
Chapter 3

Elementary Applications of the Basic Equations

3.1. An aircraft flying a heading of 60◦ (i.e., 60◦ to the east of north) at air speed 200 m s−1 moves relative to the ground due east
(90◦) at 225 m s−1. If the plane is flying at constant pressure, what is its rate of change in altitude (in meters per kilometer
horizontal distance) assuming a steady pressure field, geostrophic winds, and f = 10−4 s−1?

Solution: For geostrophic motion, (∂Z/∂x)p = f vg/g. Thus, assuming that the wind is geostrophic, we need the y compo-
nent to compute the change in height for isobaric flight in the x direction. But from Figure 3.1, Vwind = Vground − Vair,
so that vg = j · Vwind = j · Vair = − |Vair| cos (π/3), Now |Vair| = 200 m s−1; thus, vg = −100 m s−1, and

(
∂Z
∂x

)
p =

fvg
g =

(
10−4

)
(−100)

9.8 ≈ −1 m/km
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3.2. The actual wind is directed 30◦ to the right of the geostrophic wind. If the geostrophic wind is 20 m s−1, what is the rate of
change of wind speed? Let f = 10−4 s−1.

Solution: From (3.9) DV/Dt = −∂8/∂s, where ∂8/∂s is the component of ∇8 that is parallel to the velocity V. Thus,
from Figure 3.2, ∂8/∂s = |∇8| sin (π/6). But |∇8| = f

∣∣Vg
∣∣. Thus, DV/Dt = −

(
10−4

)
(20) (0.5) = −10−3 m s−2.

3.3. A tornado rotates with constant angular velocity ω. Show that the surface pressure at the center of the tornado is given by

p = p0 exp

(
−ω2r2

0
2RT

)
, where p0 is the surface pressure at a distance r0 from the center and T is the temperature (assumed

constant). If the temperature is 288 K, and pressure and wind speed at 100 m from the center are 1000 hPa and 100 m s−1,
respectively, what is the central pressure?

Solution: Letting r be the distance from the axis of rotation of the tornado, and shifting to height coordinates, the

cyclostrophic balance (3.14) can be expressed as v2

r =
1
ρ
∂p
∂r . But v = ωr and ρ−1

= RT/p, so that ∂ ln p
∂r =

ω2r
RT . Inte-

grating with respect to r:
∫ p

p0
d ln p =

(
ω2

RT

) ∫ 0
r0

rdr, or p = p0exp

[
−
ω2r2

0
2RT

]
. Since

ω2r2
0

2RT�1, the central pressure is given by

p ≈ p0

(
1−

ω2r2
0

2RT

)
= 940 hPa.
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3.4. Calculate the geostrophic wind speed (m s−1) on an isobaric surface for a geopotential height gradient of 100 m per 1000 km
and compare with all possible gradient wind speeds for the same geopotential height gradient and a radius of curvature of
±500 km. Let f = 10−4 s−1.

Solution: From (3.11) Vg = −f−1 (∂8/∂n) = − (g/f ) (∂Z/∂n). Thus, Vg = ±
(
9.8/10−4

) (
100/106

)
= ±9.8 m s−1.

(Note that the geostrophic speed can be positive or negative, while the gradient wind speed must always be positive.) From

(3.15) Vgrad = −

(
fR
2

)
±

(
f 2R2

4 + fRVg

)1/2
= ±25± (625± 490)1/2. Noting that the gradient wind must be positive for all

permitted solutions: Vgrad = 8.4 m/s regular low; 13.4 m/s regular high; 58.4 m/s anomalous low; and 36.6 m/s anomalous
high.

3.5. Determine the maximum possible ratio of the normal anticyclonic gradient wind speed to the geostrophic wind speed for
the same pressure gradient.

Solution: From Table 3.1, a regulary high takes the negative root in (3.15) and has R< 0, and Vgrad = −

(
fR
2

)
−

(
f 2R2

4 + fRVg

)1/2
. Thus,

(
Vgrad

)
max = −

(
fR
2

)
; that is, f 2R2

4 + fRVg = 0 for the maximum gradient wind speed. Thus,

for the maximum gradient wind, Vg = −fR/4 = (1/2)
(
Vgrad

)
max so that maximum gradient wind is twice the geostrophic

wind speed in a normal anticyclone.

