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Chapter 5. Stratified Quasi-Geostrophic Rossby Waves

Sec. 5.1: Quasi-Geostrophic Equation in Stratified Fluid

1. Nondimensional Equations

We’ll use the oceanic equations (4.1.15)

o”tu+(u0V)4—fv:—L0”xp0+LFx
pm m
1 1
ov+@eVy+ fu=——2,p,+—F,
pm pm
1
— 0. p, =-5P (5.1.1)

du+dyv+dw=0
o,po + (ﬁ °V),00 =5,

We choose the scales as

D L
u,v~U, xy~L, w~U—, z~D, t~—
L U
and denote the Rossby number as:
U
g=—
L
The density and pressure can be written as
Po(XY,2,1) (= Pocean-Pm) = Ps(z) T p(xX,y,2,1), (5.1.2a)
Po(x,y,2,) (FPocean +PngZ ) =ps(2)tp(x.y,2,1), (5.1.2b)
where pocean and Pocean are the total density and pressure, p,, is the average density of the
ocean, and
dps
—_ = = z
p gps(z)
represents the static part associated with the mean stratification and
dp
b gpr
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is the dynamic pressure associated with the horizontal density variations. For large scale
flows with small Rossby number, similar to the shallow water case in section 2.1, the
dynamic pressure is also scaled as

P ~JoLUpm (5.1.3)

such that the pressure gradient force is comparable with the Coriolis force; the

source/sink is assumed weak, with F =¢G ,and G <0O(1); we also use the

1,Up,,
o BL .
local B-plane approximation — = y¢ , where r~ /. Then, we can write the two
momentum equations in dimensionless variables (subscripted with “*”) as:
d/l* *
5{;+(u* oV, — WV} — V. = —@ + &G,
[z .
5{;+(u* oV + W} +u, = —@ +éG,
The continuity equation is
at. V. o,
+—+ =0
. & &
The scale of p can be derived from the hydrostatic equation
P
- T 8p-
124
Notice (5.1.3), we have
P fLU L
pr ==~ F—p ~p, () e=T (5.1.4)
gD gD L,
> gbh . . .
where L,” = F is the external deformation radius. We can therefore define p as

where p= ~ O(1). The hydrostatic equation can be written as

.
.

:—p*

With all these scalings, the thermodynamic equation becomes
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ur op. UD dpg
— +(u,eV)o +—w,—=9§,.
A ( )P} i FARE
Thus,
P D d S
AP (. oV pt D, s S
a. f,LT dz f,I
op. d S
g{i+(u*ov*)p*}+D8w* Ps _ 2 (5.1.5)
a. r dz  f,T
The scale of dﬁ can be derived at the first order from the adiabatic condition. We can

dz

show from (5.1.5) that

d’i>l@>>@
dz €& 124

Indeed, for adiabatic flows, the solution is always along isopycnals % = (. Therefore,
t

uo p, = wo_p,. But, we know that QG equations require at the first order non-divergent:

w D
- < g—

u L

D
Therefore, the slope of the isopycnal surface must be < ¢ 7

Py [Py W D

&l & u L

Since %:O,We have Py = 2(ps +P) :@. Furthermore,@zﬁg,we have
o o o & & L
P [9ps+p)
V74 V24
Since P << dps , we have
&
d
P [9Ps (5.1.6)
&l dz

This implies that any horizontal variation of the static stability (since p is the horizontal
variation part) must be small. This is a weak assumption in many cases. (especially in

marine eddies .. )
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ap ~dps

Using (5.1.4) and (5.1.6), we have the scale
dps _ T

dz De¢

where I,(z) £0(1).

I.(2)

The thermodynamic equation becomes

8{% +(w.V)pt+wlh, =&S

*

where &5 = SOF and S < O(1) such that at the leading order the flow is adiabatic.

o

Note 1:The buoyancy frequency N(z) (Brunt-Vaisala frequency) is defined as

_g dps
P dz

N? =
Note: For a typical atmospheric tropospheric and upper oceanic stratification, we have

o) 0P oo
Psam _01,D, ~10km, L5 _0.001,D, ~1km
P P
So, the BV frequency is therefore

N, =+/0.1xg/10*m ~1/(300s) ~1/(5min), N, =Jo.oo1 x g/10°m ~1/(1000s) ~ 1/(15min)
|

aps : )
OM2r(z)=—t = NPle L
r/De (o, L’} /gDYyDs \ L

we have
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where L7=(ND/f)’ is the interior deformation radius. Therefore,

2

<1
V24 dz L,

This requires the scale to be not too large, similar to the homogeneous case.

The complete set of dimensionless equations are therefore (drop the subscript “*”):

v—%zg{%+(u0V)u—ryv—Gx}

_u_%:g{%+(u0V)V+WU_Gy}

—wl“*=g{%0+(u0V)p—S} (5.1.7)

Similar to the shallow water case in Section 2.1, we solve this set of equations by
expanding variables as powers of ¢:
u=u,+eu, +0(")
v=v, +ev, +0(&%)
p=p,+ep, +0(%) . (5.1.8)
p=p,+ep, +0(&)

w=w, +ew, +O0(g”)

2. O(1) Equation and Dynamics

Substitute (5.1.8) into (5.1.7), at the leading order, we have
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=
Il

w =0 (5.1.9a-e)

As in the shallow water case, (a), (b), (c) can be used to derive (e). Thus, there are only 4

independent equations, but with 5 unknowns. This is the “Geostrophy degeneracy”.

To better understand the O(1) dynamics, we write (5.1.9a,b) in dimensional form as the

geostrophic balance:

1
g f—% =0y
oFo (5.1.10)
1 @
Uy == =70V
fop, &
where y = Lf is the geostrophic stream function. The hydrostatic balance (5.1.9¢)
Pl o
can be written as
b __ Lo (5.1.11)
P g &
Differentiate (5.1.10) with respect to z and use (5.1.11), we have
&, _ Oy ___& @
& &a &
Joln (5.1.12)

dlg_ 0”2‘//_ g @

& & fp, o

This is the thermal wind relation, a direct result of geostrophy and hydrostatic balance.

