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Chapter 5. Stratified Quasi-Geostrophic Rossby Waves 

 

Sec. 5.1: Quasi-Geostrophic Equation in Stratified Fluid 

 

1. Nondimensional Equations 

We’ll use the oceanic equations (4.1.15) 
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   (5.1.1) 

We choose the scales as 

       u, v ~ U,    x,y ~ L,       w ~ U
D

L
,    z ~ D,  t ~

L

U
 

and  denote  the Rossby number as: 

        =
U

fo L
 

The density and pressure can be written as 

        0(x,y,z,t) (= Ocean-m) = S(z)+(x,y,z,t),    (5.1.2a) 

         p0(x,y,z,t) (=POcean +mgz ) =pS(z)+p(x,y,z,t),    (5.1.2b) 

where Ocean and POcean are the total density and pressure, m is the average density of the 

ocean, and 

        )(zg
dz

dp
S

S   

represents the static part associated with the mean stratification and 

        g
dz

dp
  
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is the dynamic pressure associated with the horizontal density variations. For large scale 

flows with small Rossby number, similar to the shallow water case in section 2.1,  the 

dynamic pressure is also scaled as  

p ~ foLUm        (5.1.3) 

such that the pressure gradient force is comparable with the  Coriolis force; the 

source/sink is assumed weak, with  GF 



moUf

1
 , and G  O(1); we also use the 

local -plane approximation   


of

L
 , where  r~ 1. Then, we can write the two 

momentum equations in dimensionless variables (subscripted with “*”) as: 

        xG
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The continuity equation is 
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The scale of  can be derived from the hydrostatic equation 

        



g
z

p
 . 

Notice (5.1.3), we have 

         ~ 
gD

p
  ~   2)(~

D
mm

o

L

L

gD

LUf
     (5.1.4) 

where LD
2 

gD

fo
2

   is the external deformation radius. We can therefore define   as 

           ~ *             (5.1.4a) 

where * ~ O(1). The hydrostatic equation can be written as 

           *
*

* 




z

p
                

With all these scalings,  the thermodynamic equation becomes 
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The scale of 
dz

d S  can be derived at the first order from the adiabatic condition. We can 

show from (5.1.5) that  

        
zzdz

d S





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



1

 

Indeed, for adiabatic flows, the solution is always along  isopycnals .00 
dt

d
 Therefore, 

00  zx wu  . But, we know that QG equations require at the first order non-divergent: 

        
w

u
 

D

L
       

Therefore, the slope of the isopycnal surface must be  
D

L
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)(0 . Furthermore,

L

D

zx 





 , we have 
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
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


zz
S )(

      

Since 
z

d

z
S







 , we have 

          






dz

d

z
S        (5.1.6) 

This implies that any horizontal variation of the static stability (since  is the horizontal 

variation part) must be small. This is a weak assumption in many cases. (especially in 

marine eddies .. ) 



AOS611, Ch.5, Z.Liu, 01/21/14 

Copyright 2014 Zhengyu Liu 

4

 

 

 

 

 

 

 

Using (5.1.4) and (5.1.6), we have the scale 

         )(* z
Ddz

d S 






 

where )1()(* Oz  . 

The thermodynamic equation becomes 

        Sw
t





  ****
*

* })({ u  

where     



of

S
S 0  and   )1(OS   such that at the leading order the flow is adiabatic. 

 

Note 1:The buoyancy frequency N(z) (Brunt-Vaisala frequency) is defined as 

        
dz

dg
N S

m




2  

Note: For a typical atmospheric tropospheric and upper oceanic stratification, we have  

kmDkmD atm
m

ocnS
atm

m

atmS 1~,001.0~,10~,1.0~ ,,


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
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So, the BV frequency is therefore 

min)15/(1~)1000/(1~10/001.0min),5/(1~)300/(1~10/1.0 34 smgNsmgN ocnatm 
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where  LI
2=(ND/f)2  is the interior deformation radius. Therefore, 
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This requires the scale to be not too large, similar to the homogeneous case. 

The complete set of dimensionless equations are therefore (drop the subscript “*”): 

          

0

})({

})({

})({

*











z

w

y

v

x

u
z

p

S
t

w

Gryuv
t

v

y

p
u

Gryvu
t

u

x

p
v

y

x






























u

u

u

   (5.1.7) 

 Similar to the shallow water case in Section 2.1, we solve this set of equations by 

expanding variables as powers of ε: 

        

)(

)(

)(

)(

)(

2
1

2
1

2
1

2
1

2
1











Owww

O

Oppp

Ovvv

Ouuu

o

o

o

o

o











.       (5.1.8) 

 

2. O(1) Equation and Dynamics 

Substitute (5.1.8) into (5.1.7), at the leading order, we have 
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As in the shallow water case, (a), (b), (c) can be used to derive (e). Thus, there are only 4 

independent equations, but with 5 unknowns. This is the “Geostrophy degeneracy”. 

 

To better understand the O(1) dynamics, we write (5.1.9a,b) in dimensional form as the 

geostrophic balance: 
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where  
om f

p


      is the geostrophic stream function. The hydrostatic balance (5.1.9c) 

can be written as 
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fo

m 
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
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         (5.1.11) 

Differentiate (5.1.10) with respect to z and use (5.1.11), we have     

           

yf

g

zyz

u

xf

g

zxz

v

mo

g

mo

g






















2

2

   (5.1.12) 

This is the thermal wind relation, a direct result of geostrophy and hydrostatic balance. 

