
Chapter 1

Introduction

1.1. Neglecting the latitudinal variation in the radius of Earth, calculate the angle between the gravitational force and gravity
vectors at the surface of Earth as a function of latitude. What is the maximum value of this angle?

Solution: Let φ be latitude and α the angle between g* and g. (See Figure 1.5 in the text.) Then from the law of sines:

|g|/sinφ = �2
|R|/sinα

But |R| = a cosφ, where a is the radius of Earth. Thus,

sinα ≈ α =
�2a sinφ cosφ

|g|
=
�2a sin 2φ

2g

The maximum, which occurs at 45◦, is α = 1.73× 10−3 rad, or 0.099◦.
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FIGURE 1.1

1.2. Calculate the altitude at which an artificial satellite orbiting in the equatorial plane can be a synchronous satellite (i.e., can
remain above the same spot on the surface of Earth).

Solution: From text Eq. (1.7)

g∗ +�2R = 0, but g∗ = −
(

GM/r2
)
(rr)

and at the equator R = r. Thus,

�2r =
(

GM/r2
)

so that r =
(

GM/�2
)13
≈ 42,200 km.

Then z = r − a ≈ 35,830 km.

1.3. An artificial satellite is placed into a natural synchronous orbit above the equator and is attached to Earth below by a wire.
A second satellite is attached to the first by a wire of the same length and is placed in orbit directly above the first at the
same angular velocity. Assuming that the wires have zero mass, calculate the tension in the wires per unit mass of satellite.
Could this tension be used to lift objects into orbit with no additional expenditure of energy?

An Introduction to Dynamic Meteorology, Solutions Manual
Copyright © 2013 Elsevier Inc. All rights reserved. 1



2 Solutions Manual

Solution: Tension per unit mass, T , is given by

T = �2r1 − GM/r2
1,

where r1 is the distance of the outer satellite from the center of Earth. Now from Problem 1.2 r1= 42,200 km+ 35,830 km
≈ 78,000 km, so T = 0.349 N kg−1. This tension could be used once to lift a mass less than T/g ≈ 3.56% of the mass of
the outer satellite into orbit, but only by displacing the satellites and wire further into space. (mwg = Tms, where mw and ms

are the mass to be lifted and the mass of the outer satellite, respectively.)

1.4. A train is running smoothly along a curved track at the rate of 50 m s−1. A passenger standing on a set of scales observes
that his weight is 10% greater than when the train is at rest. The track is banked so that the force acting on the passenger is
normal to the floor of the train. What is the radius of curvature of the track?

Solution: The weight measured by the scales (1.1 mg) is the vector sum of the forces of gravity (mg) and the centrifugal
force owing to the curvature of the tracks (mu2/r, where m is the mass of the train, u is the speed and r the radius of curvature
Thus,

(1.1 mg)2 = (mg)2 +
(

mu2/r
)2
.

Thus, r = u2/
(

g
√

0.21
)
= 556 m.

mu2/r

1.1 mgmg

FIGURE 1.4

1.5. If a baseball player throws a ball a horizontal distance of 100 m at 30◦ latitude in 4 s, by how much is it deflected laterally
as a result of the rotation of Earth?

Solution: Assume that the ball is thrown eastward and that u = x/t is constant, where x = 100 m and t = 4 s. From (1.21)
v = Dy/Dt = − (2� sinφ) ut, but sinφ = 0.5. Thus, in this case, v = −�ut, integrating in time yields

y = −�ut2/2 = −�xt/2 = −
(

7.292× 10−5
)
(100× 4) /2 m, or y = −1.46 cm.

Thus, the ball is deflected to the right.

1.6. Two balls 4 cm in diameter are placed 100 m apart on a frictionless horizontal plane at 43◦N. If the balls are impulsively
propelled directly at each other with equal speeds, at what speed must they travel so that they just miss each other?

Solution: From Problem 1.5 the lateral deflection for each ball is to the right and given by |y| = (2� sinφ) xt/2 = 2 cm for
the balls to just miss each other. Solving for t:

t =
2 |y|

(2� sinφ) x
=
(2)

(
2× 10−2 m

)(
10−4 s−1

)
(50 m)

= 8 s; thus, u =
x

t
=
(50 m)

(8 s)
= 6.25 m s−1.

1.7. A locomotive of 2 × 105 kg mass travels 50 m s−1 along a straight horizontal track at 43◦N. What lateral force is exerted
on the rails? Compare the magnitudes of the upward reaction force exerted by the rails for cases where the locomotive is
traveling eastward and westward, respectively.
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Solution: The lateral force on the rails is just the reaction to the deflection force due to the Coriolis effect. Thus, for a
locomotive of mass M,

F = −fMu = −
(

10−4 s−1
) (

2× 105 kg
) (

50 m s−1
)
= −103 N

(directed southward for a train moving eastward in the Northern Hemisphere). The upward reaction force is just the weight
minus the vertical component of the Coriolis force (1.18). Thus, Fupward = M (g− 2� cosφu), and the force difference
between westward and eastward travel is

δF = Fwestward − Feastward = 4� cosφ |u|M = 2× 103 N.