This relation has been used frequently to infer ocean currents from the density field, i.e.

the so called “dynamic method”.
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Note 2: It also represents a balance between the baroclinic vorticity generation and the

title of planetary vorticity in y- and x- directions. Indeed, the general vorticity equation is:

B e, oVu—g,veur YLXVP
dt o,

For large scale e<<I, we have §, =2Q + O(¢). In addition, 2pdP<<J,pAd.P, which is

equivalent to the Boussinesq approximation in the ocean. The x and y component of the

vorticity equation can therefore be written as

dg

o .pl.p—0.p0 o, pd
—= =200 u+ yP0:P ~ %:6 ypzZQé’u+M

dt p2 z ,02
dé a.po.p— 2. pd o.po,
5)’ ~ 2Q02V+ zp xp 5 xp zp ~ 290;72‘} _ xpzzp
dt p p
: : : dé, ds,
Notice hydrostatic balance: Jp = —pg, in the steady state7 = I =0, we have the

thermal wind relationship. On the RHS in the two equations above, the first term is the
tilting term while the second term is the baroclinic term. The balance can be seen

schematically as follows:

ghi /
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A westerly wind shear Ju > 0 generates positive vorticity in the x direction
QJ.u>0= J.&>0. This vorticity is balanced by the opposite rotation that is forced by

the northward density gradient 2, p>0,0.p <0=J,p0.p <0

Note 3: Taylor - Proudman Theorem
For large scale low frequency processes, we have §, ~2Q, andJ, < Q. The vorticity
equation, assuming incompressibility, is

VpxVp

2

(2QeV)u =

If furthermore, the fluid is barotropic Vp xVp =0, we have
(QeV)u=0
or assuming Q = Qk, this is
QJu=0
or there is no shear of velocity in the vertical direction.
du=0v=0w=0

The water column therefore behaves like a column of solid body.

—

Water colu Taylor Column

e

Even in stratified case, this still shows the tendency of rotation to constraint fluid motion

variation along Q. In other words, rotation tends to couple the flow in the direction of Q.
Thus, rotation produces a “stiffening” effect that tends to align the vortex tube in the
direction of rotation. This is also why in a layered model we can assume no shear for

large scales GFD processes.

3. O(e) Equation and QGPV Equation
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At the next order, we have the equations

@1 D*g
vy ——=—=u,—rnwv, -G
1 dC Dt 4 ry 4 x
D.
—u, —@=—gvo +ryu, -G,
g Dt
D.,
—WIF*ZEPU—S (5.1.13)
P,
—+p,=0
Py P
%4_&4_%:0
& o &
D., ¢ 0 0 . . o
where ot @ +u, = +v, — . (This becomes a horizontal total derivative because
t

w, =0 ). The vorticity equation is therefore:

a’}c a”y d @/ A &
* D*
Here, we used: gn)—ﬁ( 1) =Dy (T - Aoy (T y Py T T
dt & di & & & 4 & &
Thus,
p., (Ze_ U— (5.1.14)
o A a} &

As in the shallow water case, the evolution of the O(1) variables u, , v, are determined
by the O(¢) variables. Since
1 S P,

S
w, =_ED*g,po+r* =_D*gt(r*)+r* (5.1.15)
po S
ow
Al )] & (F )
Thus, we have the nondimensional QG P.V. equation:
N, A, ﬁ P,

D, {ry+ ( )}—curlG+0"( ) (5.1.16)

& & &' T

or in the dimensional form

Copyright 2014 Zhengyu Liu



AOS611, Ch.5, Z.Liu, 01/21/14

D,g =S5, (5.1.17a)
where
q:f0+ﬂy+§+é’z(d£"p ) (5.1.17b)
/dz
s, :lk-vXsz(dfoi) (5.1.17¢)
1% ps
dz
{=0v,—0u, =Viny (5.1.17d)
D,=0 +u, 0, +v,0, =0, +J(y, ) (5.1.17¢)
Since now
__Puto V. (5.1.18)
g &
Nio_ 89 (5.1.19)
p, dz
we have
p _J, v
dp, N* &
dz
The dimensional QGPV equation can be written in terms of y as:
Jq+JW,q)=S, (5.1.20a)
2
G=F + B+ Vi + 0. (%%"’) (5.1.20b)

For unforced, adiabatic flow, g is conserved along the geostrophic flow (which is

different from the original 3-D flow!)

4. Application of QG dynamics: Diagnostic Perspective.

The QG dynamic framework is very useful for the diagnosis and understanding of the

mechanism of various large scale circulations, from synoptic to planetary scales.
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1) Planetary circulation and the generalized Sverdrup relation

Consider the special case where the horizontal scale much larger than the deformation
radius and horizontal temperature advection is not important, such that the
thermodynamic equation can be simplified as the balance between adiabatic ascending

and diabatic heating, that is in (5.1), the thermodynamic equation

é’tp+(ﬁ0V)p+w%=So=—&Q

dz g

(so that Q>0 represents heating) can be approximated as

N i S (5.1.21)

dz g
where we have used N* = —i% > 0 for a stable stratification. This is equivalent to
P 4z

the O(1) thermodynamic equation (5.1.15) reduced to

w, = Y

L.

and therefore the QGPV in (5.1.20b) can be shown to reduce to the form of
q=1,+B+Viay
where the stretching effect between different isopycnals is negligible. Now, in the steady

state, and neglect relative vorticity (very large scale), the QGPV equation (5.1.20) is

reduced to a generalized Sverdrup relation (see Chapter 3, section 3.3):

,Bl//x=Sq=ik~VxF+0”Z(&) (5.1.22)
o dp,
dz
In the absence of differential heating, and assume the momentum forcing is dominated by
the wind stresss F =1, (5.1.22) reduces to the wind-driven oceanic Sverdrup relation
(3.3.1) or (3.3.4) forced by the wind stress curl. For the atmosphere, assume the
momentum forcing is negligible F=0, we have from (5.1.22) the Sverdrup relation forced

by the differential heating

f,0

o f
Vi dp/ fo N?

(5.1.23)
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Therefore, for a deep heating such as latent heating, the lower layer flow is northward
because .0 > 0 and upper layer flow is southward because &, QO < 0. Unlike in the

tropics, the meridional flow is no longer axis-symmetric to the heating forcing. If some
Newtonian cooling is assumed (linear damping of density/temperature in the
thermodynamic equation), one can show that the surface low pressure and descending
motion are induced to the west of the heating, due to the westward propagation of

planetary wave.

2) QG diagnosis and the generalized geopotential tendency equation.

