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Chapter 6:  Instability 

 
Section 6.1: Instability 

The ocean-atmosphere system is forced by the solar radiation. This forcing is usually very 

constant. Yet, observations show substantial fluctuations in both the atmosphere and the ocean at 

various time scales, such as the atmospheric cyclones, storms, marine eddies and El Nino. This 

variability occurs because the mean state is physically unstable to infinitesimal disturbances.  

 

The simplest example of instability is the gravitational instability of a ball on a supporting 

surface. In principle, the ball is in an equilibrium state as long as the local supporting surface is 

flat. In practice, however, only the equilibrium state is physically achievable only when the 

nearby supporting surface is a well.     In the case when the supporting surface concaves 

upwards, the ball will practically not stay in equilibrium because any infinitesimal perturbation 

will push the ball off the equilibrium position. 

 

 

 

 

 

The simplest example of fluid instability is the convective instability in a stratified fluid.  Given 

a density field as =0 +s(z) +’(t,z), where 0 >> s(z) >> ’(t,z), the linearized vertical 

momentum and density equations are: 

   0 t w = - g ’, t ’ + wz s(z)   = 0. 

That is 

tt w = -gt ’/0 = -N2 w 

where N2 = -gzs/0. If N
2  > 0, we have  

  w = exp( iNt )    

The solution is stable and oscillating at the initial amplitude, with N being the Brunt-Vasara 

frequency. If, however, N2  < 0, we have 

w= exp( |N|t )   

Unstable  

Stable 
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The solution becomes unstable and the amplitude increases exponentially, with |N| being  the 

growthrate. This is the convective instability.  

 

Intuitively, the convective instability is obvious. When N2<0, the density of the background fluid 

increases upward. A fluid parcel displaced upward (downward) will find itself lighter (heavier) 

than the environment fluid and therefore will continue to rise (descend). From the energy 

viewpoint, the instability occurs because the center of gravity is lowered for the fluid such that 

its available potential energy is released to provide the kinetic energy. 
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Section: 6.2: Baroclinic Instability: Phillip’s Two-Layer Model. 

 

1. The Two-Layer Model 

We first study baroclinic waves in the simplest system that admits baroclinic instability -- the 

two-layer fluid. The system has two shallow-water layers of densities  and +Δ  with Δ<<. 

For simplicity, the fluid has a rigid lid and a flat bottom at z=2D and z=0, respectively; the two 

layers have an equal depth D and are on a beta-plane.  
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If  h is the departure of the interface depth from its undisturbed position, the potential vorticity 

under QG approximation  in each layer is: 
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where n=2 n is the relative vorticity of layer n ( =1, 2 ).  

 

The inviscid shallow water QGPV equations are: 

 .0),(  nnnt qJq    (n = 1, 2)    (6.2.1) 

where qn and n are the QGPV and geostrophic streamfunctions of the two layers. In order to 

close the model, we need to express h in terms of n. At the surface, let p(x,,y,2D,t)=pT(x,y,t). 

The hydrostatic relation of layer 1 is z p1 = - g, which gives:  

  p1(x,y,z,t)= pT +g(2D-z),      (6.2.2)   

The geostrophic streamfunction of layer 1 are therefor 

   1= pT/f0  .       (6.2.3)   

The pressure at the interface z=D+h is therefore pI| z=D+h = pT +g(D-h). In the bottom layer, z 

p2 = - g(+Δ). The continuity of pressure across the interface requires that   

pI| z=D+h =p2| z=D+h . Therefore, 

p2(x,y,z,t)= pI| z=D+h +g(+Δ)(D+h-z), 

p2(x,y,z,t)= pT +g(2D-z) +g Δ(D+h-z); 

The geostrophic streamfunction of layer 2 is: 

 2= (pT +gh Δ)/f0.                  (6.2.4)   

Therefore, the interface is related to the difference of streamfunction as:  

1  -  2= -gh Δ/f0= -g’h/ f0      (6.2.5) 

where g’= gΔ/ is the reduced gravity. The difference of velocities are 

 (u1-u2,v1-v2)=(-y, x )h g’/f0. 
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This is the “thermal wind” relation in the two-layer model, relating the vertical shears to the 

horizontal gradients of the interface height (and therefore to the horizontal gradients of density 

along the mean position of the interface).  

 

With (6.2.5), the QGPVs can be written in terms of n : 

  qn= fo+y+2n +(-1)nF(1  -  2),      (6.2.6) 

where F=1/LD1
2 and LD1

 = (g’ D)1/2/f0 is the deformation radius of the first baroclinic mode -- the 

only baroclinic mode in the two-layer system. Eqns. (6.2.1) and (6.2.6) form a closed set of 

equations for 1 and2. 

 

2. Baroclinic Rossby Waves 

In the absence of mean flows, the perturbation equations are: 

t[ 21 - F(1  -  2)] +  x 1 = 0, 

t[ 22 + F(1  -  2)] +x 2  = 0.      (6.2.7)  

Define the barotropic and baroclinic streamfunctions as: 

B = 1 + 2, C = 1 - 2   -h, 

The summation and subtraction of the two perturbations equations give: 

t2B +  x B = 0, 

t[ 2C - FC] +x C = 0. 

The barotropic equation is similar to the shallow water QG with the deformation radius set to 

infinity, and the baroclinic equation is the shallow water equation with the deformation radius set 

as the baroclinic deformation radius of the first mode: LD1
2=1/F. Assuming the eigenfunctions of 

the form: 

     B=ABei(kx+ly-t),        C=ACei(kx+ly-t),  

we have the eigenvalue problem from in (6.2.7) as: 

(K2+ k) AB = 0,       (6.2.8a) 

[(K2+2F)+ k] AC = 0.      (6.2.8b) 

where K2=k2+l2 is the total wave number. The eigenvalues for the barotropic and baroclinic 

modes are therefore:  
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 B= - k /K2        (6.2.9a) 

C= - k /(K2+2F).       (6.2.9b) 

Substitute (6.2.9a) into (6.2.8b),  we have the eigenfunction:  

         AC=0,           (6.2.10a)  

or  1 - 2 = 0. Therefore, there is no vertical shear for the barotrpic mode. In contrast, for the 

baroclinic mode, plug in (6.2.9b) into (6.2.8a), we have the eigenfunction: 

        AB=0,           (6.2.10b)  

or  1 + 2 = 0. The baroclinic mode has no vertically integrated transport. These eigenfunction 

structures are consistent with the continuously stratified case in Section 5.3.   

