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Ch4: Basics of Stratified Fluid

Sec. 4.1: Basic Equations

Stratification will introduce new physics. We first derive the equations. Denoting rotation

vector as U, gravity potential @, u= (u,v, W)V =id, +jJ, +kd, . The momentum

equations are

p(%+2ﬁxuj=—Vp—pV®+F. (4.1.1)
The mass equation is
c;—f+pvou20 or %—6+V0pu:0 (4.1.2)
The equation of state in general is
p=p(p,T,S...) (4.1.3)
In the ocean, neglecting salinity, the equation of state is
p=p,ll-al-T,) (4.14)
where o = - 1 (ioj is the coefficient of thermal expansion and p is a constant
p T/,

reference density, which can be chosen as the average density.

In the atmosphere, using the perfect gas, the equation of state is
P
= — 4.1.5
P="77 (4.1.5)
where R is the gas constant.
The thermodynamic equation describes the internal energy change. For the ocean, which
is incompressible, the thermodynamic equation is

T ~
oC, ‘Z—t =p0+kV’T (4.1.6)

where £ is the thermal conductivity, Q is the heating rate per unit mass. This can be

rewritten as

ar _ J+kV°’T (4.1.6a)
dt
whereJ:2 and k =i.
C, pC,
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The atmosphere is compressible, so the thermodynamic equation is

— 2 = J+kV°T 4.1.7)

4
Define the potential temperature as@ =T (&J , where y = % , we have
P P

4
ln¢9:1nT+ln[&] =InT —yIn p + const

P

0 _dr _ dp

0 T 4 p

14
do = (gj(dT —7—po) - (&] (dT —Edpj
T p p p
7 ~

ﬁ:(ﬂJ Y+kvr (4.1.8)

dt p -

where we have used (4.1.7) and the ideal gas law (4.1.5), such that n = RT = L
p pC, pC,

Therefore, in the local Cartesian coordinate, we have the full set of equations for the

stratified ocean and atmosphere as:

Ju+udu+vou+wdu— fv= —% P -i-lF)r
1 1
oyv+ud v+vo v+wo v+ fu=——70 p+—F, (4.1.8)
P P
Ow+ud w+vo w+wo, w+g = —lﬁzp +lFZ
P
é’tp+uﬁxp+vﬁyp+wﬁzp:—pjﬁxu+ﬁyv+ﬁzwj' (4.1.9)
0T +ud,T+vo,T+wd.T=J+kV’T oceam (4.1.10a)
/4
0,0 +ud .0+v3,0+wd_ 0= [&j {/+kV2T} atmosphere (4.1.10b)
p
pzpm[l—a(T—TO)] ocean (4.1.11a)
z t h (4.1.11b)
=— r 1.
P =27 atmosphere
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where a beta-plane is used such that f = f, + fy. The characteristics of the ocean and

atmosphere also allow the equations to be further simplified for each system.

1. Oceanic Equations

The ocean is almost incompressible. Therefore, p = p + p,(X,y,z,t) with Lo << 1. The

P

dp,
incompressibility has three consequences. First in the mass equation, @ e ~ Lo o
P

, and therefore (4.1.2) reduces to volume conservation

Veu=0 (4.1.12)
Second, the thermodynamic equation and the equation of state can be combined together.
Eqn.(4.1.11a) can be written as p, =—p, aT' where T'=T —T. The thermodynamic
equation (4.1.10a) can therefore be written as

8,p, +UeV)p, =kV?p, —aJ =S, (4.1.13)
Third, large scale oceanic process also satisfy D/L<</ and in turn the hydrostatic

approximation (as in the case of shallow water in section 1.1). The vertical momentum

equation at the leading order can be shown as

= = e

Defining p =P(z)+ Do(x,v,2z,t), where P=—gp z is the static pressure due to the

average density, the rest of perturbation pressure py satisfies

Pp
Eoz—gpo (4.1.14)

Fourth, the momentum equations can be further simplified using the Boussinesq
approximation, such that the density is a constant except when it represents the buoyancy
forcing in the vertical momentum equation. The horizontal pressure gradient forcing can
be approximated as

lvhp = lV/qpo ~ LV/qpo

P P Pm

where V, =id, +j0, is the horizontal gradient.