Now, we derive diagnosis equation for geopotential tendency (pressure tendency) and the
vertical motion in the QG framework. This is important for meterological synoptic
dynamics and other purposes. We will use the dimensional form of stratified equations
directly. The QG thermodynamic equation can be approximated from the original
thermodynamic equation (5.1.1e) by replacing the horizontal wind as the geostrophic
wind (5.10) and the density (or potential temperature in the atmospheric case, see next)

using the hydrostatic equation (5.11) as:
o, o¢ +v OV(%)+WN2=Q (5.1.24)
oz) ¢ Oz
Here we have defined the geopotential height as

b=yl f,, (5.1.25)

such that the hydrostatic equation (5.1.11) becomes

op__sp A (5.1.26)
oz o g oz
and
N =8 o &5 G eVa=Jy.a) (5.1.27)
P, dz P

The vorticity equation (the eqn. above (5.1.14)) can be written as the vorticity equation

but with the voriticity and advection using the geostrophic wind
0 2 v

—+v oV |(Viy+ =—f(—+—)+curlt
(& . j( ) =—f( 0})

Or using geopotential height and continuity equation as
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ov3e
+ foV, V(?V o+ py)= f0 + focurlt (5.1.28)
Define the tendency for geopotential height as
_o¢
ot
The thermodynamic equation (5.1.24) and the vorticity equation (5.1.28) become
8_;(:_‘7 OV(%)—N2W+Q (5.1.29a)
0z ¢ 0z

=—foV, OV(f % ¢+ﬂy)+f0 +focurl‘r (5.1.29b)

These two equations form another set of QG equation: The first equation states that the
vertical derivative of the geopotential tendency is equal to the sum of the thickness
advection, adiabatic thickness change due to vertical motion and external heating. The
second equation indicates that the horizontal Laplacian of th egeopotential tendency is
equal to the sume of the vorticity advection, the vorticity generation by the divergence
and curl of external forcing. These two equations can be used to derive diagnosis
equations for geopotential tendency and omega using the geopotential height of the same

time only. First for the geopotential equation, if we operate

On the thermodynamic equation (5.1.29a), and then sum it with the vorticity equation

(5.1.29b), we derive a diagnostic equation for geopotential tendency as

oz\ N? ;

of o0 S
+82[ szg v((?z) Q}

{Vz +—(f—°6 H;{ f{—v OV(—V ¢+,By)+curl‘c}
J (5.1.30)

This states that the change of geopotential tendency is the sum of the effective vorticity
forcing, which consists of the advection of absolute vorticity and curl stress and the
differential effective heating, which consists of the temperature advection and diabatic
heating. Note here, the advection of absolute vorticity is equivalent to a curl tau forcing, ,

both contributing to an effective vorticity forcing; the vertical shear of temperature
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advection is equivalent to the differential heating, both contributing to an effecitive
differential heating. This more generalized view will be seen helpful for our intuitive
thinking.

To further understand the utility of the tendency equation, for a wave of given

horizontal structure for all the terms,

| (kx+1ly—
7 ~—X(z)e' e

fO |:_ Vg ° V(fivz¢ + ﬂy) + Curl‘rj| — FV (Z)ei(karly—(ut)

0
s

2 2
zZ

Assuming N constant, the geopotential equation gives

d’X X _N* . dF;

2L 2 (F 5.1.31
FERNE foz(v dz) ( )
with
1 fLY
h: = 0 ~| L0 , 5.1.32
BN +1%) [N] ( )

L is the horizontal scale of the disturbance and 4 is called the Rossby height. (also see
exercise E5.1) (This is the reverse of internal deformation radius, that is, for a given
depth of a structure of /g, the corresponding internal deformation radius is L,=Nhg/fy. See
discussion in the next section). (5.1.31) states that if there is an anomalous effective
vorticity forcing F), or effective differential heating F'7. at the depth z; with a horizontal
scale of L, the response of the geopotential height (pressure) response will be limited to a
depth of Rossby height from the forcing height. Therefore, effectively, the Rossby height
represents the vertical penetration of a disturbance on the pressure field. For developing
synoptic waves with westward tilt of trough/ridge line (see later chapter 6), on the
ridge/trough line, in the geopotential tendency equation (5.1.30), vorticity advection is
small and the development of the geopotential tendency is determined by the low level
temperature advection (assuming diabatic heating is weak at short synoptic time scales),
the low level cold (warm) advection towards the trough (ridge) then further intensifies the

upper level trough/ridge. (see figure below).
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So OV, . Ol ifo—» ¢
{V +a(iiaj}f ZNa[NQQ%} &{ vV, }

Now, the effective heating is simply the temperature advection

- o¢
=i ev(D).
erf vg i ( 82

I

Figure: developing synoptic disturbances in the westerly
In the other extreme limit of very large scale diabatic heating Q, such that relative
vorticity and temperature advection become negligible, the geopotential tendency

equation can be simplified as

Jo _ o
L} (Nz o H Jove B+ |:N2 Q} (5.1.32)
Or approximately
_ZN_ﬁ%+%?, (5.1.33)

First, if =0, we have

— oy~ +%? (5.1.34)
zZ
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oQ

So, below the heating re >0, low pressure develops y <0, and above the heating a
Z

high pressure develops (see Fig.5.x)

In general, for large scale flow, >0, (5.1.34) indicates that the low pressure
and high pressure center will not be collocated with the heating center. Indeed,
Assuming N=const, and using geostrophy, (5.1.32) can be written in terms of geostrophic
streamfunction (or geopotential height) as
N—jy/x :+L8—Q (5.1.35)
fo fo Oz

Here, we have included a thermal damping term & with the local variability, such that the

0, +e..+B

forced response can reach a final steady state. If we neglect the first term of geopotential
tendency, this reduces to thermally driven Sverdrup relation (5.1.23). Now, with the

geopotential tendency, on a beta-plane, one can show (E5.??) that, below the heating

%—Q >0, low pressure develops y <0 and extends westward, and above the heating a
Z

high pressure develops that extends westward. The westward extension is due to the

planetary Rossby wave and the final state is achieved by thermal damping.

L
. fay .’

.................. .s=***fonsoon

B=0 case B>0 case
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Fig.5.x Response to large scale deep diabatic heating on a (left) f-plane and (right) beta-
plane. The pressure field is diagnosed from the geopotential tendency equation while the

vertical motion from the omega-equation (see later discussion).

3) OG diagnosis and the generalized omega-equation.
Now, we turn to the vertical motion and derive the so-called omega-equation. We first

take Laplacian to (5.1.29a) and vertical derivative to (5.1.29b) as

vza—l V[ (a¢)] N*V*w+V?0
oz

0w

g(v2 7)=-— foé[vg . V(fiv2¢+ By) —curl‘r} + 1, e

0

Subtraction of the two equations give a diagnostic equation for vertical motion (omega-

equation) as

f.2 o f, 0 1
(Vz‘F#aZ—z W:—N—Oza —VgOV(TOV2¢+ﬂy)+curl‘r

o¢

(5.1.36)
1 _, = e 9?
+—N2V[ v, V(82)+Q}

The vertical motion can now be diagnosed from the geopotential field of the same time.

i(fx+ly—cot)

For a wave structure w ~ cos(mz)e , we have roughly

N? 6z
i oo

Thus, the omega-equation

2 42
(V2+fia—2jw~—(k2—i-l2 fo =—m YW~ —w

becomes

(k* + 17 +fLm )w~%§[—vg .V(fiovz¢+ﬁy)+curzr}—#Vz[—ﬁg W(%HQ}

So the geopotential tendency and vertical motion can be diagnosed directly from the

weather map of geopotential height. Of course, high order derivatives are used so it is
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still difficult to assess those terms accurately in the observation. Nevertheless, these
equations shed light on the mechanisms of the geopotential tendency and vertical motion.
For a typical developing synoptic system that tilts westward (below Fig.5.x), above the
surface low pressure center, upper air advects positive vorticity, there is a rising motion,
and above the surface high, the upper air advects negative vorticity, which leads to a
descending. In addition, to the west of the surface low, the cold advection leads to
descending, and to the east of the surface low, the warm advection leads to an ascending.