  

 

 

 

 

 

 

 

3. Baroclinic Instability 

In the presence of mean flow shear, the eigenvalue problem is complicated dramatically. In 

particular, we may have unstable waves. Consider a basic state of equal and opposite zonal flows 

in the two layers (U1,V1)=(U,0) and (U2,V2)=(-U,0), where U is a constant. The basic state 

streamfunctions are: 1 = -Uy, 2 = Uy and the interface shape is H= -Sy where S=2f0U/g’. 

Separate the streamfunction into the mean and perturbation parts: 

n = n + n’ .   

the linearized perturbation QGPV equations can be derived from (6.2.1) as: 

(t+Ux  )q’1 + yQ1x ’1 =0, 

(t-Ux  )q’2 + yQ2x ’2 =0.        

where q’n and Qn are derived from (6.2.6) as the perturbation and mean PVs in layer n. Since the 

basic state PV gradients are: 

[yQ1, yQ2]=[+2FU, -2FU ].     (6.2.11) 

 

u1 

u2

Baroclinic mode 

u1 

u2 

Barotropic mode 
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we have: 

 (t+Ux  )[ 2’1 - F(’1  -  ’2)] + (+2FU) x ’1 =0, 

(t-Ux  )[ 2’2 + F(’1  -  ’2)] + (-2FU)  x ’2 =0.  (6.2.12) 

Searching for the normal mode solutions of the form:   

’n = Re [An e ik(x-ct)+ily], 

we have  

  [+2FU - (K2+F)(U-c)]A1 +F(U-c)A2   =0,  

  F(U+c)A1  + [2FU- - (K2+F)(U+c)]A2 =0.    (6.2.13) 

These equations have non-trivial solution if the determinant of the coefficients vanishes, leading 

to the eigenvalues of 

 c = { -(K2+F)    [2F2 - K4U2(4F2-K4)]1/2 }/[K2(K2+2F)].  (6.2.14) 

One can show that the case of U=0 recovers the two eigenvalues in (6.2.8a,b), and the 

corresponding eigenfunctions in (6.10a,b). In particular, both modes are neutral modes and there 

is no instability. However, when U≠0, instability may occur.   

 

Case I: =0 

In the simpler case of =0, the eigenvalues in (6.2.14) become: 

c =   [- K4U2(4F2-K4)]1/2 /[K2(K2+2F)].    (6.2.15) 

Thus, instability occurs with Im(c ) = ci >0 when the wave number satisfies: 

 K2  < 2F,         (6.2.16) 

The solution grows exponentially with time as eik(-icit) = ekcit,  and initial disturbances of 

infinitesimal amplitude amplifies rapidly. The instability condition (6.2.16) indicates that 

baroclinic instability has a short wave cut off, that is the instability does not occur for short 

waves of K-1 >0.707LD1. 

 

Case II: General case:  U0, 0  

In the general case, in addition to (6.2.16), unstable waves must also satisfy   

  U2 > 2F2/ [K4(4F2-K4)] UC
2.     (6.2.17) 
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The   effect is therefore a stabilizing effect, because it imposes a critical shear Uc. This critical 

shear Uc is a function of K2/2F, as shown in the following figure. Furthermore, for K2  < 2F,  Uc
2  

has the minimum value of 2/ (2F2) at K2  = 21/2F. The unstable modes occur only for   

|U|>/2F.         (6.2.18) 

This is precisely the condition that the mean PV gradients in (6.2.11) have the opposite signs in 

the two layers: 

yQ1=+2FU>0,      yQ2=-2FU<0,          for eastward shear flow U>/2F>0 

or 

yQ1=+2FU<0,      yQ2=-2FU>0,          for westward shear flow U<-/2F<0 

This reversal of PV gradients can be shown as a necessary condition for instability (Charney-

Stern theorem, Section 6.4). Here, in the 2-layer model, it is also the sufficient condition.  The 

second figure shows the real and imaginary parts of c when U is twice this critical value (see 

Pedlosky, Fig.7.11.2). 

 

3. Mechanism of Instability  

The baroclinic instability can be interpreted using the vorticity argument of Bretherton (1966). 

The instability can be thought to occur in two steps.  Start with an initial baroclinic vorticity 

disturbance in panel (a). First, the mean shear flow converts the baroclinic vorticity component 

to the barotropic vorticity component, as shown in panel (b). Here, the mean shear is necessary 

to for the coupling of the barotropic and baroclinic modes.  Second, the perturbation meridional 

velocity of the barotropic component, due to opposite sign of mean PV gradients, produces 

opposite (or baroclinic) vorticity tendencies in the two layers. This reinforces the initial 

baroclinic anomaly, forming a positive feedback or baroclinic instability.  It is seen that both the 

mean shear and the reversal of the mean PV gradient are critical for baroclnic instability. Later, 

the role of the mean shear can also be seen in Section 6.3 from the energy conversion viewpoint, 

while the role of the reversed PV gradient can be seen in Section 6.4 in the Charney-Stearn 

theorem. The shortwave cut-off can be understood as follows: due to the finite thickness of each 

layer, very short waves can’t feel the reversal of the mean PV gradients and therefore are stable. 

 

 

 



AOS611Ch.6, Z.Liu,01/21/2014 

Copyright 2014, Zhengyu Liu 

9

 

 

1, yQ1>0 

2, yQ2<0 

 Effect of   
yQ  reversal 



 +

+




y    North

x    East

a.  