Finally, after the four more approximations, we have the ocean equations as:
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Out@eVYi—fr=——0 p, +—F,

m m

Sv+eVh+ fu =—Lﬂvp0 +LFy
Pw P

m m

L5 =8P (4.1.15)

zL70
m m

du+dv+dw=0

S,py +@eV)p, =5,
2. Atmospheric Equations
Since the atmosphere is incompressible, the mass equation (4.1.9) is a predictive
equation. This equation, however, can be simplified for large scale D/L<<I processes by
using the hydrostatic approximation Jp = —gp. The mass per unit area contained

between the pressure surface p and p+dp is

p
p &= 2 ~
g
The mass of a material element is:
—
Sn= poc e = ZX P p+dp

d
Following the flow, the mass conservation = (6m) = 0 becomes

d 1 d d d
E(é’m) - E{@/é‘pz(é'x) + 5x5p5(5y) + @C@E(ap)} =0
_ Gy |1 fdey 1 fdyy 1 [dp
B {5x dt dt) s 5\61) 5o dt) +}
= m(ﬁxu+ﬁyv+ﬁpw: O)
g

d, . . .
where @ = ;l: . The continuity equation for the atmosphere is therefore

ou+oy+dm=0 (4.1.16)
This is a great simplification due to the p-coordinate. But, for other purposes, it turns out
not to be very convenient to use the p-coordinate. We can use the log p which combines
both the advantages of the p and z coordinates.

Since p = pRT, we have
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P _ __ &
Py gp RT p
t g , todz
B ’{ e B ’! H.()
p=p.e =p.e

Since T is roughly constant (in Kelvin) with height, say 7=T;, p decreases roughly

exponentially with a scale height

z

H,
p:pne )

e-folding decaying
with a scale height
RT,

H, == (4.1.17)
g

(the ocean can be taken as the case of an infinite scale height). So wave-like motions,
which have a simple form in z, have a more cumbersome mathematical structure in p. To

avoid the problem, we use the height-like vertical coordinate:

Z=-H, h{iJ (4.1.18)
P,
or
_ A
o
p=pe ", (4.1.18a)

where H is constant ( so Z is still in p-coordinate). We could in principle choose H to be
anything, but Z will be like the real height if we choose H to be a typical value of the

scale height H_ for the region of interest. For example, if we choose 7, = 250K, then
R

H ==T =7.3Km.
g
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For US standard atmosphere (P, =1013.25hPa)

p(hPa) z(km) z (km)
1000 0.111 0.096
850 1.457 1.282
700 3.012 2.700
500 5.534 5.156
300 9.164 8.885
200 11.784 11.884
100 16.18 16.904
50 20.576 21.965
30 23.849 25.694
10 31.055 33.714

Now, we will write Z, for the real geometric height (w, for vertical velocity in Z, ).

N
I

|
T
5
S
+
T
5
S

= —= @
dt p dt p
do _ Hdo _Ei(ﬂj _Ld )
dp pdZ pdZ\ H pdz

The continuity equation in the log p or Z-coordinate can be derived from (4.1.16) as.
1
ﬁxu+§yv+;ﬁz(pw)=0 (4.1.19)

Furthermore, in the p- (or Z-) coordinate, we also have to change the form of the

horizontal pressure gradient. Take the u-equation as an example.
d

1 1
dtu_fv_ _p(axp)y,zg +pE
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C  Z=const,
or p=const

/

¥ X
< >

Z,~const 8Z,

(é’ p) _Pi=Ps _Ps"Pc _ gp(ZgA _ch) _ gp(ZgB _ch) :p(@]
L S S & S &),
Here, we have used p, = p., Z, =Z . the hydrostatic approximation &p =—-gpdZ,,

so that p, — p. =—gp(Z,, - Z,-) and the definition of geopotential heightas ® = gZ .