3.6. Show that the geostrophic balance in isothermal coordinates may be written

f Vg = k×∇T (RT ln p+8) .
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Solution: Now from the figure: (pB−pA)
δx =

(pC−pA)
δx +

(pB−pC)
δZ

(
δZ
δx

)
T . Thus:

(
∂p
∂x

)
T
=

(
∂p
∂x

)
Z
+

(
∂p
∂Z

) (
∂Z
∂x

)
T But: f vg =

1
ρ

(
∂p
∂x

)
Z
=

1
ρ

(
∂p
∂x

)
T
+ g0

(
∂Z
∂x

)
T , where we have used ∂p

∂Z = −ρg0. If we eliminate ρ using p = ρRT , and noting that

8 = g0Z, we obtain f vg =
RT
p

(
∂p
∂x

)
T
+
(
∂8
∂x

)
T =

∂
∂x (RT ln p+8)T with analogous expression for fug.

3.7. Determine the radii of curvature for the trajectories of air parcels located 500 km to the east, north, south, and west of the
center of a circular low-pressure system, respectively. The system is moving eastward at 15 m s−1. Assume geostrophic
flow with a uniform tangential wind speed of 15 m s−1.

Solution: From (3.24) Rs = Rt (1− c cos γ /V), where c = V = 15 m/s, and Rs = 500 km. Thus,

North of center Rt = Rs/2 = 250 km (γ = π)

West of center Rt = Rs = 500 km (γ = 3π/2)
South of center Rt →∞ (γ = 0)
East of center Rt = Rs = 500 km (γ = π/2)
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3.8. Determine the normal gradient wind speeds for the four air parcels of Problem 3.7 using the radii of curvature computed in
Problem 3.7. Compare these speeds with the geostrophic speed. (Let f = 10−4 s−1.) Use the gradient wind speeds calculated
here to recompute the radii of curvature for the four air parcels referred to in Problem 3.7. Use these new estimates of the
radii of curvature to recompute the gradient wind speeds for the four air parcels. What fractional error is made in the radii
of curvature by using the geostrophic wind approximation in this case? (Note that further iterations could be carried out,
but would rapidly converge.)

Solution: Gradient wind speed for normal low is given by

Vgrad = −

(
fRt

2

)
+

[(
fRt

2

)2

+ fRtVg

]1/2

.

Using the radii of curvature from Problem 3.7, we obtain

North of center Vgrad = 10.5 m/s
West of center Vgrad = 12.1 m/s
South of center Vgrad = 15 m/s
East of center Vgrad = 12.1 m/s

Substituting these values of gradient wind into the formula of Problem 3.7, we find that only the trajectory curvature north of
the center changes: North of center Rt = Rs/(1+ 15/10.5) = 206 km. Plugging this value into the gradient wind formula,
we find North of center Vgrad = 10.07 m/s, which is about a 4% decrease.

3.9. Show that as the pressure gradient approaches zero, the gradient wind reduces to the geostrophic wind for a normal
anticyclone and to inertial flow (Section 3.2.3) for an anomalous anticyclone.

Solution: For ∇p→ 0, Vg → 0. But Vgrad = −

(
fR
2

)
±

(
fR
2

) [
1+ 4Vg

fR

]1/2
. For 4Vg� fR the above simplifies to Vgrad ≈

+

(
fR
2

) [
−1±

(
1+ 2Vg

fR

)]
, where we have used the expansion (1+ x)1/2 ≈ 1 + x/2, valid for small x. The positive root

gives Vgrad = Vg; the negative root gives Vgrad ≈ −fR for Vg → 0.

3.10. The mean temperature in the layer between 750 and 500 hPa decreases eastward by 3◦C per 100 km. If the 750 hPa
geostrophic wind is from the southeast at 20 m s−1, what is the geostrophic wind speed and direction at 500 hPa? Let
f = 10−4 s−1.

Solution: From (3.33)
u500 = u750 + uT = −14.1+ uT m/s
v500 = v750 + vT = +14.1+ vT m/s

But, uT = 0; and vT =
R
f

(
∂T
∂x

)
p ln 750

500 = −34.5 m/s.

Thus, Vg (500) = (−14.1,−20.4) m/s; or 25 m/s speed from 34◦ east of north.