 +

+




>

c. t~ -v’∂ yQ 

 

 

+ 

>
Effect of   
zonal mean shear

b. t~ -U∂ xq 



AOS611Ch.6, Z.Liu,01/21/2014 

Copyright 2014, Zhengyu Liu 

10

 

Finally, the coupling between the baroclinic and barotropic modes (which is possible only with 

mean shear) is critical, as seen in the dispersion diagram (Fig.6.1). Instability occurs when both 

modes have the same speed. This also explains the absence of very long wave baroclinic 

instability in the two-layer model, or the long wave cut off. In the long wave limit, the barotropic 

wave is infinitely fast while the baroclinic wave remains finite. It is impossible for the two 

modes to have comparable speed and therefore the two modes can’t couple with each. (In the 

continuously stratified case in Section 6.5, the long wave cut off disappears). 
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Fig.6.1: Eigenvalues of the 2-layer 
baroclinic model 
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Section 6.3. Energetics  

 

The instability can also be understood from the energy exchange between the wave and the mean 

flow. We will derive the energy equations for the wave and the mean. 

 

1. Total QG Energy Equation 

In the absence of forcing and dissipation, the QGPV q = y +xx + yy +(1/p)[pfo
2/N2z]z  

satisfies the equation: 

   t q + J(, q) = 0.      (6.3.1) 

The energy equation can be derived similar to the shallow water case in section 2.1. Multiply 

(6.3.1) by -p, and integrate the equation, we have:  

    -p [t q + J(,q) ] = 0. 

Notice  

- t z [pfo
2/N2z]  = - z[pfo

2/N2tz ] = z[-pfo
2/N2tz ] + z  pfo

2/N2tz  

       = z[-pfo
2/N2tz ] + t [(z )2 pfo

2/2N2], 

- t xx     =       x[-tx ] + t [(x )2 /2], 

- t yy     =       y[-ty ] +  t [(y)2 /2], 

we have  

2

1

2

1
||),(

])()())[(2/( 2022

z
ztz

y
yty

zyxt

pdxdypdxdzqJp

N

pf
p













 

 


 

If the boundary conditions are periodic or solid wall in x, y, the first two terms on the RHS 

vanish. The last term also vanishes because we have from the hydrostatic equation  tz . On 

the top and bottom boundaries w=0, we have from the thermodynamic equation  - [t  + 

J(,) ]=0, and therefore 

dxdy tz  dxdy t  = dxdy J(,)=dxdy J(2/2,)=0, 

Thus, we have the total energy conservation: 

 t  (KE+APE) = 0,         (6.3.2) 

where the total kinetic energy and available potential energy are:  

 KE  =   p [(x )2 +(y)2] /2,     APE =    p(z )2 pfo
2/2N2     (6.3.3) 
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2. Mean and Perturbation Energy Equations: 

The QGPV equation. (6.3.1) can be rewritten as: 

t q +  (ug q) = 0,       (6.3.4) 

because ug = 0. Now, we derive the energy equation for the zonal mean flow. We will denote 

a variable as a = A + a’ where A=<a> is the zonal average and a’ is the perturbation. Notice the 

definition of the E-P flux in (5.4.3), the zonal mean QGPV equation is: 

  t Q = - < (ug q)> = - y (<vg><q>) - y (<v’gq’>)  

                                =  - y (F ) 

where we have used the zonal mean meridional flow vanishes, because  xgv =0. 

Multiplying the equation by -p and integrate it as we did for the total energy equation (6.3.2), 

we have: 

t  (Km+Am) =  py F =  pUF     (6.3.5) 

where the kinetic and available potential energy for the mean flow are: 

Km =    p(y)2 /2,    Am =   p (z )2 fo
2/2N2     (6.3.6) 

Notice that <2> = < (+’)2> = < 2> + < ’2>, the total KE and APE are the sum of the 

mean and perturbation i.e. 

  KE   = Km + K’,  APE = Am + A’    (6.3.7) 

where the perturbation energy is 

K’  =    p [(x ’)2 +(y’)2] /2 ,   A’  =    p(z ’)2 fo
2/2N2       (6.3.8) 

The conservation of the total energy and the energy for the mean flow gives the energy equation 

for the perturbation flow as 

t  (K’+A’) = -  pUF = - t  (Km+Am)    (6.3.9) 

Thus, the convergence of the E-P flux also represents the conversion of energy between the 

perturbation and the mean flow. The conversion term can be rewritten as: 

t  (K’+A’) = -  pU(y,z,t)F = -dydz pUF  

= -dydz pUy Fy -dydz pUz Fz 

= dydz pFy yU +dydz pFz zU      (6.3.10) 

The last step has used the E-P flux vanishes on the y and z boundaries. On the RHS, the first term 

is the barotropic conversion term, which involves the horizontal shear of the mean flow and the 

conversion of the mean and the perturbation kinetic energy; the second term is the baroclinic 
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conversion term, which involves the vertical shear (horizontal temperature gradient) and the 

conversion of the mean and perturbation APE.  

First, the shear of the mean flow is necessary for the energy conversion and in turn instability. 

The instability associated with the horizontal and vertical shear is called the barotropic and 

baroclinic instability, respectively.  

 

Second, the structure of the perturbation are also important for instability. For example, for 

baroclinic instability, in a westerly shear flow zU > 0 in the midlatitude (or y T < 0),  the 

unstable waves need to have a upward E-P flux: 

Fz   <v’’>   > 0, 

Therefore, the unstable transport heat towards the pole, reducing the mean temperature gradient 

and releasing the mean APE to the perturbation APE. The unstable wave also propagates upward 

and tilts westward with height (<v’’ ><x’z’>  km |Ψ|2 ). 

 

 

 

 

 

 

 

 

 

 

In the case of barotropic instability, for a mean flow of yU > 0,  the unstable disturbance will 

have 

   Fy   -<u’v’>   > 0. 

Now, the energy is released from the mean kinetic energy to the perturbation kinetic energy.  
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The study of the energetics gives necessary conditions of instability and is valid for any type of 

small disturbance. It however should be realized that, this approach, although powerful and 

insightful, does not provide sufficient conditions for instability. 