1.8. Find the horizontal displacement of a body dropped from a fixed platform at a height h at the equator neglecting the effects
of air resistance. What is the numerical value of the displacement for h = 5 km?

Solution: From text Eq. (1.16) (Du/Dt)Co = −2�w at the equator. But Dw/Dt ≈ −g, so that w = Dz/Dt ≈ −gt and
integration in time gives z = gt2/2. Thus, t0 = (2h/g)1/2 is the total time of the fall from height h. From these we get
Du/Dt = 2�gt, which integrates to give u = Dx/Dt = �gt2. Integrating again, we obtain

x = �gt3/3 = (�g/3) (2h/g)3/2 = 7.8 m eastward for h = 5 km.

1.9. A bullet is fired directly upward with initial speed w0, at latitude φ. Neglecting air resistance, by what distance will it be
displaced horizontally when it returns to the ground? (Neglect 2�u cosφ compared to g in the vertical momentum equation.)

Solution: Dw/Dt = −g so that w = w0 − gt = 0 at the top of the trajectory. Total time of flight is twice the time to the top,
or t0 = 2w0/g. From text Eq. (1.16) (Du/Dt) = − (2� cosφ)w, which integrates to give

u = −2� cosφ
(

w0t − gt2/2
)

and since

Dx/Dt = u, x = −2� cosφ
(

w0t2/2− gt3/6
)
.

Substituting the total time t0 then gives x = −2� cosφ
(
2w3

0/3g2
)
.

1.10. A block of mass M = 1 kg is suspended from the end of a weightless string. The other end of the string is passed through a
small hole in a horizontal platform and a ball of mass m = 10 kg is attached. At what angular velocity must the ball rotate
on the horizontal platform to balance the weight of the block if the horizontal distance of the ball from the hole is 1 m?
While the ball is rotating, the block is pulled down 10 cm. What is the new angular velocity of the ball? How much work is
done in pulling down the block?
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FIGURE 1.10
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Solution: Force balance for equilibrium (see Figure 1.10) is Mg = mω2
e ae, where ωe is the angular velocity of the ball and

ae = 1 m. Solving for ωe yields

ωe = (Mg/mae)
1/2
≈ 1 s.

If the block is pulled down 10 cm, then the distance of the ball from the hole is 0.9 m. By conservation of angular momentum,
ωf a2

f = ωea2
e , where subscript f denotes the final state. The final angular velocity then is

ωf = ωe

(
a2

e/a
2
f

)
= 1.222 s−1.

The total work done is given by the sum of the changes in kinetic and potential energy: δW = δK + δP. Now

δK = (m/2)
[(
ωf af

)2
− (ωeae)

2
]
= 1.15 J; δP = Mgδh,

where δh = −10 cm height change. Thus, δP = −0.98 J and δW = 1.15− 0.98 = 0.17 J.

1.11. A particle is free to slide on a horizontal frictionless plane located at a latitude φ on Earth. Find the equation governing the
path of the particle if it is given an impulsive northward velocity v = V0 at t = 0. Give the solution for the position of the
particle as a function of time. (Assume that the latitudinal excursion is sufficiently small so that f is constant.)

Solution: Combining text Eqs. (1.17) and (1.18), we obtain an equation for v: D2v/Dt2 = −f 2v. The general solution is
v = A cos ft + B sin ft. The initial conditions then give A = v0, B = 0. Therefore, v = Dy/Dt = v0 cos ft, and from (1.17)
we find that u = Dx/Dt = v0 sin ft. Letting (x0, y0) be the initial position and integrating with respect to time then yields

x = x0 − (v0/f ) (cos ft − 1) , y = y0 + (v0/f ) sin ft.

1.12. Calculate the 1000–500 hPa thickness for isothermal conditions with temperatures of 273 K and 250 K, respectively.

Solution: From text Eq. (1.23),

ZT = (R 〈T〉/g0) ln (p1/p2) .

Thus, for temperature of 273 K, ZT = [(287) (273)/9.8] ln 2 = 5536 m, while for T = 250 K, ZT = 5070 m.

1.13. Isolines of 1000–500 hPa thickness are drawn on a weather map using a contour interval of 60 m. What is the corresponding
layer mean temperature interval?