3.11. What is the mean temperature advection in the 750-500 hPa layer in Problem 3.10?

Solution: Mean advection = −V · ∇T = −u∂T/∂x, where u = (u500 + u750)/2 and ∂T/∂x = −3 × 10−5◦C/m. Thus,
−u∂T/∂x = −4.23× 10−4◦C/s, (−1.5◦C/hr).

3.12. Suppose that a vertical column of the atmosphere at 43◦N is initially isothermal from 900 to 500 hPa. The geostrophic
wind is 10 m s−1 from the south at 900 hPa, 10 m s−1 from the west at 700 hPa, and 20 m s−1 from the west at 500 hPa.
Calculate the mean horizontal temperature gradients in the two layers 900-700 hPa and 700-500 hPa. Compute the rate of
advective temperature change in each layer. How long would this advection pattern have to persist in order to establish a
dry adiabatic lapse rate between 600 and 800 hPa? (Assume that the lapse rate is constant between 900 and 500 hPa, and
that the 800-600 hPa layer thickness is 2.25 km.)
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Solution: The wind components in tabular form are:

p (hPa) ug m/s vg m/s uT m/s vT m/s

900 0 10
10 −10

700 10 0
10 0

500 20 0

From (3.32) ∂T
∂y = −

(
fuT

R ln(p0/p1)

)
;
∂T
∂x = +

(
fvT

R ln(p0/p1)

)
. For layer 900-700 hPa: ∂T/∂x = ∂T/∂y = −(1.39◦C)/

(100 km). For layer 700-500 hPa: ∂T/∂x = 0; ∂T/∂y = −(1.03◦C)/(100 km). The advective rate of temperature change
is ∂T

∂t = −u ∂T
∂x − v ∂T

∂y . The average wind in the 900-700 hPa layer is u = v = 5 m/s, and in the 700-500 hPa layer it is

u = 15 m/s, v = 0. Thus, for the 900-700 hPa layer ∂T
∂t = 1.39 × 10−4◦C/s, or about 0.5◦C/hr; for the 700-500 hPa layer,

∂T/∂t = 0. Thus, the temperature difference between 800 hPa and 600 hPa increases by 0.5◦C/hr. Assuming a 2.25 km
thickness, we find that an adiabatic lapse rate (9.8◦C/km) would be established in about 44 hours.

3.13. An airplane pilot crossing the ocean at 45◦N latitude has both a pressure altimeter and a radar altimeter, the latter measuring
his absolute height above the sea. Flying at an air speed of 100 m s−1, he maintains altitude by referring to his pressure
altimeter set for a sea-level pressure of 1013 hPa. He holds an indicated 6000 m altitude. At the beginning of a one-hour
period, he notes that his radar altimeter reads 5700 m, and at the end of the hour he notes that it reads 5950 m. In what
direction and approximately how far has he drifted from his heading?
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Solution: Let VA be the velocity of the plane with respect to the air, VG be the velocity of the plane relative to the ground,
and VD be the wind velocity. Assume that the wind is geostrophic so is parallel to lines of constant height on an isobaric
surface. The height change of the plane in distance d = |VA| t (where t is the elapsed time) is proportional to the component
of the wind ⊥ to VA. For convenience assume that the heading (hence VA) is eastward. Then the northward component of
the geostrophic wind is vg = (g/f ) ∂Z/∂x ≈ (g/f ) (Z2 − Z1)/d. The drift of the plane from its heading is D = vgt. Thus,

D =
(

g
f

)
(Z2−Z1)
|VA|

=

(
9.8

1.03×10−4

) (
250
100

)
= 238 km

The drift is to the left of the heading in the Northern Hemisphere.

3.14. Work out a gradient wind classification scheme equivalent to Table 3.1 for the Southern Hemisphere ( f < 0) case.

R > 0 R < 0
∂8
∂n > 0 + root: (V > −fR/2) anomalous high

− root: (V < −fR/2) regular high
+ root: regular low
− root: unphysical

∂8
∂n < 0 + root: antibaric flow (anomalous low)

− root: unphysical
+ root: unphysical
− root: unphysical
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3.15. In the geostrophic momentum approximation (Hoskins, 1975), the gradient wind formula for steady circular flow (3.17)
is replaced by the approximation V Vg R−1

+ f V = f Vg. Compare the speeds V computed using this approximation with
those obtained in Problem 3.8 using the gradient wind formula.