This relation has been used frequently to infer ocean currents from the density field, i.e.  

the so called “dynamic method”. 
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Note 2: It also represents a balance between the baroclinic vorticity generation and the 

title of planetary vorticity in y- and x- directions. Indeed, the general vorticity equation is: 

          
2

)(

 p

dt

d
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ξ
     

For large scale  ε<<1, we have )(2 Oa  Ωξ . In addition, zyP<<yzP, which is 

equivalent to the Boussinesq approximation in the ocean.  The x and y component of the 

vorticity equation can therefore be written as 
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Notice hydrostatic balance:  z p g  , in the steady state 0
dt

d
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d ayax


 , we have the  

thermal wind relationship. On the RHS in the two equations above, the first term is the 

tilting term while the second term is the baroclinic term. The balance can be seen 

schematically as follows: 
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A westerly wind shearzu  0  generates positive vorticity in the x direction 

00   xzu . This vorticity is balanced by the opposite rotation that is forced by 

the northward density gradient 00,0  pp zyzy   .  

 

Note 3:  Taylor - Proudman Theorem 

For large scale low frequency processes, we have ,2Ωξ a  and t . The vorticity 

equation, assuming incompressibility, is 

           
2

)2(

 p

 uΩ  

If furthermore, the fluid is barotropic 0 p , we have 

           0)(  uΩ       

or  assuming  kΩ  , this is 

           0 uz  

or there is no shear of velocity in the vertical direction.  

0 wvu zzz   

The water column therefore behaves like a column of solid body. 

  

         

 

 

 

 

 

Even in stratified case, this still shows the tendency of rotation to constraint fluid motion 

variation along . In other words, rotation tends to couple the flow in the direction of . 

Thus, rotation produces a “stiffening” effect that tends to align the vortex tube in the 

direction of rotation.  This is also why in a layered model we can assume no shear for 

large scales GFD processes. 

 

3.  O()  Equation and QGPV Equation 

Water column 

Solid body 

Taylor Column 
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At the next order, we have the equations 
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As in the shallow water case, the evolution of the O(1) variables  uo , vo are determined 

by the O(ε) variables.  Since  
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Thus, we have the nondimensional QG P.V. equation: 
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or in the dimensional form  
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                   D q Sg q       (5.1.17a) 

where 
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 Hgygx uv 2      (5.1.17d) 
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The dimensional QGPV equation can be written in terms of  ψ as: 

 

qt SqJq  ),(       (5.1.20a) 
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2
2

zN

f
yfq o

zHo 
      (5.1.20b) 

For unforced, adiabatic flow, q is conserved along the geostrophic flow (which is 

different from the original 3-D flow!)  

 

4. Application of QG dynamics: Diagnostic Perspective. 

The QG dynamic framework is very useful for the diagnosis and understanding of the 

mechanism of various large scale circulations, from synoptic to planetary scales.   
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1) Planetary circulation and the generalized Sverdrup relation 

Consider the special case where the horizontal scale much larger than the deformation 

radius and horizontal temperature advection is not important, such that the 

thermodynamic equation can be simplified as the balance between adiabatic ascending 

and diabatic heating, that is in (5.1), the thermodynamic equation  

    Q
g

S
dz

d
w ms

t

  0u


 

(so that Q>0 represents heating) can be approximated as 

Q
gdz

d
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  or  QwN 2    (5.1.21) 

where we have used  02 
dz
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m




for a stable stratification. This is equivalent to 

the O(1) thermodynamic equation  (5.1.15) reduced to 
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w        

and therefore the QGPV in (5.1.20b) can be shown to reduce to the form of 

            Ho yfq 2       

where the stretching effect between different isopycnals is negligible.  Now, in the steady 

state, and neglect relative vorticity (very large scale), the QGPV equation (5.1.20) is 

reduced to a generalized Sverdrup relation (see Chapter 3, section 3.3): 
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In the absence of differential heating, and assume the momentum forcing is dominated by 

the wind stresss τF  , (5.1.22) reduces to the wind-driven oceanic Sverdrup relation 

(3.3.1) or (3.3.4) forced by the wind stress curl. For the atmosphere, assume the 

momentum forcing is negligible F=0, we have from (5.1.22) the Sverdrup relation forced 

by the differential heating  
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Therefore, for a deep heating such as latent heating, the lower layer flow is northward 

because 0Qz and upper layer flow is southward because 0Qz . Unlike in the 

tropics, the meridional flow is no longer axis-symmetric to the heating forcing. If some 

Newtonian cooling is assumed (linear damping of density/temperature in the 

thermodynamic equation), one can show that the surface low pressure and descending 

motion are induced to the west of the heating, due to the westward propagation of 

planetary wave.  

 

2) QG diagnosis and the generalized geopotential tendency equation. 