As a result, the strongest ascending for a developing synoptic system occurs east of the

surface low pressure center.

Fig. 5.x: vertical motion diagnosizd from omega-equation for a developing synoptic

system.

In the other limit of large scale heating, we can neglect relative vorticity and temperature

advection, the omega equation gives

%w~—%ﬂv2—%V2Q (5.1.37)

If #=0, we have simply
w~-V0~+k>+1")Q0~0 (5.1.38)
So, the air rises with heating (thermodynamic balance between diabatic heating and

adiabatic ascending and vice versa. However, for £ >0, there will be an ascending
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induced by the northward shear v_ >0 and vice versa, Since for planetary scale diabatic
heating, the pressure field is shifted westward as shown before in geopotential tendency
equation (5.1.35) and Fig.5x(right), the final ascending motion will be shifted to the
eastern part of the heating center. In the mean time, there will also be a descending to the
west of the heating region. This is the so called monsoon-desert mechanism (Rodwell and
Hoskins, 1996, JAS). The planetary scale geopotential field and vertical motion can be
understood from the generalized Sverdrup relation as discussed before. This vertical

motion will also be derived in exercise E5.77.
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Sec5.1: Appendix. The Atmosphere Case

The QGPYV equation in the atmosphere can be derived parallel to the oceanic equation.
Typical scales are chosen as
L

D
uv~U x,y~L w~U—, z~D, t~—,
L U

. U . . .
the Rossby number is e=——, the potential temperature is written as

o

Ox,y,z,t)=0(z)+0'(x,y,z,1)
and the geostrophic potential high as

x.y,2)=Pz)+ ¢ (xy.21

where
do  0(2)
iz o
d¢' 6
= 50

s

For large scale flows, the geopotential height anomaly is scaled as

¢~ foLU
such that the pressure gradient is comparable to the Coriolis force at the first order.

The source/sink is also weak such that

;F =4, where |G|<O(1).
1.Up
The local B-plane is adopted as
L
AL =ye, O~ 1
o
The two momentum equations are represented in dimensionless variables as:
Aai. Op.
8{;+ (w, oV)u, — v} —v. =— 2 + &G,

y

£ £

5{@+(u* oV ), + pau) +u, G +&G
a ¥

The mass equation is
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. A, 1 0
+

+—— .)=0
x g o)

The scale of 6°is estimated from the hydrostatic equation

@ _9
P
This gives
o~ Ly . LLY, ~9(i)28=r

gh gD L,

D . ) .
where LD2 = g_2 1s the external deformation radius Thus,

o

0~ [0« where 6« ~ O(1),
and the hydrostatic balance is

% = 6*

[ZA

With these scaling, the thermodynamic equation becomes

ur oe. UD d®
L {07* (.o V.)e} L " dz Q.

= g{ﬁe* +(u, OV*)H*}+2w* © _ 0,
a. fLUdz  fT

1
The scale of 9 can be anticipate to satisfy a0 > 19 >> L . For adiabatic flows,
4 dz ¢ & 12

the solution is always along isentropics, i = (. Since QG equations require
t

==

. : D
< ¢— , the slope of the isentropic surface must be < &—

a0
&

I

a < ¢

~ IS

20

£
2
&

Since =0, we have

—_— —_—

and therefore
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@ /0©+6) _

124 &
a0' | 0(0) <z
124 124
Thus, we are led to the scale of
r
62—(;) = [.(2) where I.(z) <O(1).
If we define a buoyancy frequency N(z), then
N? = i@
0O, dz

The thermodynamic equation becomes

20,
£
a

+(W.V.)0.} +wl, = &0

*

Qa

o

where &0 = and Q < (1) is consistent with leading order adiabatic.

The complete set of dimensionless equations are now (drop *):

v—%:g{%+(u0V)u—ryv—Gx}
—u—%=g{%+(u0V)v+ryu—Gy}
—wl., =8{§+(uOV)9—Q}

2 _p-0

124

%+%+lg(pw):0

The variables will be expanded as follows:
u=u, + eu + O(&)
v=v, +ay +0(&)
$=¢,+ ¢4 +0)
0=0 +:e0, +0()

w=w, +ew, +0(&)
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The O(1) equations are
op,
v, =—
..
\ B
&y
w, =0
12
¥_,
x
a, +@ +l£ (pw,)=0
& & pcoa
In dimensional form, the geostrophic balance is:
1A,
LS, &
__1a__
L '

where & = LA is the geostrophy stream function. The hydrostatic equation is a4

o

or & = LO’)—W . This leads to the thermal wind relationship
3 g a
AN, 'y _ g B A, Oy g &
& aa [0, & & da [0,
At the next order, we have
é’¢1 D*g
v ——=—u,—1nw, -G
1 dc Dt o W o x
op D
- 1_ﬂ:_gvo+ryuo_Gy
& Dt
-wlI, = *f 6,-0
Wy
%+@+l_5(pwl):0

& & p &
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24
D., ¢ 0 0 . : .
where =—+u,—+v,— . The vorticity equation can be derived as
Dt a &
D.,, (% _ A, +ry)= lé(pw1 )+ curlG
a& p
Since

w1=—iD 0 +Q

F* *gt o I =-D gt(_)+

* *

Lo pwy=-n, 122
P

0
o 1ﬂ)]

L.

a(p=)

0
I.
L2,
p
we have the nondimensional QG P.V. equation
&, _a, lﬁ(”g )V = curlG +— a (pQ)
& & pco

g[

In the dimensional form
D 4 = S .
where
of, 6’ 1 pf Q
S =—k-VxF+
dO 1
0,

g A

D,=q+u, +v,0

g X gy

¢g=0v,-0u, =V,
Now, with

g 0L v \p_ 2dO
g & 0. dz

1

and therefore

= /s 0”_1//’ we have the QGPV equation for the atmosphere as
Rk
yA

é)tq + J(‘//Dq) = Sq

(5.1.A1)

qg=/f,+p+Viu

f oy
= . (5.1.A2)
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Sec. 5.2: Rossby Waves in Stratified Flows

