
Chapter 2

Basic Conservation Laws

2.1. A ship is steaming northward at a rate of 10 km h−1. The surface pressure increases toward the northwest at a rate of
5 Pa km−1. What is the pressure tendency recorded at a nearby island station if the pressure aboard the ship decreases at
a rate of 100 Pa/3 h?

Solution: ∂p
∂t =

Dp
Dt −V ·∇p. But, V ·∇p = |V| |∇p| cosα, where α is the angle between the velocity and pressure gradient

vectors (45◦ here). ∂p
∂t = −

(
100

3 Pa/h
)
− (10 km/h) (5 Pa/km)

(
1
/√

2
)
= –68.7 Pa/h, or ∼= –2 hPa/3h.
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2.2. The temperature at a point 50 km north of a station is 3◦C cooler than at the station. If the wind is blowing from the northeast
at 20 m s−1 and the air is being heated by radiation at the rate of 1◦C h−1, what is the local temperature change at the station?

Solution: ∂T
∂t =

DT
Dt − V · ∇T , where here DT

Dt = J = 1◦C h−1. Now, V · ∇T =
(
20 m s−1) (3◦C/5× 104 m

) (
1
/√

2
)
=

8.47× 10−4◦C s−1 or 3.05◦C h−1. Thus, ∂T/∂t = 1◦C/h − 3.05◦C/h = −2.05◦C/h.
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2.3. Derive the relationship �× (�× r) = −�2 R, which was used in Eq. (2.7).

Solution: |R| = |r| sinα, where α is the angle between � and r, and R is perpendicular to �. Then by definition of the
cross product �× r = �× R = � |R|n, where n is the unit vector pointing into the paper (see Fig. 2.3) perpendicular to
the plane of � and R. Then �× (�× r) = �× n� |R|. But �× n = −�R/|R|, which by substitution gives the desired
result.
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2.4. Derive the expression given in Eq. (2.13) for the rate of change of k following the motion.

Solution: Dk/Dt = u∂k/∂x + v∂k/∂y. From the figure,
∣∣∣ ∂k
∂y

∣∣∣ = lim
δy→0

(∣∣∣ δkδy ∣∣∣), but by similarity of triangles, |δk|/|k| =

|δk| = δy/a, and δk is parallel to j, so that ∂k/∂y = j/a. By similar arguments ∂k/∂x = i/a. Thus, Dk/Dt = iu/a+ jv/a.
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2.5. Suppose a 1-kg parcel of dry air is rising at a constant vertical velocity. If the parcel is being heated by radiation at the rate
of 10−1 W kg−1, what must the speed of rise be to maintain the parcel at a constant temperature?

Solution: From (2.42) cpDT/Dt − αDp/Dt = J, but from the hydrostatic equation αDp = −gDz, Thus, cpDT/Dt + gDz/

Dt = cpDT/Dt + gw = J, so that for constant parcel temperature (DT/Dt = 0),w = J/g =
(

10−1W kg−1
)/

(
9.8 m s−2

)
= 0.0102 m s−1 or about 1.0 cm s−1.

2.6. Derive an expression for the density ρ that results when an air parcel initially at pressure ps and density ρs expands
adiabatically to pressure p.

Solution: For adiabatic expansion potential temperature is conserved. Thus, θ = Ts = T (ps/p)R/cp . Substituting from the
ideal gas law, T = p/(ρR) gives ps/ρs = (p/ρ) (ps/p)R/cp or ρ = ρs (p/ps)

cv/cp , where we have used cv = cp − R.

2.7. An air parcel that has a temperature of 20◦C at the 1000 hPa level is lifted dry adiabatically. What is its density when it
reaches the 500 hPa level?

Solution: From Problem 2.6, ρ= (ps/RTs) (p/ps)
cv/cp so that

ρ(500 hPa)=

 105 Pa(
287 J K−1 kg−1

)
(293 K)

(1

2

)0.714

= 0.725 kg m−3.

2.8. Suppose an air parcel starts from rest at the 800 hPa level and rises vertically to 500 hPa while maintaining a constant 1◦C
temperature excess over the environment. Assuming that the mean temperature of the 800–500 hPa layer is 260 K, compute
the energy released owing to the work of the buoyancy force. Assuming that all the released energy is realized as kinetic
energy of the parcel, what will the vertical velocity of the parcel be at 500 hPa?

Solution: Substituting from the ideal gas law ρ = p/RT into (2.51), we get Dw
Dt = g

(
T−1

0 −T−1

T−1

)
= g

(
T−T0

T0

)
, which gives

the force per unit mass. But the energy released is given by force× distance traveled. From the hypsometric equation (1.30),
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δZ = (RT0/g) ln (p1/p2). Thus, energy released per unit mass = gδZ [(T − T0)/T0] = R(T − T0) ln (p1/p2) = 135 J kg−1.
If all goes into kinetic energy, then w2/2 = 135 m2 s−2, so that w = 16.43 m s−1 at 500 hPa.