1
This also shows another advantage of the p- (or log p-) coordinate: it gets rid of the —
P

factor in the pressure gradient term and therefore acts similar to the Bousinessq

approximation in the ocean. Similarly, we have

W3),7(5),

Finally the hydrostatic approximation is

24 1
Z, P gp
@ _ 1
Pp P
@ _p _ T
A Hp gTs

The complete set of the atmospheric equations are therefore
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Out@eVli— fr=—0.0 4+
yo,

F,

Ov+eVl+ fu=—00+>
oop

Ou+3,v+ iaz (pw)=0 (4.1.20)
p

Ve
T g(p 7]
o, P=g—=2|"| O=9g—
z gT [ ] g@

S s o s

20+@uevpP=0,

y Z 7
where 6, =Ts[p"J , p=p,e ™ ,and Q, =[p"j {I+kV2T}.
p p

A comparison of (4.1.15) and (4.1.20) shows that the ocean equations (4.1.15) can be

recovered from the atmospheric equations (4.1.20) by the substitution of

P, & D, A<:>CI), i<:>—6’£, SOQ—&

p 0 s Ts
and by interpreting Z as the geometric height in (4.1.20).

a
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Sec 4.2: Vorticity Equation and Circulation Theorem

1.Vorticity Equation
The derivation of the vorticity equation in a stratified fluid is similar to that in the shallow
water case but now with three dimensional components. In addition, stratification adds

terms to the equations. The momentum equations are:
dJu+eV)u+2Qxu= —lVP—VCI)+ lF
p p

We will use the vector operation. The absolute vorticity is

£,=2Q+Vxu=2Q+¢

Notice:
i j k

AxB=|4, Ay A, :(AyBZ —Asz)i+(AZBx—Asz)j+(AXBy —AyBX)k
B B B

x y z
Using the identity {xu=(Vxu)xu=(ueV)u- %V(u cu),
we have:

uou)+£

ﬁ,u+(2g+g)xu=—lVP—V(cD+
P

V x(u—eq.), we have

é’,C+Vx{§axu}Eé€“ +Vx(§axu):—Vx(lVP)+Vx(£)
a p p

Since
) 1 1 1
(i) Vxy—VPr=——5VpxVP+—[VxVP]
P P P

(ii)Vx(AxB)=A(V.eB)-B(V.e A)+(Be.V)A-(Ae.V)B

we finally have the vorticity equation

o8, +(ue V), =, (Vou)+ (G, o VIut S VoxVP+VX(LF) | (42.1)
p p

local adv. stretching  distortion ~ Baroclinic Curl(forcing)
variability term

Copyright 2014, Zhengyu Liu



AOS611Ch.4, Z. Liu, 01/20/2015 10

Compared with shallow water case, the two new terms are the distortion term and the

baroclinic term.

The distortion term includes the two effects of rotating and stretching of the vortex tube.

r+dl

dl: a material
line

r
Following a vortex tube as a material line, we have

(@) -a(e )u)= (@

where dl oc {, is a material line following the vortex tube and defined in the local
coordinate as the direction of z, such that ¢, = (0,0,£, ). Therefore, the distortion term is

(ca‘ ® v)u = (gaaz)u = é’aﬁzu = (é’adlz,é’aﬁzvﬁé/aazw) (4'2'2)
tilting stretching

The first two components represent the tilting effect, while the last component represents

the stretching effect.

=0
—_— 4 t=dt
IS
—
>
! Tilting Effect
> Au>0

The tilting effect changes the direction of the vorticity. Consider a vortex tube, originally

assumed in the z direction. The shear flow will tilts it down the direction of the shear,
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generating vorticity in the horizontal direction 2, > 0. This is like a helicopter. The

helicopter moves forward when its propeller axis tilts horizontally. As such, the rotation

of the propeller has a component in the horizontal direction.