1. Dispersion Relationship

As in the shallow water case, we study small perturbations linearized on a mean zonal
flow. The linearized QGPV equation is:
(0,+Ud)q'+v'Q, =0
where the mean and perturbation potential vorticity are

Lo/
Qy:ﬂ_é’wU_;é)z N2 au |,

. L | pf) oy
q'=0.y +0,y +;5z {Fg
We have used the atmospheric equation (5.1.21) and the oceanic equation can be
recovered simply by setting p=py. The QGPV equation can be written in the perturbation

streamfuction i as

2
(G, +UG oW+, p+ iﬁz[lj\{i ﬂzw}} +oyQ,=0 (5.2.1)

We will assume the basic state is slowly varying, that is the wave length in y, z directions
are short relative to the scales at which U, N° and O, vary. (But, we don't need to assume

p(z) slowly varying!). Assuming the solution of the form
v(x,y,z,t)= Re{‘P(y, z)emzzH}

where
0=k(x—ct)+ j "I( y')dy'+f m(z'")dz'

We have approximately

é’xxl/j ~ _kzl)[/ > 5yyl// ~ _12‘//

and

Copyright 2014 Zhengyu Liu



AOS611, Ch.5, Z.Liu, 01/21/14 26

L o) fo 1
—0 —oy)=—"-—70_(pd
p Z(N2 zl//) N2 p z(p zW)
2 =z _z
z%e”é’z(e "6 )
fooa ] 0 2
~—22(m" + We'%e?M
N? ( 4H2)
f02 2
=——(m" +
N? ( 4H2)V/
Therefore, (5.2.1) gives the dispersion relationship as
g P
2
2 2 f,) 2 1
(U-0o)k” +1 +ﬁ(m + AH )N-0,=0.
That is
c=U- ZQy | (5.2.2)
2 2 0 2
k™ +1 +ﬁ(m +4H2)

for the atmosphere. For the ocean, we can set H infinitely large (incompressible), so that

c=U- o 5 (5.2.3)

K+ + 2 m?

The relation between the shallow water Rossby waves and the baroclinic Rossby waves
here are readily seen if we make
N2
LDon=——""7— (5.2.4)
2 m2 +
P2

The dispersion relationship can be put exactly the same form as the shallow water Rossby
wave

9,

c=U-——2
K> +1°+ L,

The Lp,, is the deformation radius for baroclinic flows with a vertical wave number m:

Since L, ~1/m, the deformation radius increases and the wave speed faster for smaller

m (or larger vertical scale), and vise versa. For typical atmospheric stratification, we have

Lp; ~ 1000 km, while for typical oceanic stratification, we have Lp; ~ 50 km. In the limit
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of long wave L >> L, and in the absence of no mean flow, the dispersion relation is

reduced to ¢ =—/L> . This has been derived directly in the homework E4.1.

2. Group Velocity and Vertical Propagation

For a given £, /, the dispersion relationship gives the vertical wave number

mz_lzr Qy —k2—12—| 1

s lU—-c | ™ a4

(5.2.5)

When the RHS > 0, m is real, and the Rossby wave propagate vertically; when the

RHS <0, m becomes imaginary, and the waves are trapped vertically.

For propagation waves (real m), the group velocity can be calculated as

ow 2 2 f2 2 1
C.=—=U+Ak"-]"-=2 +
=~ ok [ ey
0w
C, :E: 2kIA (5.2.6)
2
c, =220 tma
om N
where
’ | (U -c)?
A= k2+12+f" m* + 2= 5.2.7
ol e ( 4H2)] 0. (5.2.7)

2
Note 1: If / is replaced by N—"zm, we have C the same as C,, Therefore,

mathematically, the y direction and z direction are very similar for Rossby waves.
However, later, we will see that the physical meaning of the group velocity in these two

directions differ dramatically.

10,
In the case of U=0, we have Q) =f>0, we have C, = i < 0, so the wave always

propagates westward. Define the phase velocity as

a = [0 =
C =(C C — = —
g K| " K[

j24 3 py b

Cp)=
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where K, = K/|K | is the unit vector in the direction of wave vector.

We see from (5.2.2) and (5.2.6) that (take the sign of & as positive, so @ =kc is negative )
sign(C,,)=—sign(l) , but sign(C,,) = +sign(l)
sign(C,.) = —sign(m), but sign(C,.) = +sign(m)

Thus, the phase and group velocity are in the opposite directions.

It should be pointed out that in the atmosphere, even if m is real (when the basic state

allows), w does not vary with height simply as ¢™ instead, its amplitude increases with

height as

z

y~e™ et
or the energy increases with height as
2~ ~ 1p
The amplification of the streamfunction with height is caused by the reduction of

atmospheric density.

ez/H

-

<

Finally, for stationary forcing (topography or large scale heating/cooling) c=0.
Eqn.(5.2.5) shows that only those largest scale waves (smaller %, /) can propagate
vertically in the westerly wind (U>0) (real m). This has been used to explain the
observed stratosphere. Stratosphere disturbances are believed to originate from the
troposphere. Observations show that the mid- and high latitude stratosphere is dominated

by disturbances at planetary scales (wave number 1, 2 3), although the most energetic
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disturbances in the troposphere are at higher wave numbers (6 and 7). This is because

only those very long waves can propagate into the stratosphere according to (5.2.2).
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Fig. 1113,  Longitude—height section of the meridionat velocity perturbation at the equator as found by
Holton 1972, Fig. 9) for an antisymmetric source of diabatic heating that oscillates with an amplitude exceeding
4K day™ ! inside the heavy line. Contours are at 2m s~ ! intervals. The waves produced are mainly mixed planetary—
gravity waves. The mean wind varies with height with a maximum eastward velocity of 8 m 57! at 21 km. zero
velocity at 25 km, and westward velocity above that level.