2.9. Show that for an atmosphere with an adiabatic lapse rate (i.e., constant potential temperature) the geopotential height is

given by Z = Hθ

[
1−

(
p
p0

)R/cp
]

, where p0 is the pressure at Z = 0 and Hθ ≡ cpθ /g0 is the total geopotential height of the

atmosphere.

Solution: In Problem 1.16, let γ = g/cp (adiabatic lapse rate), and note that for p0 = 1000 hPa T0 = θ . Then substitution
into the formula of Problem 1.16 immediately yields the above result.

2.10. In the isentropic coordinate system (see Section 4.6) potential temperature is used as the vertical coordinate. Since in
adiabatic flow potential temperature is conserved following the motion, isentropic coordinates are useful for tracing the
actual paths of travel of individual air parcels. Show that the transformation of the horizontal pressure gradient force from z
to θ coordinates is given by

1

ρ
∇z p = ∇θM,

where M ≡ cpT +8 is the Montgomery streamfunction.

Solution: In (1.36) let s = θ . Then:
(
∂p
∂x

)
θ
=

(
∂p
∂z

) (
∂z
∂x

)
θ
+

(
∂p
∂x

)
z
. Letting ∂p

∂z = −ρg then gives 1
ρ

(
∂p
∂x

)
z
=

1
ρ

(
∂p
∂x

)
θ
+(

∂8
∂x

)
θ
, where gdz = d8. Now with the aid of the ideal gas law 1

ρ

(
∂p
∂x

)
θ
= RT

(
∂ ln p
∂x

)
θ
. But from (2.44): ln θ = ln T −(

R/cp
)

ln p + Constant, from which
(
∂ ln p
∂x

)
θ
=

cp
R

(
∂ ln T
∂x

)
θ
. Thus, 1

ρ

(
∂p
∂x

)
z
= cpT

(
∂ ln T
∂x

)
θ
+
(
∂8
∂x

)
θ

which simplifies to

1
ρ

(
∂p
∂x

)
z
=
(
∂M
∂x

)
θ
.

The other components can be derived in an analogous fashion.

2.11. French scientists have developed a high-altitude balloon that remains approximately at constant potential temperature as it
circles Earth. Suppose such a balloon is in the lower equatorial stratosphere where the temperature is isothermal at 200 K.
If the balloon were displaced vertically from its equilibrium level by a small distance δz, it would tend to oscillate about the
equilibrium level. What is the period of this oscillation?

Solution: From Eq. (2.52), the parcel oscillation frequency is N =
[
g d ln θ0

dz

]1/2
. But for isothermal conditions from (2.47),

we obtain d ln θ0/dz = g/
(
cpT

)
= (9.8)/[(1003) (200)] = 4.885 × 10−5 m−1. Thus, the period of the oscillation is

2π/N = 2π/
[
(9.8)

(
4.885× 10−5

)]1/2
= 287 s, or about 4.8 minutes.

2.12. Derive the approximate thermodynamic energy equation (2.55) using the scaling arguments of Sections 2.4 and 2.7.

Solution: Separating temperature and pressure, respectively, into standard atmosphere components (dependent only on z)
and deviations yields the expressions Ttot = T0(z) + T(x, y, z, t) = T0(1+ T/T0), and ptot = p0(z) + p(x, y, z, t) =
p0(1+ p/p0), where Ttot designates the total temperature field and ptot the total pressure field. Then since |T/T0| << 1 and
|p/p0| << 1, ln Ttot ≈ ln T0 + T/T0, and ln ptot ≈ ln p0 + p/p0, and (2.43) becomes approximately

cpD ln T0
/

Dt +
(
cp
/

T0
)

DT
/

Dt − RD ln p0
/

Dt −
(
R
/

p0
)

Dp
/

Dt = J
/

T0.

But since T0 and p0 depend only on z, the above can be rewritten with the aid of the ideal gas law as

DT

Dt
−

1

cpρ0

Dp

Dt
+ w

(
dT0

dz
−

1

cpρ0

dp0

dz

)
=

J

cp
,
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and application of the hydrostatic equation ∂p0/∂z = −ρ0g gives for synoptic-scale motions (in which vertical advection
of T and p is small compared with horizontal advection)(

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

)
−

(
1

cpρ0

)(
∂p

∂t
+ u

∂p

∂x
+ v

∂p

∂y

)
+ w

(
g

cp
+

dT0

dz

)
≈

J

cp
.

Using the definition of the adiabatic lapse rate (2.48) and recalling that for synoptic-scale systems δT ∼ 4◦C, J/cp ≤ 1◦C,
and δp/ρ0 ∼ 103 m2 s−2, the dominant terms are(

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

)
+ w (0d − 0) ≈ 0.