 

3. Energetics of Baroclinic Instability  

The energetics of baroclinic instability can also be understood from parcel displacements. First, 

take the convective instability as an example. For a perturbation parcel to gain kinetic energy, the 

mean state has to release the mean APE. This can be achieved if the parcels transport heat 

upward <w’θ’> >0, which warms up upper layers and therefore lowers the center for gravity. In 

a density profile that increases upward (or z<0), any parcel trajectory satisfy the upward heat 

transport  <w’θ’> >0. This is because an upward parcel w’>0 is warmer than its environment 

and therefore has θ’>0, while a downward parcel w’<0 is cooler than its environment and 

therefore has θ’<0.  On the other hand, if the density increases downward, no parcel trajectory 

produces an upward heat transport. Therefore, the convective instability is independent of the 

structure of the perturbation (as seen in section 6.1). This will not be the case for baroclinic 

instability.  
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U(y) Unstable, 
 
<u’v’>  < 0
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Assume the mean stratification is convectively stable (z>0) for parcels moving in the vertical 

direction, but the mean isothermal slopes with latitude (y < 0). Now, the parcel must lie within 

the “instability wedge” (see the figure above) to transport heat upward w’’>0. In other words, 

the parcel must travel in tilted trajectories. Therefore, baroclinic instability is also called tilted 

convection. In the mean time, the tilted convection also has v’>0 in the wedge of w’>0, ’>0 

(and v’<0 in the wedge of w’<0, ’<0). The instability wedge w’’>0 also produces northward 

heat flux v’’>0, reducing the mean equatorward temperature gradient and in turn the mean 

APE.  

 

These energy conversion from the mean APE to perturbation APE to the perturbation KE can be 

seen explicitly if we derive the equation for the perturbation APE. The perturbation 

thermodynamic equation is: 

  (t +Ux ) ’ + v’y  +w’ d/dz = 0, 

or 

(t +Ux ) ’ = -  v’ , 

Multiply the equation by pg’/(s d/dz ), and integrate the equation lead to the equation for the 

wave APE as      

t  A’ ≡ t  pg’2/(2s d/dz ) = - pg/(s d/dz ) v’’ 

        = - v’’y  pg/(s d/dz ) -   w’’ zs pg/(s d/dz ) 

 

w’>0, ’>0 
 

 w’<0, ’<0 

Z=const, =const 
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Convection Instability 
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The first term converts the mean APE to the perturbation APE, while the second term converts 

the perturbation APE to perturbation KE. Therefore, in the instability wedge when v’’ <0, 

there is an energy release from mean APE to the perturbation APE and finally the perturbation 

KE. This is the energy cycle of the baroclinic waves: 

    A m A’   K’ 

Energy Cycle:  

 

  
 
 

  Mean 
   APE 

  Mean 
   KE 

  Eddy 
   KE 

  Eddy 
   APE 

Barotropic Inst.

Baroclinic Inst.

Baroclinic 
 Inst. 
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Section 6.4: Charney-Stearn Theorem 

 

1. Charney-Stearn Theorem: 

Complementary to the study of the energetics in the last section, Charney-Stearn theorem studies 

the instability in terms of the mean potential vorticity field. Consider small amplitude 

perturbations on a basic state of parallel flow (y,z) and of a buoyancy frequency N(z), the mean 

PV field is: 

Q(y,z)=y +yy +1/p ∂z [pfo
2/N2 ∂z] 

For small amplitude perturbations, the wave activity equation is 

   t A +  F = 0 

where A=p<q’2 >/2Qy, with <> being the zonal mean. Integrate the equation over a domain D 

bounded in the y, z plane by D,  we have: 

t   D A +   D F n dl = 0.      (6.4.1) 

where n is the outward unit normal to D. If D is a rigid boundary, one might expect  

F n to vanish there. That is, however, not the case.  

 

For simplicity, we take D as the region of y1 y  y2  and  z1 z  z2. Immediately, we have v=0 

on the y boundaries 

  F n = Fy = -p<u’v’> = 0 y= y1, y2    (6.4.2) 

However, on the upper and lower boundaries, the situation is subtle, because the vertical 

component of E-P flux is not vertical velocity. On the boundary surface, we have w=0, and 

therefore the thermodynamic equation: 

  t +J( ψ , ) = 0,   z=z1, z2   (6.4.3) 

The linearized equation is 

(t + Ux)’ +v’ y  = 0.   z=z1, z2    (6.4.4) 

We define a northward displacement ’ of the wave motion for a given isothermal 0 that is 

defined by 0   [x, Y0(x,t), t]. The kinematic condition dY0(x,t)/dt=v can be  linearized as 

 

 

 

D 
D 

n 
l 
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(t + Ux) ’ =  v’ .  

 

 

 

Substitute this into (6.4.4), we have: 

 (t + Ux)’ + y(t + Ux) ’ = 0.         z=z1, z2 

Thus,   

 ’ = - ’ y      z=z1, z2 

if we assume ’ = 0 for  ’ =  0  (back in the far past before the disturbance was present).  

||Note: the equation above can also be derived as follows: Following the same isotherm 

]),([)( 0 ttxYty  , the value of the isotherm follow a particle  (x(t),y(t)) 

]),,(,[ 00 ttxYx  

is constant. Therefore, the total derivative is:  

00 )()(]),),((),([0 YuutttxYtx
dt

d
xtyxt  .  

Here we have used dx/dt=u. A linearization then recovers the equation above. || 

Therefore, the heat transport on the z boundaries is 

 <v’’> = - <v’’>y = - t<’2>y /2,         z=z1, z2   (6.4.5). 

Fz=pf0<v’’>/z = -pf0t<’2>y /2z 

Therefore, the normal component of the E-P flux Fz=pf0<v’’>/z   is zero for a growing 

disturbance t<’2> ≠ 0 only if the mean temperature gradient is zero there y = 0. Otherwise, 

Fz has the opposite sign to f0y .   On the surface, since y decreases poleward, Fz is always 

upward for growing disturbances. For almost-plane waves, one can easily show that the trough of 

the growing disturbance tilts westward with height.   

 

If, however, there is no mean temperature gradient on the top and bottom boundaries, we have Fz  

= 0 on the boundaries. Therefore,  D F n dl = 0 and we have the conservation of total wave 

activity from (6.4.1): 

t   D A dydz = 0.         (6.4.6) 

’(x,t)= Y0(x,t)- y0 
0 

y0

Y0(x,t) 
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Since A=p<q’2 >/2Qy , we have: 

 t   D p<q’2 >/2Qy dydz = 0.  