Fig.5.1: Vertical propagation of
atmospheric waves
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Fig.5.2: Geopotential height
anomaly in the stratosphere
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Sec. 5.3 Vertical Normal Modes

1: Vertical Modes in the Ocean

Consider an ocean with U=0 and N uniform. The mean PV gradient is therefore

O, = B. The linearized QGPV equation is:

Lo )Yy +poy=0 (3.1 D

V4

oo, + ﬁyy +0_(

N2
On the bottom (assume flat) D
w(x,,0,t) =0 (5.3.2)
At the top z=D+n(x,y,t) | 0
We have a rigid lid
w(x,y,D,t) = 0. (5.3.3)

To write the vertical boundary condition in terms of y, we resort to the thermodynamic
equation:

dp,

zZ

op+w =0

The hydrostatic balance gives:

d__8 P (5.3.4)
z P
We then have
op _ fopn 0w _
W= — _ JoPm —_Jo p 53.5
% g% d& N2 tzl// ( )
dz dz
Thus, the vertical boundary conditions (5.3.2) and (5.3.3) become
O.w=0 atz=0 D (5.3.6)

Note 1: Effect of bottom topography at zp(x,y) is
M}[xayaZB(xay)] = L_i(xayazB).sz = J[l//(xayazB)aZB]'

In the special case of a linear meridional slope of small amplitude z, = Ay, the bottom
boundary condition becomes simply w{x, y,z,(x,y)]= A0 w(x,y,z,;) = AO .w(x,,0) ||

Returning to the QGPV equation. We look for separable solutions of the form
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v =p(2)¥(x, y)e

Substitute this into the QGPV equation, we have the equation for the vertical structure as

d|_ 1 dp|_ 5
a’z[N(z)2 dz}_ o (5:3.7)

and the equation for the horizontal structure as
—iolp o, w-2v | ﬂ%:o (5.3.8)

The vertical boundary conditions (5.3.6) becomes

¢ =0 onz=0D (5.3.9)
dz

Therefore, (5.3.7) and (5.3.9) form an eigenvalue problem. The eigenvalues are real.

2
Indeed, notice (5.3.9), L ¢?—>< (5.3.7) gives

-Ifale-
—¢%5 j(‘”’}d - j( )dz.

Therefore, the eigenvalue is

? d¢j2dz
A= J. (dz =0

2 (PN
_/10

j —¢ dz
In the case of a uniform N, the eigenfunctions and eigenvalues can be easily solved as
N
4, (2)= COS(— ﬂij (5.3.10)
1o
N ZImT 012, (5.3.11)
/o D
Substitute them into (5.3.8), we have the dispersion relationship
o= =k
K2 +1% + ﬁ(ﬂf
N’ D
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Thus, for each vertical mode, m, the dispersion relationship is exactly the same as that for
the shallow water Rossby wave, provided that we replace the effective deformation

radius for each mode as:

Lgm:(fND] : (5.3.12)
Jmr

The deformation radius vanishes, with an increasing m.
The correspondence of the deformation radius in (5.3.12) with that in the 1.5-layer model

(1.5.4) can be readily seen below. Since

dp, Ap 1

1
po &z Sp, D D
we have
. _8_ D gD 1 gD,
"D f(mxy  f) (ma) S
where
Dm = D 2
(mr)

is the equivalent depth. Thus, each baroclinic mode propagate exactly as a 1.5 layer

model Rossby wave with an equivalent depth of D,,. (Some people also use the

A

. D . N\
expressionof L, = & o, such that the equivalent depth is D, = = D, )

fO p

The Lp, is called the internal (baroclinic) deformation radius. This gives a close analogy
between shallow water dynamics and the stratified dynamics. In the ocean,

Lo = Ap <<1.

L,, »p

The vertical structure of the normal modes are further discussed below. The m=0 mode is
the barotropic mode or external mode (deformation radius infinitely large in the absence
of free surface elevation here). The velocity does not have shear in the vertical direction
and there is no density perturbation for this mode.

The m > I mode is the mth baroclinic mode or internal mode. These modes have m node

points in the velocity field and are all accompanied with density perturbations. For all the

baroclinic modes, the vertically integrated net transport vanishes.
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This can be shown directly from (5.3.7)
and (5.3.9). Integrate (5.3.7) from

z=0to D gives 1 IOD ¢,z Mz'=0

and therefore .[OD P, (z')fz’: 0,if 4, #0.

m=1,2,3

35

Note 2: Equivalent particle examples of external and internal modes. Consider two balls

connected by a spring. There are two possible normal modes. The first has both balls
moving in the same direction, as if there is only one ball. This is the”barotropic mode”.

The second has the two balls always moving in the opposite directions. This is the

“baroclinic mode”.

“barotropic mode”

Ay QAN AL

“baroclinic mode”

Ay QAN AL

When more balls are added, there are more freedoms and more “modes”. ||

In reality, N(z) is not uniform at all (Fig.5.3). Analytical solution becomes usually

impossible. Nevertheless, for slowly varying N(z), we can still use the WKB method such

that, with U=0, (5.2.5) becomes :

m? :_M(é

+k>+ 1)
fPc

for the oceanic case. If m is real at any height, it is real at all height, although N(z) may

change. So there is no internal reflection. The normal mode is caused by reflection at the

top and bottom boundaries.
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FAVAY,

After a couple of reflections, normal mode is established in the z direction. The

—

establishment of the normal mode is similar to the normal mode in the case of horizontal
boundaries. The key is that the wave energy is trapped within a finite region.
The most dramatic change of N is in the oceanic thermocline. The WKB solution shows

that m(z) changes, small for small N, but large for large N. (Fig.5.4).

Indeed, for a general N(z), the veritical eigenvalue problem (5.3.7) and (5.3.9) can be
solved numerically to give 4,. Then, the horizontal structure satisfies (5.3.8), which is the
same as the shallow water Rossby wave, except for replacing the deformation radius by
Lp’=,". The Rossby wave of the mth mode has the dispersion relationship

_ﬂk

o= 2 2 2"
k™+1"+ 4,

2. Atmospheric Case

The normal mode in the atmosphere is much more complicated, because of the lack of a
upper boundary. It turns out that the normal mode usually doesn't exist in the atmosphere.
This is not hard to imagine, because, in the absence of a reflective top boundary, a normal

mode can't be established.
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|

Mathematically, one can see this crudely here. If the vertical mode equation allows the

solution

¢~ Ae™ + Be™""
The absence of an energy source from above requires that the wave energy radiates
upward only. This selects B=0. Furthermore, at the bottom, J_¢ = 0 determines that

A = 0. Therefore, there is no normal mode. However, normal modes may exist when a

strong shear of U(z) produces internal reflections.

Copyright 2014 Zhengyu Liu



38

AOS611, Ch.5, Z.Liu, 01/21/14

", 8 PRI, 01 ui(q) patenbs £ouanbayy plesieA-1unig Uedw [eqo[8 33 Jo d[yosd (211134 © pue
(), - w8y . 0T Ul (3x31 5Y1 998) AI[IQEIS O11BIS WEIW Y] JO SIINSEIW OMI PUE, _ W 5 UT AISULP wedw-[eqo[s oyl jo sa[yord [eolIs A 91'8 HANDIA

) ¢
S0t Ll ST 0£08 5201 1201
- . Tt
G700 (uron 3.
Ja} Y
I R B R A
20 sl 1 800
I
3 sz ! 0s.2
I
|
8 [N S | 0052
|
!
F -7 ! 0572
/ g
| .
oz + B 0007
[TAN Host
2
wst Jus1 =
g
qse ogze
0001 - - —{o0at
05 o5t
o0 005
L 0!
067 R 5z
o0t eI ot
0 Co——r = S
0 T o [ [l @ ] 9 b H 0

in the

1 profiles of N

ica
atmosphere and ocean

Vert

.
.

