPa. Thus, ζ1 = −1.29× 10−5 s−1.

For a uniform flow the vorticity is entirely due to curvature so that ζ1 = V
/

R. Thus, R = V
/
ζ1 = −1.55 × 106 m

(–1550 km).

4.13. A cylindrical vessel of radius a and constant depth H rotating at an angular velocity � about its vertical axis of symmetry
is filled with a homogeneous, incompressible fluid that is initially at rest with respect to the vessel. A volume of fluid
V is then withdrawn through a point sink at the center of the cylinder, thus creating a vortex. Neglecting friction, derive
an expression for the resulting relative azimuthal velocity as a function of radius (i. e., the velocity in a coordinate system
rotating with the tank). Assume that the motion is independent of depth and that V�πa2H. Also compute the relative
vorticity and the relative circulation.

Solution: For V�πa2H, we can neglect change in depth when considering the change, δr, in the radial position of the
fluid parcels. The radial displacement δr is just that for which the volume of fluid contained between the radius r and
r − δr is equal to V: Thus, 2πrδrH = V . But by conservation of angular momentum, �r2

= �(r − δr)2 + u (r − δr),
where u is the azimuthal velocity acquired during the displacement δr. Thus, u (r − δr) ≈ −2�rδr = �V

/
(πH), so that

u ≈ �V
/
(πrH) ∝ r−1. Now, ζ = ∂u

∂r +
u
r = 0, except at the origin where ζ → ∞. But the circulation is a constant

independent of r: C = 2πru = 2�V
/

H.

4.14. (a) How far must a zonal ring of air initially at rest with respect to Earth’s surface at 60◦ latitude and 100-km height
be displaced latitudinally in order to acquire an easterly (east to west) component of 10 m s−1 with respect to Earth’s
surface? (b) To what height must it be displaced vertically in order to acquire the same velocity? Assume a frictionless
atmosphere.

Solution: An approximate solution can be obtained by considering conservation of angular momentum for small changes

δR in the distance to the axis of rotation of Earth: �R2
=

[
�+ δu

(R+δR)

]
(R+ δR)2, where δu= 10 ms−1, the change in

zonal wind under angular momentum conservation. Expanding gives δu ≈ −2�δR. Now, for latitudinal displacement
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δR = −δy sinφ, while for vertical displacement δR = δz cosφ. Thus, for 60◦ latitude we find δy = −79 km, or 0.71◦

equatorward, and δz = 138 km.

4.15. The horizontal motion within a cylindrical annulus with permeable walls of inner radius 10 cm, outer radius 20 cm, and
10-cm depth is independent of height and azimuth and is represented by the expressions u = 7− 0.2r, v = 40+ 2r, where
u and v are the radial and tangential velocity components in cm s−1, positive outward and counterclockwise, respectively,
and r is distance from the center of the annulus in cm. Assuming an incompressible fluid, find (a) the circulation about
the annular ring, (b) the average vorticity within the annular ring, (c) the average divergence within the annular ring, and
(d) the average vertical velocity at the top of the annulus if it is zero at the base.

Solution: From Problem 4.5: C = 2πr0v (r0)− 2πr1v (r1) = 2π [(20) (80)− (10) (60)].
a. C = 6280 cm2 s−1;
b. ζ = C

/
A = 6280

/(
πr2

0 − πr2
1

)
= 6.67 s−1.

c. To calculate the divergence note that from the divergence theorem
∫∫
∇ · VdA = A (∇ · V)mean =

∮
r0

V · nds −∮
r1

V · nds, and A = π
(
r2

0 − r2
1

)
, so that (∇ · V)mean = [2πr0u (r0)− 2πr1u (r1)]

/[
π
(
r2

0 − r2
1

)]
= 0.0667 s−1.

d. Now from the continuity equation,
(
∂w
/
∂z
)

mean = −(∇ · V)mean, so that integrating in height gives: wmean =

−H (∇ · V)mean = −0.667 cm s−1 at z = H.

4.16. Prove that, as stated below Eq. (4.52), the globally averaged isentropic vorticity on an isentropic surface that does not
intersect the ground must be zero. Show that the same result holds for the isobaric vorticity on an isobaric surface.

Solution: From the vector identity above (4.52) ζθ = k · (∇θ × V) = ∇θ · (V× k). Thus,
∫
ζθdA =

∫
∇θ · (V× k) dA = 0,

since the divergence of any vector vanishes when integrated over the sphere. The same result holds for isobaric coordinates
if the subscript θ is replaced by p in all the expressions above.