For normal modes,  q’ can be written as: 

   q’(x,y,z ,t) = r(t) q(x,y,z),     (6.4.7) 

Therefore, we have  

t r
2 (  D p<q’2 >/2Qy  )dydz = 0.     (6.4.8) 

If  Qy is single signed throughout, the integral constant can not be zero, so  

   t r
2 = 0. 

The Charney-Stearn theorem therefore states: there can be no growing, conservative, quasi-

geostrophic normal mode disturbances to a zonally-uniform state in which the potential vorticity 

gradient is single-singed throughout and which is isothermal on horizontal boundaries.  

 

It is worth reflecting that the normal mode assumpation (6.4.7), which grows or decays 

everywhere, is important for deriving (6.4.8). Otherwise, the disturbance can grow and decay at 

the same time within the domain. Therefore, the single signed PV gradient can’t not guarantee 

the stability of the disturbance within the domain.  

 

2. Necessary Condition for Instability 

A sufficient condition for stability is also a necessary condition for instability. Thus, 

instability is possible if one of these conditions is violated. If the boundaries are isothermal, we 

require the change of sign of the mean PV gradient  

Qy =  - Uyy -1/p[pfo
2/N2Uz]z . Since   > 0, Qy must be positive unless the flow curvature - the 

latter two terms on the RHS - is negative and of sufficient magnitude, or 

 Uyy +1/p[pfo
2/N2Uz]z  >      somewhere in the domain.        (6.4.9) 

The instability is called the barotropic instability if the first term (horizontal shear) is dominant, 

and is called the baroclinic instability if the second term (vertical shear, or horizontal 

temperature gradient) or the temperature gradient on the top and bottom boundaries is dominant.   
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3. The Boundary Temperature  Effect* 

The effect of the boundary temperature gradient can also be unified with the mean PV gradient 

by introducing a delta function on the boundary (Bretherton, 1966). We introduce the 

generalized QGPV as: 

  qb = q + [(z-z1)-(z-z2)] f0/d/dz    (6.4.10) 

This is like adding a PV sheet just inside a horizontal boundary. This generalized PV satisfies the 

QGPV equation: 

  t qb +J( ψ , qb)  = 0, 

and the boundary condition is now  

   = 0      z= z1, z2      (6.4.11) 

 

 

 

 

 

 

 

This can be verified. In the interior, the delta functions are zero and (6.4.10) is simply  

t q +J( ψ , q)  = 0.  On the boundaries z1+ and z2-, since =(z), (6.4.10) simply gives the 

boundary condition (6.4.3). The definition qb thus incorporates both the interior and boundary 

equations. Since now ’ = 0 on the top and bottom boundaries as in (6.4.11), Fz=0 there.  

However, since F= <v’q’b>, now we found in the interior    

F  <v’’>[(z-z1)-(z-z2)] f0/d/dz, 

near z1 and z2. It must be the vertical component of F that is discontinuous within the boundary 

potential vorticity sheets and therefore integrated vertically in the vicinity of z1 and z2, we have: 

 Fz=   <v’’> f0/d/dz  on z= z1+ ,   

Fz= - <v’’> f0/d/dz  on z= z2- . 

The advantage of incorporate the boundary PV sheets to the generalized PV field is that we can 

follow the same steps as before, but with the boundary condition Fz=0 on the vertical 

boundaries. The flow is stable if yQb does not change its sign, or the flow is unstable only if  the 

generalized mean PV gradient 

Z

yqb 

=const Z2 

Z1
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  yQb = y Q + [(z-z1)-(z-z2)] f0  y/d/dz,   (6.4.12) 

changes sign somewhere in the domain.  
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 Section 6.5: Baroclinic Instability:  Eady Model* 

 

1. Eigenvalue Problem 

We consider the simplest example of baroclinic instability in a continuously stratified flow 

(Eady, 1949). The fluid is on an f-plane, unbounded in x and y directions, but bounded by rigid 

boundaries at z=D/2, incompressible (so p=p0,  H=, θ=T).The basic state is a zonal flow U= 

S z (= -Syz, T= -f0TsSy/g) with a uniform stratification  

N2=g T z /T0, giving a uniform mean PV in the interior, or  

   yQ = yyU+f0
2/N2zzU  = 0.       (6.5.1) 

There is, however, a potential for instability, since the mean temperature has gradients on 

z=D/2. Consequently, the generalized mean PV Qb has a gradient 

yQb = [(z+D/2)-(z-D/2)] f0  yT/ T z ,    (6.5.2) 

 negative on Z=-D/2 but positive on Z=D/2..  

 

 

 

 

 

 

 

 

The linearized QGPV eqn is: 

   (t+Ux)q’ = 0      (6.5.3) 

where (if we insist q’=0 for t  -) 

   q’ = (xx   +  yy  ) ’ + f0
2/N2 zz  ’ = 0   (6.5.4) 

If we seek the solution of the form ’ = Re {0 e
 ik(x-ct)+ily Z(z)},  the vertical structure is 

determined by : 

   d2Z/dz2 - 2 Z = 0,       (6.5.5) 

where = NK/f0, K
2=k2+l2. This gives the general solution 

 

U=Sz yQb 

z
D/2

-D/2
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   Z = A sinh ( z)  + B cosh ( z).    (6.5.6) 

The boundary conditions are: 

   (t +Ux ) T’ + v’yT = 0,    z=D/2   (6.5.7) 

Since T’ = f0 Ts z’/g and yT = -f0TsS/g, the boundary conditions become 

   (Sz-c) dZ/dz -S Z = 0,            z = D/2. 

With (6.5.6), we have   

A [(c+SD/2) -S tanh (D/2) ] + B[ S - (c+SD/2)tanh(D/2) ] = 0,      z= -D/2, (6.5.8a) 

A [(c-SD/2) +S tanh (D/2) ] + B[ S + (c-SD/2)tanh(D/2) ] = 0,      z=  D/2  (6.5.8b) 

Therefore, the eigenvalue is determined by setting the determinant of (6.5.8) zero as: 

  c2=(SD/)2 [1+(D/2)2 - D coth (D)]    (6.5.9) 

where we have used the identity  tanh(D/2) + [tanh(D/2)]-1 = 2coth (D). The condition for 

instability is therefore  

   Dcoth (D) - (D/2)2  >1,               (6.5.10) 

which implies  

D < dc = 2.3994.  