Fig.5.3

Copyright 2014 Zhengyu Liu



AOS611, Ch.5, Z.Liu, 01/21/14
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Figure 6.12.1 (a) The barotropic and first three baroclinic modes, as calculated by
Kundu. Allen. and Smith (1975) for (b) the distribution of N observed at ocean
station Carnation, off the Oregon coast.
\_/F

Fig.5.4: Normal modes in the presence of
realistic oceanic stratification.
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Sec 5.4: The Eliassem-Palm Theorem

1. E-P theorem:

The shallow water E-P theorem in section 2.6 can be generalized to the stratified fluid.
The QGPYV equation.of the atmosphere is
D,q=(4 +ud, +vd,)q =S,
Consider a basic state
U=U(y,2),0=0(2), Y=Y(1,2), 9= ¥ (y.z)+D(z)
where

% —
ﬁ_:_U(y,Z),dE:&(Z)zé(ﬁ)k®
@} dZ T? T p*

N

and the mean temperature field

T=T(y,2)+T(z) = T(y,2) + (f)" 0(z)

where the basic state satisfies the thermal wind relationship

The mean QGPV is therefore:

O(y.z)=f,+p +é’2_‘i’+i£(&a_yf

& pea N &

and the mean PV gradient is

_p U _10 p U
Qy(ylz)_ﬂ @}2 p&(NZ &)

Write
y=Y(0.2)+y'(x,y,2,)
where '<< W, isa small perturbation. The QGPV equation can be linearized as
(G +Ud)q'+v'0, =5, (5.4.1)

Multiplying the equation by pg/Q,, we have

12
(O, +U0”x)‘127é +pv'q'=pq'S',/Q, (5.4.2)

y

Since
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1
VoL y'= Eﬂx[(ﬁxl//')z]

1
VO, w'=0,[0y'd,y'] —Eé’x[(ﬁyv/)z]

' ' ' 1 1 1 fO
V=o', q'=0 v +0”yy1//+;0”z(pN

a.y")

' 0” fl)2 ' f02 1 ' fo02 '
Vo lp o= 0lp o aw'l- oLy oV
f02 1 1 1 pf02 1
=0.[p 5 AW Oy 1= O (O]
pv’q’ can be written in the form of flux divergence
pv'q'=V-F (5.4
Here, the flux F is the generalized E-P flux
i 2 ] —p 12 12 o'
p '\2 '\2 fo "2 _[V —u _(N—
= - ——=(J d®
F, 5 [(v,) —(v,) e @] |2 %{Z
F=|F, |= poy' oy - pu'v'
F pf 2 pfovv9|
z o Of)xl//'O’)zl//' d@
% - Vi
and
»_8d® .0 N
e, dz 77 f, dO
S fO %{Z

(5.4.4)

The perturbation PV equation (5.4.2) can be written in the wave activity equation:

(0, +UI)A+V -F=S§
where

r2

_rq
20,

is the wave activity, and S =S pq'/Q,. The conventional E-P equation is the zonal

mean of the generalized E-P equation.

0 A+V-F=§
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where
1—v2 - u'_v'
_ p.4" _ [F puv
A= é ,F:L?’}: o (5.4.8)
- ° de
: Ve

This gives the Elliassn - Palm Theorem:
For (i) steady amplitude 6 4 = 0, and (ii) conservative S = 0, the E-P flux F is non-
divergent. (Therefore, F can’t originate from nowhere and end in nowhere, like the mass

flux of an incompressible fluid)

Note 1: For the ocean:

B ] 12 12 1% 2
. B A u'”—v'"~(N )
E] W) =) = @)’ dps,
F=|F,|= '3y = —uv d
F 12 V'
z o axl//'ﬁzl//' d,OS
L N’ a dz |

2. Wave Activity Flux and Group Velocity

For almost-plane waves, under the WKB assumption, the solution can be assumed of the

form
i0+——
y'(x,p,2,0) = Re{‘l’(y, z)e }
where 0 = k(x —ct)+ Jyl (V"dy'+ I ) m(z')dz'. We can derive the wave activity as

P2 P 2
A=Lq7 10 =L |y
54 0, 4A| |

where we have used

: ’ 1 \
q z{kz +1° +%[m2 + 4H2ﬂl//'

and (5.2.7) with

f2
e

(m2+ 1 )]—2 :(U_C)2

AH? 0,

A=Q,[k*+1° +
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Similarly, the flux is

= = 1
F,=poy y(//'zakl“l"z

. (5.4.9)
Il f2 ' ' 1f2 . . 1
FZ =p é’xWé’ZW zE#Re kY zm+ﬁ v

2
~lkam‘1}/‘2

JO ~
N*? 2 N?

Notice the group velocity of the baroclinic Rossby waves in (5.2.6), we therefore have

— = = 17
F= Fy,Fz)z{ZklA, 205 kmi |4=(C,.C, ).

3 Vertical Propagation and Meridianal Heat Transport

The vertical component of the E-P flux is directly related to the meridional heat flux

2 ' 2
Ny T AL

z 2 xl// zlr// __W
N 1, 49/

An upward E-P flux (£ > 0) corresponds to a northward heat transport, and vise versa.

VO o VO owckm|WV | (5.4.10)

In the atmosphere, Rossby waves are usually forced from the surface to propagate

upward. (£ > 0). This corresponds to a westward tilt (k>0 ) and should transport heat
poleward. (Now, the geopotential perturbation is 900 phase lead of @’ and therefore v’ is

in phase with €”). In addition, waves are also caused by baroclinic instability (Chapter 6).

The unstable waves also tilt westward and transport heat poleward.
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‘Jnmp%_l

H

(Q

=0 6=0 6=0 6=0

U k, ;

The northward heat transport by Rossby waves contributes to the major part of the

MYN, 1

atmospheric poleward heat transport in the midlatitude region. Interestingly, in the ocean,
the wind forces Rossby waves at the surface and therefore downward. These waves will

transport heat equatorward, against the mean gradient.

4. Applications

Case 1: Wave-mean flow interaction in vertically sheared flow. Assuming a westerly
wind with a maximum speed in the middle level. In the lower half, the westward tilting
trough produces an upward E-P flux. The accompanied northward heat transport is down
the mean temperature gradient (7;,<0 for U.>0) and therefore tends to reduce the mean
temperature gradient. The perturbation grows by extracting APE from the mean APE.
Similar discussions show that the perturbation in the upper half is also unstable.
Alternatively, the E-P flux converges, increasing the wave activity at the expense of the

mean flow strength. (G,A increases and 6,U decreases).
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Question: Indeed, from the QG thermodynamic equation
2,0+V(u,0)+wO, =0

Zonal mean we have

2,0+0,v,'0)+w0, =0
That is
20 =-0,0v,0)-wO_+0.

how to get vertical gradient of Fz impact on mean temperature?