Now, we derive diagnosis equation for geopotential tendency (pressure tendency) and the 

vertical motion in the QG framework. This is important for meterological synoptic 

dynamics and other purposes. We will use the dimensional form of stratified equations 

directly. The QG thermodynamic equation can be approximated from the original 

thermodynamic equation (5.1.1e) by replacing the horizontal wind as the geostrophic 

wind (5.10) and the density (or potential temperature in the atmospheric case, see next) 

using the hydrostatic equation (5.11) as: 

QwN
z

v
z gt 












 2)(

 
    (5.1.24) 

Here we have defined the geopotential height as 

,/ 0f        (5.1.25) 

such that the hydrostatic equation (5.1.11) becomes 

,
m

g

z 






 or ,
zg

m





            (5.1.26) 

and 

0
2 , S

g
Q

dz

dg
N

m

s

m 



 , ),( aJavg 


          (5.1.27) 

The vorticity equation (the eqn. above (5.1.14)) can be written as the vorticity equation 

but with the voriticity and advection using the geostrophic wind   

  τv curl
y

v

x

u
fy

t g 





 



)()( 0
2





  

Or using geopotential height and continuity equation as 
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w
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( 




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 
      (5.1.28) 

Define the tendency for geopotential height as 

t



    

The thermodynamic equation (5.1.24) and the vorticity equation (5.1.28) become 

QwN
z

v
z g 


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

 2)(

 
   (5.1.29a) 
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( 



     (5.1.29b) 

These two equations form another set of QG equation: The first equation states that the 

vertical derivative of the geopotential tendency is equal to the sum of the thickness 

advection, adiabatic thickness change due to vertical motion and external heating. The 

second equation indicates that the horizontal Laplacian of th egeopotential tendency is 

equal to the sume of the vorticity advection, the vorticity generation by the divergence 

and curl of external forcing. These two equations can be used to derive diagnosis 

equations for geopotential tendency and omega using the geopotential height of the same 

time only. First for the geopotential equation, if we operate  

   
2

2
0

1

Nz
f




 

On the thermodynamic equation (5.1.29a), and then sum it with the vorticity equation 

(5.1.29b), we derive a diagnostic equation for geopotential tendency as 
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   (5.1.30) 

This states that the change of geopotential tendency is the sum of the effective vorticity 

forcing, which consists of the advection of absolute vorticity and curl stress and the 

differential effective heating, which consists of the temperature advection and diabatic 

heating. Note here, the advection of absolute vorticity is equivalent to a curl tau forcing, , 

both contributing to an effective vorticity forcing; the vertical shear of temperature 
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advection is equivalent to the differential heating, both contributing to an effecitive 

differential heating. This more generalized view will be seen helpful for our intuitive 

thinking.  

To further understand the utility of the tendency equation, for a wave of given 

horizontal structure for all the terms,  

)()(~ tlykxiez   ,  
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2
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2
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
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Assuming N  constant, the geopotential equation gives 
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





     (5.1.31)  

with 

  
2

0
222

2
02 ~

)( 










N

Lf

lkN

f
hR  ,    (5.1.32) 

L is the horizontal scale of the disturbance and hR is called the Rossby height. (also see 

exercise E5.1) (This is the reverse of internal deformation radius, that is, for a given 

depth of a structure of hR, the corresponding internal deformation radius is LI=NhR/f0. See 

discussion in the next section). (5.1.31) states that if there is an anomalous effective 

vorticity forcing Fv or effective differential heating FTz  at the depth z1 with a horizontal 

scale of L, the response of the geopotential height (pressure) response will be limited to a 

depth of Rossby height from the forcing height. Therefore, effectively, the Rossby height 

represents the vertical penetration of a disturbance on the pressure field.  For developing 

synoptic waves with westward tilt of trough/ridge line (see later chapter 6), on the 

ridge/trough line, in the geopotential tendency equation (5.1.30), vorticity advection is 

small and the development of the geopotential tendency is determined by the low level 

temperature advection (assuming diabatic heating is weak at short synoptic time scales), 

the low level cold (warm) advection towards the trough (ridge) then further intensifies the 

upper level trough/ridge. (see figure below).    
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Now, the effective heating is simply the temperature advection  
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Figure: developing synoptic disturbances in the westerly 

In the other extreme limit of very large scale diabatic heating Q, such that relative 

vorticity and temperature advection become negligible, the geopotential tendency 

equation can be simplified as 
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Or approximately 

z

Q
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


  ~ .     (5.1.33) 

First, if 0 , we have 

z
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So, below the heating 0



z

Q
, low pressure develops 0 ,  and  above the heating a 

high pressure develops (see Fig.5.x)  

` In general, for large scale flow, 0 ,  (5.1.34) indicates that the low pressure 

and high pressure center will not be collocated with the heating center. Indeed,  

Assuming N=const, and using geostrophy, (5.1.32) can be written in terms of geostrophic 

streamfunction (or geopotential height) as 

 
z

Q

ff

N
xzzt 




0
2

0

2 1    (5.1.35) 

Here, we have included a thermal damping term  with the local variability, such that the 

forced response can reach a final steady state. If we neglect the first term of geopotential 

tendency, this reduces to thermally driven Sverdrup relation (5.1.23). Now, with the 

geopotential tendency, on a beta-plane,  one can show (E5.??) that, below the heating 

0



z

Q
, low pressure develops 0  and extends westward, and  above the heating a 

high pressure develops that extends westward. The westward extension is due to the 

planetary Rossby wave and the final state is achieved by thermal damping.   
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Fig.5.x Response to large scale deep diabatic heating on a (left) f-plane and (right) beta-

plane. The pressure field is diagnosed from the geopotential tendency equation while the 

vertical motion from the omega-equation (see later discussion).  

 

3) QG diagnosis and the generalized omega-equation. 