Since D = NKD/f0 = LD1/L and LD1 is the deformation radius for the first barclinic mode, 

instability occurs when the scale of the wave is comparable or longer than LD1.  

    

2. Stable Rossby Waves 

The dependency of the eigenvalue c and  the eigenfunction structure Z (z)  on D are shown in 

Fig.6.1.  For D> dc, the perturbation are two neutrally propagating modes. The structures of the 

stable waves (for  D >> dc ) are boundary trapped:  the mode with negative c is trapped near the 

top (A0) while the mode with positive c is bottom trapped (B0).  These two modes are 

boundary trapped Rossby waves. Although =0 in the interior, the PV sheets on the boundaries 

provide the necessary PV gradient. The generation of the boundary trapped Rossby waves are 

very similar to the topographically generated Rossby waves in the stratified flow (Fig.6.2). The 

top boundary is like a northward shallowing bottom slope, and therefore acts as a positive beta 

with “topographic” Rossby waves propagating westward. The bottom boundary, however, is like 

a northward deepening bottom slope, and therefore acts like a negative beta, with “topographic” 

Rossby waves propagating eastward. Due to the boundary trapping, these waves don’t feel the 
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reversal of the mean PV gradient on the top and bottom boundaries simultaneously and therefore 

are stable.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D= LD1/L 

 Cr/SD  

Lower boundary

dc  = 2.3994 

westward 

eastward 

Upper boundary

0.5 

-0.5 

Z(z) 
Upper boundary mode 
westward 

Lower boundary mode 
eastward 

Z(z) 

z 
|Z(z)| 

Stable  modes, D>dc , 
Short waves, trapped, 
neither modes feel the 
reversal of Qb.  

Unstable  modes, D<dc 

Long waves, coupled in 
the vertical so feel the 
reversal of  Qb 

Arg(Z) 

D= LD1/L 

 Ci  
kCi, growthrate

 Ci  

dc  = 2.3994 

Unstable 

Stable 

0.3 

-0.3 

2 

Fig.6.1: Eigenvalues and 
Eigenfunctions of the Eddy problem 
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3. Unstable Modes 

As the wave length increases (D= LD1/L decreases),  the two modes start to coalesce and 

interfere such that for L/LD1 <dc, they merge and propagate together at a phase speed equal to the 

middle level mean flow (Fig.6.2). The growing mode tilt with height westward, as it must be to 

extract APE from the mean flow (section 6.3).  The growthrate maximizes for smallest possible 

value of l (which goes to zero for a y-unbounded system), but a finite value of k, at k=km  

2f0/ND = 2/LD1 for l=0.  Thus, the scale of the fastest growing disturbance, km
-1, is at the order of 

the (internal) Rossby radius. Take typical atmospheric numbers f0=10-4 s-1, N=10-2 s-1, D=10 km, 

we find km=10-6 m-1 , which gives the wavelength L= /km about 3000 km. The maximum 

growthrate is about kmci 0.5SDkm, for a wind shear of 30 m/s over 10km depth, S=3*10-3s-1, the 

growthrate is kmci 1.5*10-5 s-1, or about 2 days. Both the length scale and growthrate agree well 

with observed cyclone development. Thus, the baroclinic instability for the first time give a 

quantitative physical explanation of cyclone development. (Typical parameters in the ocean 

z 

y 

T=const

T > 0 => c<0 

T < 0 => c>0 

yQb 

z

D/2 

-D/2 

Eady Model yQb Topographic 
Analogy 

Fig.6.2: Boundary effect and “topographic” 
Rossby waves
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gives a spatial scale about 50 km, and growth time about 2 months ). 

 



AOS611Ch.6, Z.Liu,01/21/2014 

Copyright 2014, Zhengyu Liu 

28

 

 

 

 



AOS611Ch.6, Z.Liu,01/21/2014 

Copyright 2014, Zhengyu Liu 

29

The eneretics and wave activity features of the Eddy mode is consistent with our previous studies 

of baroclinic unstable waves. Since now q’=0, we have F = <v’q’>=0. Hence, the E-P flux 

must be nondivergent in the interior. Since y<u’v’>=0 (this is easy to show with the assumed 

form of solution), it follows that z Fz =0. Thus, the vertical E-P flux, or the northward heat 

transport <v’T’>, is constant with height.  Its value can be found from the boundaries. Given  

  (t+Ux)T’ +v’Ty= 0,    z=D/2 

and a negative Ty, it follows that the boundary heat flux 

  <v’T’>= -t (<T’2>/2)/ Ty            z=D/2 

is positive, as it must be for growing modes. The Fz = 0 immediately beyond the boundary sheets 

of the generalized PV (6.5.2) because T’=0 there. Thus, the lower boundary has a divergence of 

Fz while the upper boundary a convergence, negatively correlated with the mean wind U on the 

two boundaries. This gives dxdy UF  <0. 

Therefore, energy is converted from the mean flow to the perturbation flow according to 

(6.3.10).  
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4. Charney Model 

The most unrealistic feature of the Eady model is the lack of a planetary .  Charney (1947) 

considered the case of a beta-plane and compressible atmosphere. The upper boundary 

temperature gradient effect, however, is absent now. Nevertheless, since the lower boundary still 

provides a negative PVgradient sheets, whose sign is the opposite to the interior PV gradient 

>0, baroclinic instability is still possible.  

 

 

 

 

 

 

 

 

 

 

 

 

The scale and growthrate for the most unstable mode is similar to those of Eady’s. However, the 

structure of the Charney’s mode is very different from the Eady mode. The Charney mode 

decays with height and is mostly confined between the lower boundary and the critical level 

(where U=cr).  Above the critical level, the disturbance decays rapidly with height, with an 

almost constant phase. The E-P flux is mostly confined to the lower level near the surface, with a 

large heat flux. (Pedlosky, Fig.7.8.4, 5 and Gill, Fig.13.6).   