Solution: From (1.23) δZT = (R 〈δT〉/g0) ln (p1/p2). Thus,

δ 〈T〉 = [g0δZT/R ln (p1/p2)] = [(9.8) (60)/(287) (ln 2)] = 2.96 ≈ 3◦C.

1.14. Show that a homogeneous atmosphere (density independent of height) has a finite height that depends only on the temper-
ature at the lower boundary. Compute the height of a homogeneous atmosphere with surface temperature T0 = 273 K and
surface pressure 1000 hPa. (Use the ideal gas law and hydrostatic balance.)

Solution: Now dp/dz = −ρg = −ρ0g for ρ = Constant. Then,

∫ 0

p0

dp = −ρ0g

H∫
0

dz.

So, p0 = ρ0gH = ρ0RT0, and H = p0/ρ0g = RT0/g = (287) (273)/(9.8) = 7.99 km.

1.15. For the conditions of Problem 1.14, compute the variation of the temperature with respect to height. (This is referred to as
an autoconvective lapse rate.)
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Solution: From Problem 1.14 p = p0 − ρ0gz, where p0 is the surface pressure. But

T =
p

ρR
=
(p0 − ρgz)

ρ0R
=

p0

ρ0R
−

g

R
z = T0 −

g

R
z Thus, 0 = g/R ≈ 34 K km−1

1.16. Show that in an atmosphere with uniform lapse rate γ (where γ ≡ −dT/dz) the geopotential height at pressure level p1 is
given by

Z =
T0

γ

[
1−

(
p0

p1

)−Rγ
g
]

where T0 and p0 are the sea level temperature and pressure, respectively.

Solution: From text Eq. (1.20) and the definition of geopotential:

d ln p = −
( g0

RT

)
dZ = −

(g0

R

) dZ

(T0 − γZ)

so that

p1∫
p0

d ln p = −
(g0

R

) Z∫
0

dZ

(T0 − γZ)
.

Thus,

ln

(
p1

p0

)
=

g0

Rγ
ln

(
T0 − γZ

T0

)
,

so that (
p1

p0

)
=

(
T0 − γZ

T0

) g0
Rγ

,

which may be solved for Z to give the desired result.

1.17. Calculate the 1000–500 hPa thickness for a constant lapse rate atmosphere with γ = 6.5 K km−1 and T0 = 273 K. Compare
your results with the results in Problem 1.12.

Solution: From the result of Problem 1.16 (letting p0 = 1000 hPa):

ZT =
T0

γ

1−

(
p0

p1

)−Rγ
g0

 = 273

6.5× 10−3

[
1− (2)−287

(
6.5×10−3

)
/9.81

]
= 5187 m.

This is about 6% less than the thickness for an isothermal atmosphere of 273 K.

1.18. Derive an expression for the variation of density with respect to height in a constant lapse rate atmosphere.

Solution: Now ρ = p/RT , so letting ρ1 be density at height z, and ρ0, p0,T0 be values at z = 0, we have

ρ1 = p1

/ [
RT0

(T0 − γZ)

T0

]
,

but from Problem 1.16 this can be rewritten as

ρ1 = p0

(
T0 − γZ

T0

) g0
Rγ
/[

RT0
(T0 − γZ)

T0

]
= ρ0

(
1−

γ z

T0

)( g0
Rγ−1

)
,

where we have used the fact that ρ0 = p0/RT0.
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1.19. Derive an expression for the altitude variation of the pressure change δp that occurs when an atmosphere with constant lapse
rate is subjected to a height independent temperature change δT while surface pressure remains constant. At what height is
the magnitude of the pressure change a maximum if the lapse rate is 6.5 K km−1, T0 = 300, and δT = 2 K?

Solution: From Problem 1.16: (
p1

p0

)
=

(
T0 − γZ

T0

) g0
Rγ

and thus (
p1 + δp

p0

)
=

(
1−

γZ

T0 + δT

) g0
Rγ

,

or (
δp

p0

)
=

(
1−

γZ

T0 + δT

) g0
Rγ

−

(
1−

γZ

T0

) g0
Rγ

.

To find the height at which δp is a maximum, we evaluate ∂ (δp)/∂Z in the preceding expression and set the result to zero.
Letting ε ≡ (g0/Rγ )− 1 the result becomes

1

T0 + δT

(
1−

γZ

T0 + δT

)ε
=

1

T0

(
1−

γZ

T0

)ε
,

which can be simplified to the form (
T0

T0 + δT

) 1
ε
(

1−
γZ

T0 + δT

)
=

(
1−

γZ

T0

)
.

When solved for Z, this gives

Zmax =
T0

γ

[
1−

(
T0

T0 + δT

) 1
ε

]/ [
1−

(
T0

T0 + δT

)1+ 1
ε

]
= 8.806 km.