The stretching effect has been seen in the shallow water system. When the vortex tube is
stretched (Zw>0 ) as in the figure above, the magnitude of the vorticity is increased (
a¢:>0). This is like the case of figure skating. The stretching effect does not change the

direction of the vorticity.

o, w>0 g, >0, stretching increases (, !

'

Note 1: The stretching of the distortion term is similar to the general stretching (V ou)

. Indeed, take {,=C,k, we have the sum of the distortion and general stretching terms as
¢, (Veu)+(C, e VIu=-k¢, (ﬂxu +Jd,v+ ﬂzw)+ i ou+js dv+kd ow
=le.oug.ov-clouroy)
The net effect is a “horizontal” (normal to £ ,) convergence or divergence, which in the

case of incompressible fluid Ju + Jy = —dw, is the same as the stretching effect. In
fact, with incompressibility, the general stretching term -, (V o u) =0. The stretching

effect comes only from the z component of the distortion term.

The effect of the baroclinic vorticity generation term can be seen in the following
example. The differential density along the isobar creates horizontal density gradient. As
such, the heavier fluid will sink and the lighter fluid rises, generating a clock wise

rotation.
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lighter \ heavier

P

One important special case is the barotropic fluid,

p = p(p). (4.23)

dp
Now, the baroclinic term vanishes because VpxVp =V px d—Vp 0.
/4

In fact, (4.2.3) is the original definition of barotropic fluid, while p=const is the special

case of the barotropic fluid.

2: Circulation Theorem
In Section 1.3, we have seen that the total circulation is conserved in the homogeneous
fluid if forcing and dissipation are neglected. In the baroclinic case, the circulation is no

longer conserved.

1
Follow the derivation in Section. 1.3, but keep the term — Vp, we have
yo,

igﬁu'dl=gﬁ@°dl $2Qxuedl-$— Vp°dl+gﬁ—°dl
dt dt o o

Since

dA,
dt ’

$2Qxue

§LVpedl= 1V x(“2yeida =YL=V 4 g
p p P’
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We have the circulation equation

d_ d _fVpxVp F
T —E(F+2QAH)—J‘J.TondA+§EOdI (4.2.4)

The Kelvin’s Theorem can then be modified: the total circulation is conserved if the

baroclinic term vanishes, or equivalently, the fluid has to be barotropic p = p(p).

Similarly, there is no Bernoulli equation in the presence of baroclinic term.
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Section 4.3: Ertel Potential Vorticity

1 Ertel Potential Vorticity Conservation

Potential vorticity has been seen of critical importance in the shallow water dynamics.
The concept of the shallow water potential vorticity (Rossby 1940) can be generalized to
a stratified fluid (Ertel, 1942). Here, we will study the Ertel PV in its integral form,
making use of the Kelvin’s theorem. A more detailed derivation can be found in Pedlosky

(Ch 2).

VA

At a first sight, the Kelvin’s theorem (4.2.4) states that the total circulation is not
conserved in the presence of baroclinity. This is a serious limitation on GFD applications
because all our fluids are stratified and therefore strongly baroclinic. However, an
alternate quantity, called the Ertel potential vorticity can still be derived from the
Kelvin’s theorem. As in the shallow water case, this quantity is of fundamental

importance to GFD!

Neglecting forcing and dissipation, and using the Stoke’s theorem, the Kelvin’s theorem

can be written as

9 re endA- II(LXZVP) *ndA 43.1)
dt a A P

It is seen that the baroclinic term that prohibits the conservation of the circulation.