Now, we turn to the vertical motion and derive the so-called omega-equation. We first 

take Laplacian to (5.1.29a) and vertical derivative to (5.1.29b) as 
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Subtraction of the two equations give a diagnostic equation for vertical motion (omega-

equation) as 
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         (5.1.36) 

The vertical motion can now be diagnosed from the geopotential field of the same time. 

For a wave structure )()cos(~ tlykxiemzw  , we have roughly  
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Thus, the omega-equation 

becomes
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So the geopotential tendency and vertical motion can be diagnosed directly from the 

weather map of geopotential height. Of course, high order derivatives are used so it is 
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still difficult to assess those terms accurately in the observation.  Nevertheless, these 

equations shed light on the mechanisms of the geopotential tendency and vertical motion.  

For a typical developing synoptic system that tilts westward (below Fig.5.x), above the 

surface low pressure center, upper air advects positive vorticity,   there is a rising motion, 

and above the surface high, the upper air advects negative vorticity, which leads to a 

descending. In addition, to the west of the surface low, the cold advection leads to 

descending, and to the east of the surface low, the warm advection leads to an ascending. 

As a result, the strongest ascending for a developing synoptic system occurs east of the 

surface low pressure center.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.x: vertical motion diagnosizd from omega-equation for a developing synoptic 

system. 

 

In the other limit of large scale heating, we can neglect relative vorticity and temperature 

advection, the omega equation gives 
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If  =0, we have simply  

  QQlkQw ~)(~~ 222       (5.1.38) 

So, the air rises with heating (thermodynamic balance between diabatic heating and 

adiabatic ascending and vice versa. However, for 0 , there will be an ascending 
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induced by the northward shear 0zv  and vice versa, Since for planetary scale diabatic 

heating, the pressure field is shifted westward as shown before in geopotential tendency 

equation (5.1.35) and Fig.5x(right), the final ascending motion will be shifted to the 

eastern part of the heating center. In the mean time, there will also be a descending to the 

west of the heating region. This is the so called monsoon-desert mechanism (Rodwell and 

Hoskins, 1996, JAS). The planetary scale geopotential field and vertical motion can be 

understood from the generalized Sverdrup relation as discussed before. This vertical 

motion will also be derived in exercise E5.??.  
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Sec5.1: Appendix. The Atmosphere Case 

The QGPV equation in the atmosphere can be derived parallel to the oceanic equation. 

Typical scales are chosen as 

       u, v ~ U,    x, y ~ L,  w ~ U
D

L
,    z ~ D,  t ~

U

L
, 

 the Rossby number is =
Lf

U

o

, the potential temperature is written as 

        (x,y,z,t)=(z)+'(x,y,z,t) 

and the geostrophic potential high as 

         (x,y,z,t)=(z)+'(x,y,z,t) 

where 
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For large scale flows, the geopotential height anomaly is scaled as 

         ~ foLU    

such that the pressure gradient is comparable to the Coriolis force at the first order. 

The source/sink is also weak such that  
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1
 ,   where |G|O(1). 

The local -plane is adopted as 
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The two momentum equations are represented in dimensionless variables as: 
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The mass equation is 
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Thus, we are led to the scale of 
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 and Q  O(1) is consistent with leading order adiabatic. 
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The variables will be expanded as follows: 

          

u  uo  u1  O( 2)
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The O(1) equations are 

         

vo 
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uo

x

vo

y


1

p


z

(pwo )  0

 

In dimensional form, the geostrophic balance is: 
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
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'1

          

where  
of

'      is the geostrophy stream function. The hydrostatic equation is '
' 





z

   

or 
zg

fo

s 








 . This leads to the thermal wind relationship 
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At the next order, we have 

        xoo
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where  
y

v
x

u
tDt

D
oo

g










*  .   The vorticity equation can be derived as:   

         Gcurlpw
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ry
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x

v
D oo
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
 )(

1
)( 1* 






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Since  

         
**

*
*

*
*

1 )(
1











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


Q

p
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p
zp

Dpw
p gtz 


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
  

we have the nondimensional QG P.V. equation: 

        )(
1
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1
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pQ
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curlG
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zpy

u

x

v
ryD z

ooo
gt 
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
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In the dimensional form 

               D q Sg q  

where  

  )(
1

dz
d
pf

p
yfq o

zo 



 ,   )(

11

dz
d

Qpf

p
S ao

zq 
 


Fk  

   Hgygx uv 2 ,           D u vg t g x g y      

Now, with  

        
zg

fos




 ' , N 2 
g

s

d
dz

 

and therefore  
zN

f

dz
d

o




2

'



,  we have the QGPV equation for the atmosphere as: 

qt SqJq  ),(       (5.1.A1) 

            )(
1

2

2
2

zN

pf

p
yfq o

zHo 
  .   (5.1.A2) 
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Sec. 5.2:   Rossby Waves in Stratified Flows  

 

1. Dispersion Relationship 

      As in the shallow water case, we study small perturbations linearized on a mean zonal 

flow. The linearized QGPV equation is: 

          0'')(  yxt QvqU  

where the mean and perturbation potential vorticity are 

Q U
p

pf

N
Uy yy z

o

z  








   

1 2

2 , 

 









zN

pf

p
q o

zyyxx 


2

21
'  

We have used the atmospheric equation (5.1.21) and the oceanic equation can be 

recovered simply by setting p=p0. The QGPV equation can be written in the perturbation 

streamfuction  as 

          0}
1

){(
2

2
0 








 yxzzyyxxxt Q

N

pf

p
U     (5.2.1) 

We will assume the basic state is slowly varying, that is the wave length in y, z directions 

are short relative to the scales at which U, N2 and Qy vary. (But, we don't need to assume 

p(z) slowly varying!).  Assuming the solution of the form    

          










H

z
i

ezytzyx 2),(Re),,,(


  

where 

           
y z

dzzmdyylctxk ')'(')'()(  

We have approximately 

           2kxx     ,   2lyy   

and 
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Therefore, (5.2.1) gives the dispersion relationship as 

          (U  c)[k 2  l2 
fo

2

N2
(m 2 

1

4H 2
)]Qy  0. 