Solution: From the above formula, V = Vg
[
1+ Vg/( fR)

]−1. North of low center R = 250 km, so V = 9.38 m/s. East and
west of low R = 500 km, so V = 11.54 m/s. South of low R→∞, so V = 15 m/s. For finite positive R the gradient wind
is underestimated in this approximation.

3.16. How large can the ratio Vg/( fR) be before the geostrophic momentum approximation differs from the gradient wind
approximation by 10% for cyclonic flow?

Solution: The percentage error can be computed by noting that for a regular low Vgrad = ( fR/2)
[
−1+

(
1+ 4Vg/fR

)1/2],
while the approximation of Problem 3.15 can be written as V = ( fR/2)

(
2Vg/fR

) [
1+ Vg/( fR)

]−1. By trial and error it can
be shown that for Vg/fR = 1/2, V = 0.667 ( fR/2), and Vgrad = 0.732 ( fR/2), so that V is about a 10% underestimate.

3.17. The planet Venus rotates about its axis so slowly that to a reasonable approximation the Coriolis parameter may be set equal
to zero. For steady, frictionless motion parallel to latitude circles, the momentum equation (2.20) then reduces to a type

of cyclostrophic balance: u2tanφ
a = −

1
ρ
∂p
∂y . By transforming this expression to isobaric coordinates show that the thermal

wind equation in this case can be expressed in the form ω2
r (p1)−ω

2
r (p0) =

−R ln (p0/p1)
(a sinφ cosφ)

∂〈T〉
∂y , where R is the gas constant,

a is the radius of the planet, and ωr ≡ u/(a cosφ) is the relative angular velocity. How must 〈T〉 (the vertically averaged
temperature) vary with respect to latitude in order for ωr to be a function only of pressure? If the zonal velocity at about
60 km height above the equator (p1 = 2.9×105 Pa) is 100 m s−1 and the zonal velocity vanishes at the surface of the planet
(p0 = 9.5× 106 Pa), what is the vertically averaged temperature difference between the equator and pole, assuming that ωr

depends only on pressure? The planetary radius is a = 6100 km, and the gas constant is R = 187 J kg−1 K−1.

Solution: Now the cyclostrophic balance can be rewritten as u2 tanφ
a = ω2

r a cosφ sinφ = −
(
∂8
∂y

)
p
. But since ∂8

∂p = −
RT
p ,

differentiating in p gives ∂ω2
r

∂p =
1

a cosφ sinφ
∂
∂y

(
RT
p

)
. Integrating in p and defining a layer average temperature 〈T〉 gives

ω2
r (p1)−ω

2
r (p0) = −

R ln(p0/p1)
a cosφ sinφ

∂〈T〉
∂y . For angular velocity to depend only on pressure requires ∂〈T〉

∂y ∝ sinφ cosφ, or since

dy = adφ 〈T〉 = Te − T ′ sin2 φ, where Te is a constant, and T ′ =
[
ω2

r (p1)−ω
2
r (p0)

]
a2

2R ln(p0/p1)
=

1002

(2)(187)(ln(9.5/0.29)) = 7.66 K.

3.18. Suppose that during the passage of a cyclonic storm the radius of curvature of the isobars is observed to be +800 km at
a station where the wind is veering (turning clockwise) at a rate of 10◦ per hour. What is the radius of curvature of the
trajectory for an air parcel that is passing over the station? (The wind speed is 20 m s−1.)

Solution: From equation (3.23) Rt = V (∂β/∂t + V/Rs)
−1. But V = 20 m/s, Rs = 8 × 105 m, and ∂β/∂t =

−(π/18) (1/3600) rad s−1. Thus, Rt = −852 km.

3.19. Show that the divergence of the geostrophic wind in isobaric coordinates on the spherical earth is given by

∇ · Vg = −
1

fa

∂8

∂x

(
cosφ

sinφ

)
= −vg

(
cotφ

a

)

(Use the spherical coordinate expression for the divergence operator given in Appendix C.)