However, as seen below, by carefully selecting our integral surface, the baroclinic term

can be eliminated. We choose a quantity A which is a material surface (% =0), and
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consider the circulation on a surface 4 that is on a constant A surface. Furthermore, we

N Z)
assume A = A(p, p), such that n is parallel to VA :%Vp+% Vp . This leads to:
72

nO(VpXVp) = V/%(Vprp) =0
Therefore, (4.3.1) becomes

4 s endd=0
dt A(A=const)
n|lyA
it ®
/ A
1
di
/

= /
=

When the area of the surface element 4 — 0, we have approximately

i(ga *nd4)=0 (4.3.4)
dt
Since A is a material surface, mass conservation states that
oA
Am = pdloA = pwéA = const. (4.3.5)

following the flow. (we have used OA=|VA|dl, whose one-dimension analogy is

OA=2A0x ). Also, we can write the normal vector as

Vi

Substitute 04 and n from (4.3.5) and (4.3.6) in (4.3.4), we have the Ertel potential

voriticity conservation

dIt
<o, 43.7
m (4.3.7)
where
m-g, oY% (4.3.7a)
o
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is the Ertel potential vorticity. The derivation above shows that the conservation of Ertel
PV is a direct result of the Kelvin’s theorem, but on a special material surface A=A(p,p).

In other words, the conditions for the conservation of Ertel PV are:

% = 0 (material surface)

A=Mp.p) egi=p

i1) no forcing or dissipation to the system.

i)

Here are some most commonly used Ertel PVs. In the ocean, since dp/dt=0 in the

2
adiabatic flow, we set 4 = ’07, and the Ertel PV becomes

d
H=CaonzCa_p ’
0z

where we have used p, >> p,, p . If furthermore, ¢, » f* because {/f=e<<I, we have

the planetary potential voriticity

ap
= f—.
4 124
do . o 0
In the atmosphere, 7: 0 in the adiabatic flow, we set A =—— and the Ertel PV
t g
becomes
o Sa°VO _ C,0.0 =§a07_9
8p 8p ap

The conservation of PV provides a powerful constrain on the course of the motion of a
fluid parcel. In the mean time, PV can also be used for diagnostic studies in the

observation. Finally, it can also be used as a tracer to track the long term particle motion.
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Questions for Chapter 4
Q4.1: With hydrostatic approximation, prove mathematically that the pressure gradient

force in the Z; coordinate is transferred to the geopotential height in the p (or Z=- Inp

o), (&),

here p=p(x, y, Zs t) is the pressure in the Z, coordinate and ®= P(x,y,Z¢) is the

coordinate).

geopotential height in the p (or Z) coordinate.

Q4.2: The stretching term and tilting term are important in the vorticity equation (4.2.1),

but play no role in the circulation theory (4.2.4). Why?
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Exercises for Chapter 4
E4.1: (f-plane waves) For the continuously stratified fluid satisfying the general

equations (4.15), small perturbation satisfies the linearized equations

7
Ju—fv= _GP
Pm
o
Ov+ fu=——= i
Pm
7
Pm P
Ju+dyv+dw=0
ﬁtp + Wﬁz = O
on a f-plane, for a uniform stratification (such that N> = _8P: 5 q positive constant)
Pu

(a) Show that the dispersion relationship for the waves of the form
expli(kx + ly + mz + wt)]are:
w, =0
for the geostrophic (vorticity) mode, and
, NE+PD)+ [ m?

2,3

k*+1* +m’
for the internal inertial-gravity waves.
(b) Under hydrostatic approximation such that the vertical momentum equation is

g __9.p
P P

, show that the dispersion relationships are

w, =0,
for the geostrophic (vorticity) mode, and
Wl = N (K + 1)+ f*m?

2,3 2
m

for the internal internal-gravity waves. What is the relation between the dispersion
relationships of this internal inertial-gravity wave and the inertial-gravity wave derived
from the 1.5-layer model?

(c) Under what conditions, you think that the hydrostatic approximation is not good

because it distorts the wave dispersion relationships too much.
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(d) In a homogeneous fluid, what are the dispersion relationships for these waves with

and without hydrostatic approximation?

E4.2: (PV of -f-plane waves) The linarized Ertel PV can be derived from the equations in
ap — ap' . . .
E4.1 as IT=[(f+ é’)g]': ¢ p.+ fg, Using the equations and results in E4.1,

derive the PV disturbances corresponding to the geostrophic vorticity mode and the
internal inertial-gravity wave mode.