That is 

          c  U 
Qy

k2  l2 
fo

2

N2
(m2 

1

4H 2
)
         (5.2.2)         

for the atmosphere. For the ocean, we can set H infinitely large (incompressible), so that  

          c  U 
Qy

k2  l2 
fo

2

N2
m2

                    (5.2.3) 

The relation between the shallow water Rossby waves and the baroclinic Rossby waves 

here are readily seen if we make 

          L2
Dm 

N2

f 2 (m 2  1
4H2

)
       (5.2.4) 

The dispersion relationship can be put exactly the same form as the shallow water Rossby 

wave 

             
222 


Dm

y

Llk

Q
Uc  

The LDm is the deformation radius for baroclinic flows with a vertical wave number m: 

 Since mLDm /1~ , the deformation radius increases and the wave speed faster for smaller 

m (or larger vertical scale), and vise versa. For typical atmospheric stratification, we have 

LD1 ~ 1000 km, while for typical oceanic stratification, we have LD1 ~ 50 km.  In the limit 
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of long wave DmLL    and in the absence of no mean flow,  the dispersion relation is 

reduced to 2
DmLc  . This has been derived directly in the homework E4.1.  

 

2. Group Velocity and Vertical Propagation 

For a given k, l, the dispersion relationship gives the vertical wave number  

          m 2 
N2

fo
2

Qy

U  c
 k2  l2






1

4H 2      (5.2.5) 

When the RHS > 0, m is real, and the Rossby wave propagate vertically; when the 

RHS < 0, m becomes imaginary, and the waves are trapped vertically.  

 

For propagation waves (real m), the group velocity can be calculated as 
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      (5.2.6) 

where 
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y Q
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f
lkQ

2
2

2

2

2

2
22 )(

)]
4

1
([


     (5.2.7) 

Note 1: If l is replaced by ,
2

2

m
N

fo we have gyC  the same as gzC  Therefore, 

mathematically, the y direction and z direction are very similar for Rossby waves. 

However, later, we will see that the physical meaning of the group velocity in these two 

directions differ dramatically.  

 

In the case of U=0, we have Qy =β>0, we have C
kpx  


0, so the wave always 

propagates westward. Define the phase velocity as 

          K
K

K
K

CCC pzpypxp







20
||||

),,(


C  



AOS611, Ch.5, Z.Liu, 01/21/14 

Copyright 2014 Zhengyu Liu 

28

where ||/0 KKK


  is the unit vector in the direction of wave vector.  

We see from (5.2.2) and (5.2.6) that (take the sign of k as positive, so ω =kc is negative ) 

          sign(Cpy)  sign(l) ,    but  )()( lsignCsign gy   

           sign(Cpz)  sign(m),   but )()( msignCsign gz   

Thus, the phase and group velocity are in the opposite directions. 

It should be pointed out that in the atmosphere, even if m is real (when the basic state 

allows),  does not vary with height simply as eimz; instead, its amplitude increases with 

height as  

          H

z
imz ee 2~  

or the energy increases with height as 

         ||2 ~ ez/H  ~ 1/p 

The amplification of the streamfunction with  height is caused by the reduction of 

atmospheric density.  

 

 

 

 

 

 

 

 

 

 

Finally, for stationary forcing (topography or large scale heating/cooling) c=0. 

Eqn.(5.2.5) shows that only those largest scale waves (smaller k, l) can propagate 

vertically in the westerly wind (U>0) (real m). This has been used to explain the 

observed stratosphere. Stratosphere disturbances are believed to originate from the 

troposphere. Observations show that the mid- and high latitude stratosphere is dominated 

by disturbances at planetary scales (wave number 1, 2 3), although the most energetic 

z 

ez/H 

 
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disturbances in the troposphere are at higher wave numbers (6 and 7). This is because 

only those very long waves can propagate into the stratosphere according to (5.2.2).    
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Fig.5.1: Vertical propagation of 
atmospheric waves 
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Fig.5.2: Geopotential height 
anomaly in the stratosphere 
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Sec. 5.3 Vertical Normal Modes 

 

1:   Vertical Modes in the Ocean 

     Consider an ocean with U=0 and N uniform. The mean PV gradient is therefore 

Qy   . The linearized QGPV equation is: 

    0])([
2

2

  xz
o

zyyxxt N

f
    (5.3.1) 

 On the bottom (assume flat)                          

              w(x,y,0,t) = 0   (5.3.2) 

At the top z=D+(x,y,t) 

We have a rigid lid   

w(x,y,D,t) = 0.   (5.3.3) 

To write the vertical boundary condition in terms of , we resort to the thermodynamic 

equation: 

         t' w
ds

dz
 0 

The hydrostatic balance gives: 

        
mof
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z 



 '

          (5.3.4) 

We then have 
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d
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f
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d
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2

2'
       (5.3.5) 

Thus, the vertical boundary conditions (5.3.2) and (5.3.3) become 

      0 tz     at z=0, D       (5.3.6) 

Note 1: Effect of bottom topography at zB(x,y) is  

 ]),,,([),,()],(,,[ BBBBB zzyxJzzyxuyxzyxw 


. 