Solution: Now in spherical coordinates; ∇ ·Vg =
1

a cosφ

[
∂ug
∂λ
+

∂(vg cosφ)
∂φ

]
, but f vg =

(
1
a

) (
∂8

cosφ∂λ

)
; fug = −

(
1
a

) (
∂8
∂φ

)
Thus,

∇ · Vg =
1

a cosφ

∂(1/f )

∂φ

∂8

a∂λ
=

f

a

∂ (1/f )

∂φ

(
vg
)
= −

1

af

∂( f )

∂φ

(
vg
)
= −vg

(
cotφ

a

)
.
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3.20. The following wind data were received from 50 km to the east, north, west, and south of a station, respectively:
90◦, 10 m s−1; 120◦, 4 m s−1; 90◦, 8 m s−1; 60◦, 4 m s−1. Calculate the approximate horizontal divergence at the station.

Solution: Let δx = δy = 50 km. Then, letting A, B, C, D designate the points east, north, west, and south of the station,
respectively, we obtain the finite difference formula:

∂u

∂x
+
∂v

∂y
≈

uA − uC

2δx
+

vB − vD

2δy
=
(−10+ 8)

105 +
(2+ 2)

105 = 2× 10−5 s−1.

3.21. Suppose that the wind speeds given in Problem 3.20 are each in error by ±10%. What would be the percent error in the
calculated horizontal divergence in the worst case?

Solution: For the worst case, let uA = −9 m s−1, uC = −8.8 m s−1, vB = 2.2 m s−1, vD = −2.2 m s−1. Then ∂u
∂x +

∂v
∂y =

(−9+8.8)
105 +

(2.2+2.2)
105 = 4.2× 10−5 s−1, which is a 110% error.

3.22. The divergence of the horizontal wind at various pressure levels above a given station is shown in the following table.

Pressure (hPa) ∇ · V
(
×10−5 s−1)

1000 +0.9
850 +0.6
700 +0.3
500 0.0
300 −0.6
100 −1.0

Compute the vertical velocity at each level assuming an isothermal atmosphere with temperature 260 K and letting w = 0
at 1000 hPa.

Solution: From eq. (3.38): ω(p1) = ω(p0) + ( p0 − p1) 〈∇ · V〉, where in this case the vertical average of the diver-
gence in each layer must be estimated from averaging the top and bottom values: 〈∇ · V〉 = 1

2

[
(∇ · V)p0

+ (∇ · V)p1

]
. If

ω (1000 hPa) = 0, then integrating upward gives

ω(850 hPa) = 11.25× 10−2 Pa s−1

ω(700 hPa) = 18.00× 10−2 Pa s−1

ω(500 hPa) = 21.00× 10−2 Pa s−1

ω(300 hPa) = 15.00× 10−2 Pa s−1

ω(100 hPa) = −1.00× 10−2 Pa s−1

Now w ≈ −
(

RT
g

) (
ω
p

)
=
(
−7.61× 103

) (
ω
p

)
. Thus, from the above expressions we estimate the vertical velocity at each

level as

w(850) = −1.0 cm s−1

w(700) = −2.0 cm s−1

w(500) = −3.3 cm s−1

w(300) = −3.8 cm s−1

w(100) = +0.8 cm s−1

3.23. Suppose that the lapse rate at the 850 hPa level is 4 K km−1. If the temperature at a given location is decreasing at a rate of
2 K h−1, the wind is westerly at 10 m s−1, and the temperature decreases toward the west at a rate of 5 K/100 km, compute
the vertical velocity at the 850 hPa level using the adiabatic method.

Solution: From eq. (3.41) ω= S−1
p [∂T/∂t + u∂T/∂x+ v∂T/∂y]. But ω≈ − ρgw, and Sp = (0d − 0)/(ρg). Thus, w ≈

−[∂T/∂t + u∂T/∂x+ v∂T/∂y]/(0d − 0). (0d − 0) = 9.8× 10−3
− 4× 10−3

= 5.8× 10−3 K km−1 ∂T
∂t + u ∂T

∂x + v ∂T
∂y =(

−2
3600

)
+ 10

(
5

105

)
+ 0 = −5.56 × 10−5 K s−1, so that w = −

[(
−5.56× 10−5

)
/5.8× 10−3

]
= 0.0096 m s−1, or

0.96 cm/s.