 

Physically, the reversal of  PV gradient  is now at the lower boundary, it is those bottom trapped 

waves that can feel strongly the reversal of PV gradient. This is why now the  unstable waves are 

bottom trapped.  Furthermore, since even very small vertical scale (usually corresponding to 

small 

 

U=Sz y Qb 

z

0 

Fig.6.3: Charney Problem, mean flow and PV gradient 
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horizontal scale) waves can feel the reversal of PV gradient. Charney’s model, unlike Eady’s 

model, does not have shortwave cut off (ignoring friction of course). That is: no matter how 

small is the wave length, there can be unstable modes (Green’s modes).  
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Fig.6.5.4: Eigenvalues of the Charney 
problem and the structure of the 
Charney mode 
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Section 6.6:  Barotropic Instability* 

 

When the PV gradient changes sign primarily through the barotropic shear term, the  resulting 

instability is known as barotropic instability. Consider a homogeneous shallow water system 

with a rigid lid. The potential vorticity gradient is  

   qy=-Uyy.            (6.6.1)  

Denote the spatial scale and flow strength of the mean shear as L and U, the Charney-Stern 

theorem suggests that L2<U/ is necessary for barotropic instability. For the midlatitude ( 

~1.5*10-11 m-1 s-1 ) atmosphere and ocean, U ~ 20 ms-1 and ~0.01.ms-1,  giving L< 1100 km and 

< 80 km; respectively. Therefore, barotropic instability is possible only in very narrow 

atmospheric or oceanic jets.  

 

Consider a simple example where the barotropic fluid has a basic state flow 

  












YySY

YyYSy

YySY

U

,

,

,

                  

The flow is on an f-plane (=0, so that this example is a classical shear - inflection point -

instability). Then, the mean PV gradient is zero except at y=±Y,  

  Qy= S (y-Y)-S (y+Y),     (6.6.1) 
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Qy =  y 
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This situation clearly has parallels with the Eady problem of baroclinic instability (Section 6.5).  

The general perturbation (potential) vorticity equation is: 

(t + U x ) ’ +x’Qy= 0     (6.6.2) 

Except at y=Y, (6.6.1) shows Qy= 0 and therefore the perturbation equation reduces to 

  (t + U x ) ’ = 0.       (6.6.3) 

 Therefore ’ = 0 except y=Y. We look for solutions of the form  

  ’= Re (y) e ik(x-ct) , 

and insist that the solution is finite at y   . Eqn. (6.6.3) therefore gives the y structure as   













 



YyDe

YyYCeBe

YyAe

ky

kyky

ky

,

,

,

     (6.6.4a,b,c) 

The coefficients are determined by the matching conditions across y=Y. First,  is continuous 

across y=Y. This gives  

  A=Be2kY+C,   D=B+Ce2kY.      (6.6.5) 

Second, u’~ d/dy has a finite jump across y=Y, whose value is determined as follows. Near y 

=+Y, the perturbation equation (6.6.2) is 

  (SY-c) ’ + ’ S (y-Y) = 0.      (6.6.6) 

Since ’ = xv’- yu’, the singularity in ’ must indicate a discontinuity in u’ 







Y

Y

YxuYxudy ).,('),(''  

Therefore, integrating (6.6.6) in the vicinity of Y+ gives  

  (SY-c) [d/dy(Y+) - d/dy(Y-)] + S(Y)  = 0.   (6.6.6a) 

Similarly, at y = -Y, 

  (SY+c) [d/dy (-Y+) - d/dy (-Y-)] + S (-Y)  = 0.  (6.6.6b) 

Substitute (6.6.4) and (6.6.5) into (6.6.6a,b), we have 

  [S-2k(SY-c)]BekY + S Ce-kY = 0, 

S Be-kY + [S-2k(SY+c)]CekY = 0.     (6.6.7) 

The eigenvalues are determined by setting the determinant zero as 

 

  4k2c2 = S2 [ (1-skY)2 - e -4kY ].    (6.6.8) 



AOS611Ch.6, Z.Liu,01/21/2014 

Copyright 2014, Zhengyu Liu 

35

Very short waves are stable because the RHS is positive in the limit of large kY. Calculations 

show that instability occurs only for long waves of kY< 0.639, beyond which we have a 

shortwave cutoff (Fig.6.6.1). The reason of the shortwave cut-off is the same as in the Eady 

problem - short waves in x are of small scales in y (see the solution (6.6.4)) and therefore won’t 

feel the sign change of the mean PV gradient across y=Y simultaneously. The maximum 

growthrate is found occur at kY=0.398. 

 

 

 

 

 

  

  

 

 

 

The structure of the growing modes (Fig.6.6.2) is again quite similar to the Eady waves. 

Maximum streamfunction amplitude is found at y=Y. In -Y<y<Y, the mode tilts westward with 

y; this mean that <u’v’> <0 or, equivalently, Fy >0. Since F can be nonzero only at y=Y , Fy 

is constant and positive in -Y < y < Y and zero for |y|>Y. Therefore,  

    - U F dy < 0 

as it must be for the mean state to loss kinetic energy .  The energy source is the mean kinetic 

energy this time.  

 

 

 

4k2c2/S2 

0.398

0.639 kY

Fig.6.6.1: Eigenvalue of the barotropic instability 



AOS611Ch.6, Z.Liu,01/21/2014 

Copyright 2014, Zhengyu Liu 

36

 

 

 

 

Fig.6.6.2: Eigenfunction of the barotropic instability 
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Questions for Chapter 6 

Q6.1. Derive the 2-layer QG model from the continuously stratified QG equation as a level 

model, using finite difference in the vertical (assuming N=const).  

  

Q6.2. The 1.5-layer model can be understood as the limit of a 2-layer model if you follow these 

steps. a) derive the 2-layer QG model with different layer depths, b) In the absence of mean 

flows, derive the linear Rossby waves, their eigenvalues and eigenfunctions. c) Under what 

conditions, the 2-layer model in (a) reduces to the 1.5 layer model. d) Which mode in (c) 

approaches the Rossby wave mode derived from the 1.5-layer model. 

 

Exercises for Chapter 6 

 

E6.1 (Baroclinic wave structure) In the 2-layer QG model, with a mean flow U, the eigenvalues 

are derived in (6.2.14) and the eigenfunctions can be determined from (6.2.13). Discuss the 

vertical structures of the wave (i.e. A1/A2) for each eigenmodes in the following cases. a) U=0, 

but ≠0, b) =0, but U≠0. 