In the special case of a linear meridional slope   of small amplitude yzB  , the bottom 

boundary condition becomes simply )0,,(),,()],(,,[ yxzyxyxzyxw xBxB   .||| 

 

Returning to the QGPV equation. We look for separable solutions of the form 

D 

z 

D 

0 
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        tieyxz   ),()(         

Substitute this into the QGPV equation, we have the equation for the vertical structure as 

        2
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f
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d o         (5.3.7) 

and the equation for the horizontal structure as 

   02 
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i yyxx 
     (5.3.8) 

The vertical boundary conditions (5.3.6) becomes 

         
d
dz

 0   on z=0,D       (5.3.9) 

Therefore,  (5.3.7) and (5.3.9) form an eigenvalue problem. The eigenvalues are real. 
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Therefore, the eigenvalue is 
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In the case of a uniform N, the eigenfunctions and eigenvalues can be easily solved as  

          
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        ,2,1,0,  m
D
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N
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       (5.3.11) 

Substitute them into (5.3.8), we have the dispersion relationship 
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Thus, for each vertical mode, m, the dispersion relationship is exactly the same as that for 

the shallow water Rossby wave, provided that we replace the effective deformation 

radius for each mode as: 

         

2
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

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
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mf

ND
L

o
Dm   .      (5.3.12) 

The deformation radius vanishes, with an increasing m.   

The correspondence of the deformation radius in (5.3.12) with that in the 1.5-layer model 

(1.5.4) can be readily seen below.  Since   

D
g

D
g

dz
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N

m

s
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11
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
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



, 

we have 
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where 

        Dm 
D

m 2  

is the equivalent depth. Thus, each baroclinic mode propagate exactly as a 1.5 layer  

model Rossby wave with an equivalent depth of Dm. (Some people also use the 

expression of      
2

ˆ

o

m
Dm f

Dg
L  , such that the equivalent depth is  ˆ D m 




Dm    ) 

The LDm is called the internal  (baroclinic) deformation radius. This gives a close analogy 

between shallow water dynamics and the stratified dynamics. In the ocean,  

11 






Do

D

L

L
.  

The vertical structure of the normal modes are further discussed below. The m=0 mode is 

the barotropic mode or external mode (deformation radius infinitely large in the absence 

of free surface elevation here).  The velocity does not have shear in the vertical direction 

and there is no density perturbation for this mode.   

The m  1 mode is the mth baroclinic mode or internal mode. These modes have m node 

points in the velocity field and are all accompanied with density perturbations. For all the 

baroclinic modes, the vertically integrated net transport vanishes.  
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This can be shown directly from (5.3.7)  

and (5.3.9).  Integrate (5.3.7) from  

z=0 to D gives   0''
0

2  dzz
D

mm    

and therefore   ,0''
0

 dzz
D

m  if m  0 . 

 

 

Note 2:  Equivalent particle examples of external and internal modes. Consider two balls 

connected by a spring. There are two possible normal modes. The first has both balls 

moving in the same direction, as if there is only one ball. This is the”barotropic mode”. 

The second has the two balls always moving in the opposite directions. This is the 

“baroclinic mode”. 

 

 

 

 

 

 

When more balls are added, there are more freedoms and more “modes”. || 

 

In reality, N(z) is not uniform at all (Fig.5.3). Analytical solution becomes usually 

impossible. Nevertheless, for slowly varying N(z), we can still use the WKB method such 

that, with U=0, (5.2.5) becomes : 

        m 2  
N2 (z)

f 2
(

C
 k 2  l2 ) 

for the oceanic case. If m is real at any height, it is real at all height, although N(z) may 

change. So there is no internal reflection. The normal mode is caused by reflection at the 

top and bottom boundaries.  

 

 

 

“barotropic mode” “baroclinic mode” 

z 
 

m=0 
m=1,2,3 
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After a couple of reflections, normal mode is established in the z direction. The 

establishment of the normal mode is similar to the normal mode in the case of horizontal 

boundaries. The key is that the wave energy is trapped within a finite region. 

The most dramatic change of N is in the oceanic thermocline. The WKB solution shows 

that m(z) changes, small for small N, but large for large N. (Fig.5.4).  

 

Indeed, for a general N(z), the veritical eigenvalue problem (5.3.7) and (5.3.9) can be 

solved numerically to give m. Then, the horizontal structure satisfies (5.3.8), which is the 

same as the shallow water Rossby wave, except for replacing the deformation radius by 

LD
2=m

-2. The Rossby wave of the mth mode has the dispersion relationship 

222
mlk

k






 . 

 

 

2. Atmospheric Case  

The normal mode in the atmosphere is much more complicated, because of the lack of a 

upper boundary. It turns out that the normal mode usually doesn't exist in the atmosphere. 

This is not hard to imagine, because, in the absence of a reflective top boundary, a normal 

mode can't  be established. 