Case 2:
Vertical propagation of the atmospheric Rossby waves (see the end of last section).
The amplitude increases for a vertically propagation wave with height inversely
proportional to pressure. For a wave packet originate at the surface (1000mb) propagating
into the stratosphere (10mb), its amplitude increases by 10 times. This can be seen using
the E-P theorem. For steady, conservation waves,

Ve F =0.
For plane waves, F), is independent of y, so that

0,F =-0,F =0,

or
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pf,
[Nz W, l//z} 0 (5.4.11)
If N is constant,
0. |W§V/Q J: 0 (5.4.12)
Now, if

y'=Re[[(y,2)e"]

where T' = We2# . We have J.y'= Re(ikTe'™”), J.y'= Re[(im + ﬁ)rem]- Therefore,

o' oy = %km |T"|°. Thus, (5.4.12) gives

a.(pIT[)=0

In reality, the amplitude can be changed by dissipation, nonlinearity, wave refraction , etc
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Questions for Chapter 5
Q5.1. (buoyancy and vorticity forced responses) A fluid is bounded by flat top and
bottom at z=0 and -H, and is forced by external momentum forcing F and buoyancy

forcing Q. The linearized QGPV equation is

(2, +U3,)q'+v'q, = L curl(F)—0_( OQZ )
P PulN
, foov| :
where ¢'=0 W+, y+0, N & | v'=J y, and the mean flow U, is assumed to

be independent of height and therefore the mean PV gradientis g, = S

(a) A momentum forcing F has a vertically integrated vorticity component such

0
that qurlez # 0 (e.g. a surface wind curl forcing or bottom drag curl) . Show that this
-H
0

forcing can generate barotropic response J'l//dZ # 0. (hint: vertically integrate the PV
-H

equation).
(b) An internal buoyancy forcing Q vanishes on the top and bottom boundaries

Q(x, y,z,t) = 0at z=0 and -H (such as an internal heating in the middle of the fluid).

0
Show that the forced response has no barotropic component Jl//dz =0.
-H

What happens if the buoyancy forcing or density perturbation do not vanish on the top
and bottom boundaries. Why?
(c) What could happen if the mean flow varies with height?
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Exercises for Chapter 5
E5.1. (Rossby height) The basic state is motionless and has a constant Brunt-Vasara

frequency N. Assume a boundary perturbation of geostrophic streamfunction at the level
z; of the formy/(x, y,z =0,¢) = Ae'™ ) . If this perturbation does not generate PV
anomaly away from the disturbance level (z>z; and z<z;), that is the PV satisfies the
equation

f2
q=5wt//+ﬁyyw+N;’2 Ly =0,

away from the forcing, how deep can the boundary perturbation penetrate?

E5.2. (Vertical Rossby wave propagation diagram) The basic state is motionless and has
a constant Brunt-Vasara frequency N. Baroclinic Rossby waves have the form of

g iflstlymz)

a) Discuss the mathematical similarity between the vertical propagation of stratified
baroclinic Rossby waves and the meridional propagation of shallow water Rossby waves.
Plot the wave vector and direction of the group velocity in the wave number (k,m) plane
(or the dispersion diagram circle).

b) In light of (a), consider an upward/westward propagating baroclinic Rossby wave that
is incident on a vertical wall (or tall mountain). What will be the direction of the reflected

Rossby wave ? What will be the wave phase pattern?
J:
X |

(c) If a baroclinic system tilts westward with height, what is the direction of Rossby wave

Aei(kx+ly+mz)

>
w(km)

energy propagation?
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0=0 0=0 0=0 0=0
emax emin emax emin
warm cold warm cold
Low high Low high

What kind of weather synoptic system does this correspond to? Which direction does
this system transport heat flux? What is the direction of the E-P flux in the vertical

direction? (For simplicity, you can assume an infinite scale height, or incompressibility).

ES5.3. (Wind forced stratified ocean) A stratified linear ocean is forced by a spatially
uniform Ekman pumping on the surface with a frequency o. The ocean basin has a zonal
scale L (such that the wave number is k=27/L) that is much longer than the internal
deformation radius:

(a) Find the direction of the downward group velocity.

(b) What is the direction of the group velocity when the forcing frequency approaches zero
(the limit of steady forcing)?

(c) Inlight of (b), is it possible to have subsurface motion under a steady wind forcing?

(d) Is Sverdrup relation valid in the limit of a steady wind?

(e) What is the implication of (c¢) and (d)?
Z

L

» X
ES5.4 (Non-Doppler shift effect) In a stratified ocean, we will consider planetary scale

perturbations that are governed by the potential vorticity equation
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ﬂ{ﬁ(i; 2)]%@//”{1//, /o 5“’)} 0

P&

We project the streamfunction on vertical modes: y = Z Y (x,y,t)@, (z)where the mth

m=0
vertical mode ¢,, is determined by the eigenvalue equation (5.3.7) as

d { £} dg, ()

dz| N(z)> dz } A O (2)-

(a) If the flow is projected only on a single vertical mode m=M, what is the advection
term in the potential vorticity equation.

(b) In light of (a), how do you interpret the perfect non-Doppler-shift effect of the
planetary Rossby wave in the shallow water or the 1.5-layer model?

(c) If the flow is projected on more than one vertical modes, show that the m#h mode of
the flow only advects the part of the stretching voriticty that excludes mode m.

(d) Based on (c), under what condition, Rossby waves will be advected by mean flow (or

Doppler-shift occurs) in a general continuously stratified ocean?

ES5.5 (Normal modes in the presence of topography) In the presence of a north-south
bottom topography z, = Ay, derive the normal modes of Rossby waves in section 5.3 in
the case of a constant Brunt-Vasara frequency. (Hint: now the bottom boundary condition

atz=01is w(x,y,zy) =1, ®Vz, = A0 w(x,,0)).

ES5.6: (Wave-mean flow interaction of baroclinic waves). Based on the wave activity
equation and E-P flux (5.4.7) and (5.4.8), discuss the wave-mean flow interaction of the

following disturbances in a westerly shear flow.

“'"----»..____U(Z ) tz e
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(a) Will the disturbance grow or decay? Will the mean flow intensify or weaken?
(b) Discuss the difference and similarity from the corresponding barotropic case (in

section 2.6) of negative viscosity.
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