(a) For the geostrophic mode, show that we can define a streamfunction y, such that
-~ 1) ow
IT = P Yqcpv > and docry :vzH‘//"'O”z(FE)

where qgpy is the perturbation QGPV, which can be (see Chapter 5) derived from eqn. (

5.1.20b).
(b) For inertial-gravity wave modes, show that the PV is zero (regardless of hydrostatic
approximation)

I1=0

(hint: With the wave form exp[i(kx+ /[y +mz + wt)] in E4.1, using the eigenfunctions

derived from the four equations

o 2 _
P ﬁtv+fu=—Lp, u+v+dw=0, Jp+wp, =0
p’n pm

Ju—fv=-

such that u and v can be represented in terms of density)

E4.3: For the continuously stratified fluid satisfying the equations (4.15), the low
frequency, large scale, small perturbation satisfies the linearized equations

1 1
—fv=—"0,p+—F,

0 0

1 1
+fu=—72d,p+—F,

Po Po
O.p=-8p
ou+oyv+o.w=0

é’tp-i_wﬁz :SO
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where we have dropped * for the perturbation, and p_ is the mean stratification.
(a) Show that the equations can be reduced to a single equation for the perturbation

density as
F S
p-). S P pof) \P.).

(b) Assume p_ = const, and the momentum and density forcing vanish, the free mode
satisfies

2
é’tzzp+ﬂ](,]\[2 px =O

where N? = —iﬁz represents the Brunt-Vasara frequency. Assume the perturbation
0
has the form of a plane wave p o exp[i(mz + kx — wt)], derive the dispersion relationship

of the wave. Can you guess what wave is this?

E4.4: (Monsoon-Desert, or Stationary atmospheric response to deep heating in the
subtropics): On a subtropical beta-plane, f = f, + fy, with a mean vertical potential

temperature profile ®(z), a large scale atmospheric circulation is forced by a steady

diabatic heating . With proper nondimensionalization, the stationary atmospheric
response satisfies the following set of equations

-fV=-0P (1a)
+ fU=-0,P (1b)
O.P=T (Ic)
U, +V,+W. =0 (1d)
WN? =—-g6+Q (le)

where N? :% is the Brunt-Vasala frequency, and (U, V), W, P, W, Tare winds,

vertical velocity, pressure and potential temperature, respectively. The steady state is
achieved by a thermal damping &, which is associated with the long wave cooling.

1)For a deep heating in the middle atmosphere, associated with an latent heating of a
summer monsoon, what do you expect the vertical structure of the forced atmospheric
response is? barotropic, equivalent barotropic or baroclinic?
2)For the baroclinic response, a student assumed that the response of the atmosphere can
be approximated in the vertical in 3 levels as shown below

Level 3 —u,—v,—p,w=0 upper level (z=2h, ~200mb)
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Level 2 q,0,w, mid-level (z=h, ~500mb)

Level 1 u,v, p,w=0 lower-level (z=0, ~850mb)

Fig.1: The three-level model
He then approximate equations (la-e) using the finite-difference in the vertical. In terms
of the lower level winds (u,v), pressure (p), and middle level diabatic heating q, potential
temperature @ and vertical velocity w, please show that the baroclinic response is now
determined by the following equations

—fr=-0.p (2a)
+fu=-0,p (2b)
p=-ho (2¢0)
u +v, +w/h=0 (2d)
wN? =—£0+¢q (2e)

3)For a localized heating in x,
q,>0, 0<x<L
q(x) =
0, elsewhere

3)
Find the forced atmospheric circulation. Discuss the spatial structure of the response, in
terms of the pressure, wind, temperature, and vertical velocity.

4)Do you expect a desert region to be generated by this monsoon heating? If you do,
where is it (relative to the heating) and why?

5)Give examples where you think this monsoon-desert mechanism applies to our real
world.

(for mathematic convenience, you can assume N=/, h=I). (plot the solution for ¢ =1,
c=pN’h*/ f7=1).
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