 

 

 

z 
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Mathematically, one can see this crudely here. If the vertical mode equation allows the 

solution 

          imzimz BeAe ~  

The absence of an energy source from above requires that the wave energy  radiates 

upward only. This selects  B=0. Furthermore, at the bottom, 0 z  determines that 

0A . Therefore, there is no normal mode.  However, normal modes may exist when a 

strong shear of U(z) produces internal reflections. 

z 
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Fig.5.3: Vertical profiles of N in the 
atmosphere and ocean 
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Fig.5.4: Normal modes in the presence of 
realistic oceanic stratification. 
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Sec 5.4:  The Eliassem-Palm Theorem 

1. E-P theorem: 

 The shallow water E-P theorem in section 2.6 can be generalized to the stratified fluid.  

The QGPV equation.of the atmosphere is 

          D q u v q Sg t x y q   ( )    

Consider a basic state 

        U U y z ( , ) ,   ( )z ,   ( , )y z , )z()z,y(fo    
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and the mean temperature field 
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where the basic state satisfies the thermal wind relationship 
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The mean QGPV is therefore: 
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and the mean PV gradient is 

)
z

U

N

pf
(

zp

1

y

U
)z,y(Q

2

2
o

2

2

y 






   

Write 

            ),,,('),( tzyxzy    

where  ,'    is a small perturbation. The QGPV equation can be linearized as 

          ( ) ' ' ' t x y qU q v Q S        (5.4.1) 

Multiplying the equation by pq'/Qy, we have  

yq
y

2

xt Q/'S'pq'q'pv
Q2

'pq
)U(       (5.4.2) 

Since 
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pv’q’ can be written in the form of flux divergence  

          F''qpv        (5.4.3) 

 

Here, the flux F is the generalized E-P flux 
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and 
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The perturbation PV equation (5.4.2) can be written in the wave activity equation: 

          SAU xt  F)(                 (5.4.5) 

where    

yQ

qp
A

2

2
         (5.4.6)   

 is the wave activity, and    yq QpqSS /' . The conventional E-P equation is the zonal 

mean of the generalized E-P equation. 

SAt  F       (5.4.7)   
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where 
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This gives the Elliassn - Palm Theorem: 

 For  (i) steady amplitude t A  = 0, and  (ii) conservative  S = 0,  the E-P flux F is non-

divergent.   (Therefore, F can’t originate from nowhere and end in nowhere, like the mass 

flux of an incompressible fluid) 

 

Note 1:  For the ocean: 
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2. Wave Activity Flux and Group Velocity 

For almost-plane waves, under the WKB assumption, the solution can be assumed of the  

form    
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Similarly, the flux is 
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            (5.4.9) 

Notice the group velocity of the baroclinic Rossby waves in (5.2.6), we therefore have 
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3 Vertical Propagation and Meridianal Heat Transport 

The vertical component of the E-P flux is directly related to the meridional heat flux  

2
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 kmvv
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f
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zxz           (5.4.10) 

An upward E-P flux ( Fz  0) corresponds to a northward heat transport, and vise versa. 

In the atmosphere, Rossby waves are usually forced from the surface to propagate 

upward. ( Fz  0). This corresponds to a westward tilt (km>0 ) and should transport heat 

poleward. (Now, the geopotential perturbation is 90o phase lead of ’ and therefore v’ is 

in phase with ’). In addition, waves are also caused by baroclinic instability (Chapter 6). 

The unstable waves also tilt westward and transport heat poleward. 
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The northward heat transport by Rossby waves contributes to the major part of the 

atmospheric poleward heat transport in the midlatitude region. Interestingly, in the ocean, 

the wind forces Rossby waves at the surface and therefore downward. These waves will 

transport heat equatorward, against the mean gradient. 

 

4. Applications 

Case 1:  Wave-mean flow interaction in vertically sheared flow. Assuming a westerly 

wind with a maximum speed in the middle level. In the lower half, the westward tilting 

trough produces an upward E-P flux. The accompanied northward heat transport is down 

the mean temperature gradient (Ty<0 for Uz>0) and therefore tends to reduce the mean 

temperature gradient. The perturbation grows by extracting APE from the mean APE. 

Similar discussions show that the perturbation in the upper half is also unstable. 

Alternatively, the E-P flux converges, increasing the wave activity at the expense of the 

mean flow strength. (tA increases  and tU decreases). 
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Question: Indeed, from the QG thermodynamic equation   

    Qw zgt  )(  u  

Zonal mean we have  

Qwv zgyt  )''(   

That is 

Qwv zgyt  )''(  . 

how to get vertical gradient of Fz impact on mean temperature?  

 

Case 2:  

Vertical propagation of the atmospheric Rossby waves (see the end of last section). 

The amplitude increases for a vertically propagation wave with height inversely 

proportional to pressure. For a wave packet originate at the surface (1000mb) propagating 

into the stratosphere (10mb), its amplitude increases by 10 times. This can be seen using 

the E-P theorem. For steady, conservation waves,  

.F =0.  