 

 

E6.2. (Forced baroclinic ocean response) A linear 2-layer QG model is forced by a weak wind 

curl perturbation curl τ = A exp[i(kx+ly-σt)]. Assuming the mean state is motionless, so the 

forced response satisfies 

t[ 21 - F(1  -  2)] +  x 1 = curl τ, 

t[ 22 + F(1  -  2)] +x 2  = 0. 

Find the response to the wind forcing and discuss the response as a function of the forcing 

frequency σ. What happens when σ approaches zero? 

 

E6.3. (Topography) Derive the 2-layer QGPV equations in the presence of a bottom topography 

underneath layer 2.  
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E6.4. (Long baroclinic waves) On a f-plane (=0), assume a constant mean flow of U (>0) in the 

upper and –U in the lower layer, the perturbation PV equations in the 2-layer model are: 

  (t+Ux  )[ 2’1 - F(’1  -  ’2)] + 2FU x ’1 =0, 

           (t-Ux  )[ 2’2 + F(’1  -  ’2)] -  2FU x ’2 =0. 

The solution can be derived in the form of ’n = Re [An e ik(x-ct)+ily]. In the long wave limit K2 = 

k2+l2 → 0,  

a) Prove that the eigenvalues approaches  C → λ iU    where λ = ±  1 (λ = +1 for one mode, 

λ = -1 for the other mode). 

b) Prove that the eigenfunction structure satifies: A1/A2 → λ i . 

c) Prove that the perturbation streamfunctions can be written in the form  

 ’2 = cos (θ), ’1 = cos (θ+ λπ/2) , where    θ = kx+ly,   

d) Prove that the perturbation heat flux approaches <(v’1+v’2) (’1  -  ’2 ) > → λ k 

 where < > is the zonal mean over one wave length. 

e) Which is the unstable mode? What is its vertical structure (tilting west or 

 east, by how much ? What is the direction of perturbation heat flux? 

f) repeat e), but for the decaying mode 

 

 

E6.5:. In the interior ocean (x<0), baroclinic waves in a 2-layer fluid satisfy: 

t[ 21 - F(1  -  2)] +  x 1 = 0, 

t[ 22 + F(1  -  2)] +x 2  = 0. 

A wave maker on the eastern boundary of the ocean (x=0) forces a perturbation of 1 = A exp(-

iσt),  2 = 0,  at x=0. Find the boundary forced waves in the interior ocean? Discuss the wave 

response as a function of the forcing frequency 

 

E6.6 (2-layer QG model with bottom topography) For a two-layer QG model of equal depth D, if 

the bottom topography height is hB, prove the following. 

(1) The QGPV of layer 2 becomes now 

 q2= fo+y+22 +F(1  -  2) +H,    

where H=fohB/D. (This should reduce to (6.2.6) in the absence of topography). 
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(2) If the topography varies with y linearily as hB=Sy, show that the linearized QGPV equations 

are now:  

 t[ 21 - F(1  -  2)] +  x 1 = 0, 

t[ 22 + F(1  -  2)] +2x 2  = 0, 

where 2 = +foS/D is the mean PV gradient in layer 2. 

(3)  Assuming the wave of the form n=Anexp[i(kx+ly-kct)], show that the two eigenvalue wave 

speeds are 

1

2

2
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2
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In the special case of no bottom topography, such that =2, which is the barotropic mode and 

which is the baroclinic mode. 

(4) Show that the eigenfunction of the modes are 
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Discuss the structure for three cases (a) =2 ,  (b) >2  (c) <2 . 

(5) In the planetary wave limit K2<<F, discuss the eigenvalues and the corresponding 

eigenfunction structures.  

 

 

E6.7 (2.5-layer QG model) In a 2.5-layer fluid (see E1.4) with a rigid lid (such that surface 

elevation is negligible), using the PV approach similar to Sec. 6.2, show that the QGPV 

equations can be written as 2,1,0)],([  nqJ nnt  , and 

)./()/()(),/()( 2
'
2

2
022

'
1

2
0212

2
21

'
1

2
0211

2
1 DgfDgfyqDgfyq    

where D1 and D2 are the mean thickness of the two layers. 

 (Hint: in light of E1.4b, the perturbation interface depth anomalies z1’ and  z2’ can be related to 

the QG streamfunctions as f01 = -g1’z1’-g2’z2’ and  f02 = -g2’z2’.) 
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E6.8 (2.5-layer planetary waves) Free planetary Rossby waves in the 2.5-layer model can be 

derived by neglecting relative vorticity in the 2.5-layer QG PV model that is derived in E6.5. 

Discuss the baroclinic planetary waves for the two cases, where the mean state (a) is motionless, 

and (b) has a mean flow of U1 =U2 =U in the two layers. When U increases to infinity, what are 

the wave speeds of the two modes? Under what conditions, does the wave become unstable? For 

simplicity, you can assume D1=D2 and g1’=g2’. 

 

E6.9. For a conservative quantity a, with da/dt =0, prove that a small perturbation of a satisfies 

a’= -’Ay where ’ is the disturbance distance deviation.  

 

 

 

 

 

 

Hint: a0a[x,Y0(x,t),t]    gives the position of the contour a0 as Y0(x,t). Assume the time mean 

position of Y0(x,t) is y0, we have  

a0a[x,Y0(x,t),t]= a(x,y0,t)+ (Y0 - y0 ) ya |y=y0+ …  a(x,y0,t)+ ’yA    

where Y0(x,t) is a material surface and ’=Y0 - y0. Thus, a’= a(x,y0,t)-a0 -’yA.   

a1 

a-1

a0 

Before perturbation After perturbation 

’(x,t) a0 a(x,y,t) 
y0

Y0 

h1 u1, v1, 1, p1 

u3= 0, v3=0, 3, p3=0 

u2, v2, 2, p2 

=const 

z1(x,y,t) 

z2(x,y,t) 

h2 



AOS611Ch.6, Z.Liu,01/21/2014 

Copyright 2014, Zhengyu Liu 

41



AOS611Ch.6, Z.Liu,01/21/2014 

Copyright 2014, Zhengyu Liu 

42

 