For plane waves, Fy is independent of y, so that  

0 FF yz  ,  

or 

Fz<0 
 

Fz >0 
 
 

U(z) 
z 

x 
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If N is constant,  

           0'' zxz p          (5.4.12) 

Now, if 
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''  kmzx  . Thus, (5.4.12) gives 

            z (p |  |2 )  0  

In reality, the amplitude can be changed by dissipation, nonlinearity, wave refraction , etc 
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Questions for Chapter 5 

Q5.1. (buoyancy and vorticity forced responses) A fluid is bounded by flat top and 

bottom at z=0 and -H, and is forced by external momentum forcing F and buoyancy 

forcing Q. The linearized QGPV equation is 

 )()(
1

'')(
20 N

Qgf
curlqvqU

m

o
z

m
yxt 




  F  

where 









zN

f
q o

zyyxx 


2

2

'  ,   xv ' , and the mean flow 0U  is assumed to 

be independent of height and therefore the mean PV gradient is yq .  

(a) A momentum forcing F has a vertically integrated vorticity component such 

that 0
0


H

dzcurlF  (e.g. a surface wind curl forcing or bottom drag curl) . Show that this 

forcing can generate barotropic response 0
0


H

dz . (hint: vertically integrate the PV 

equation).   

 (b) An internal buoyancy forcing Q vanishes on the top and bottom boundaries 

0),,,( tzyxQ at z=0 and -H (such as an internal heating in the middle of the fluid). 

Show that the forced response has no barotropic component 0
0


H

dz . 

What happens if the buoyancy forcing or density perturbation do not vanish on the top 

and bottom boundaries. Why? 

(c) What could happen if the mean flow  varies with height? 
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Exercises for Chapter 5 

E5.1. (Rossby height) The basic state is motionless and has a constant Brunt-Vasara 

frequency N. Assume a boundary perturbation of geostrophic streamfunction at the level 

z1 of the form )(),0,,( tkxiAetzyx   . If this perturbation does not generate PV 

anomaly away from the disturbance level (z>z1 and z<z1), that is the PV satisfies the 

equation 

0
2

2

  zz
o

yyxx N

f
q , 

away from the forcing, how deep can the boundary perturbation penetrate?  

 

E5.2. (Vertical Rossby wave propagation diagram) The basic state is motionless and has 

a constant Brunt-Vasara frequency N. Baroclinic Rossby waves have the form of    

e i(kx+ly+mz) 

a) Discuss the mathematical similarity between the vertical propagation of stratified 

baroclinic Rossby waves and the meridional propagation of shallow water Rossby waves.  

Plot the wave vector and direction of the group velocity in the wave number (k,m) plane  

(or the dispersion diagram circle).  

b) In light of (a), consider an upward/westward  propagating  baroclinic Rossby wave that 

is incident on a vertical wall (or tall mountain). What will be the direction of the reflected 

Rossby wave ?  What will be the wave phase pattern?  

 

 

 

 

 

 

 

 

 

(c) If a baroclinic system tilts westward with height, what is the direction of Rossby wave 

energy propagation? 

Aei(kx+ly+mz)

Cg

(k,m) 

Z 

X 
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What kind of weather synoptic system does this correspond to?  Which direction does 

this system transport heat flux?  What is the direction of the E-P flux in the vertical 

direction? (For simplicity, you can assume an infinite scale height, or incompressibility). 

 

E5.3. (Wind forced stratified ocean) A stratified linear ocean is forced by a spatially 

uniform Ekman pumping on the surface with a frequency . The ocean basin has a zonal 

scale L (such that the wave number is k=2/L) that is much longer than the internal 

deformation radius:  

(a)  Find the direction of the downward group velocity.   

(b)  What is the direction of the group velocity when the forcing frequency approaches zero 

(the limit of steady forcing)? 

(c)  In light of (b), is it possible to have subsurface motion under a steady wind forcing? 

(d)  Is Sverdrup relation valid in the limit of a steady wind?  

(e)  What is the implication of (c) and (d)? 

 

 

 

 

 

 E5.4 (Non-Doppler shift effect) In a stratified ocean, we will consider planetary scale 

perturbations that are governed by the potential vorticity equation   

max

H 
max 

H 
min 

L 
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warm cold warm cold 

=0  =0 =0 =0 

Low Low high high 
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We project the streamfunction on vertical modes: 
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(a) If the flow is projected only on a single vertical mode m=M, what is the advection 

term in the potential vorticity equation.  

(b) In light of (a), how do you interpret the perfect non-Doppler-shift effect of the 

planetary Rossby wave in the shallow water or the 1.5-layer model?  

(c) If the flow is projected on more than one vertical modes, show that the mth mode of 

the flow only advects the part of the stretching voriticty that excludes mode m.  

(d) Based on (c), under what condition, Rossby waves will be advected by mean flow (or 

Doppler-shift occurs) in a general continuously stratified ocean? 

 

E5.5 (Normal modes in the presence of topography) In the presence of a north-south 

bottom topography  yzB  , derive the normal modes of Rossby waves in section 5.3 in 

the case of a constant Brunt-Vasara frequency. (Hint: now the bottom boundary condition 

at z=0 is )0,,(),,( yxzuzyxw xBBB 


). 

 

E5.6: (Wave-mean flow interaction of baroclinic waves). Based on the wave activity 

equation and E-P flux  (5.4.7) and (5.4.8), discuss the wave-mean flow interaction of the 

following disturbances in a westerly shear flow. 

 

 

 

 

 

 

U(z) z 

x 
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(a) Will the disturbance grow or decay? Will the mean flow intensify or weaken? 

(b) Discuss the difference and similarity from the corresponding barotropic case (in 

section 2.6) of negative viscosity. 

 


