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Ch4: Basics of Stratified Fluid  

Sec. 4.1: Basic Equations 

Stratification will introduce new physics. We first derive the equations. Denoting rotation 

vector as Ù , gravity potential  ,   zyxwvu  kjiu  ,,, . The momentum 

equations are 

FuÙ
u







   p

dt

d
2 .    (4.1.1) 

The mass equation is 

0 u
dt

d
  or   0




u
t

    (4.1.2) 

The equation of state in general is 

   p, T, S...       (4.1.3) 

In the ocean, neglecting salinity, the equation of state is  

  01 TTm         (4.1.4) 

where   
1



T







P

is the coefficient of thermal expansion and m  is a constant 

reference density, which can be chosen as the average density. 

 In the atmosphere, using the perfect gas, the equation of state is 

 
P

RT
         (4.1.5) 

where R is the gas constant. 

The thermodynamic equation describes the internal energy change. For the ocean, which 

is incompressible, the thermodynamic equation is  

Cp

dT

dt
 Q  k

~

2T       (4.1.6) 

where k
~

 is the thermal conductivity, Q is the heating rate per unit mass. This can be 

rewritten as 

TkJ
dt

dT 2        (4.1.6a) 

where J 
Q

Cp

 and k 
k
~

Cp

. 
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The atmosphere is compressible, so the thermodynamic equation is 

 TkJ
dt

dp

Cdt

dT

p

21



      (4.1.7) 

Define the potential temperature as ,0



 
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p
T  where 

pC
R ,  we have  
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p

p
T 




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p
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d 20 

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








      (4.1.8) 

where we have used (4.1.7) and the ideal gas law (4.1.5), such that 
pp CpC

RT

p

T


 1

 . 

Therefore, in the local Cartesian coordinate, we have the full set of equations for the 

stratified ocean and atmosphere as: 

zzzyxt

yyzyxt

xxzyxt

Fpgwwwvwuw

Fpfuvwvvvuv

Fpfvuwuvuuu



















11

11

11







    (4.1.8) 

 wvuwvu zyxzyxt       (4.1.9) 

oceamTkJTwTvTuT zyxt
2                  (4.1.10a) 

  atmosphereTkJ
p

p
wvu zyxt

20 











              (4.1.10b) 

             01 TTm      ocean            (4.1.11a) 

 
P

RT
    atmosphere           (4.1.11b) 
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where a beta-plane is used such that f  f0  y . The characteristics of the ocean and 

atmosphere also allow the equations to be further simplified for each system.  

1. Oceanic Equations 

The ocean is almost incompressible. Therefore, 0  m (x,y,z,t) with 10 
m


. The 

incompressibility has three consequences. First in the mass equation, 10

0


m

dt

d








, and therefore (4.1.2) reduces to volume conservation 

0 u                  (4.1.12) 

Second, the thermodynamic equation and the equation of state can be combined together. 

Eqn.(4.1.11a) can be written as '0 Tm    where 0' TTT  . The thermodynamic 

equation (4.1.10a) can therefore be written as 

   00
2

00 SJkt   u     (4.1.13) 

Third, large scale oceanic process also satisfy D/L<<1 and in turn the hydrostatic 

approximation (as in the case of shallow water in section 1.1). The vertical momentum 

equation at the leading order can be shown as   

p

z
 g  

Defining   ),,,(0 tzyxpzPp  , where zgP m  is the static pressure due to the 

average density, the rest of perturbation pressure p0 satisfies  

 0
0 




g
z

p
        (4.1.14) 

Fourth, the momentum equations can be further simplified using the Boussinesq 

approximation, such that the density is a constant except when it represents the buoyancy 

forcing in the vertical momentum equation. The horizontal pressure gradient forcing can 

be approximated as 

00

111
ppp h

m
hh 


  

where yxh  ji   is the horizontal gradient. 

Finally, after the four more approximations, we have the ocean equations as: 
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   (4.1.15) 

2. Atmospheric Equations 

Since the atmosphere is incompressible, the mass equation (4.1.9) is a predictive 

equation. This equation, however, can be simplified for large scale D/L<<1 processes by 

using the hydrostatic approximation  z p  g .  The mass per unit area contained 

between the pressure surface p  and p+p  is  

 z 
p

g
 

The mass of a material element is: 

 m  xyz 
xyp

g
  

Following the flow, the mass conservation 
d

dt
m   0  becomes  

       d

dt
m

g
y p

d

dt
x x p

d

dt
y x y

d

dt
p           










1
0  

              


xyp

g

1

x


dx

dt




 

1

y


dy

dt






1

p


dp

dt














 xyp

g
 xu   yv   p  0 

 

where  
dp

dt
. The continuity equation for the atmosphere is therefore 

 xu   yv  p  0        (4.1.16) 

This is a great simplification due to the p-coordinate. But, for other purposes, it turns out 

not to be very convenient to use the p-coordinate. We can use the log p which combines 

both the advantages of the p and z coordinates. 

Since p  RT , we have 

p 

p+p 

p 
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   






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


z

0 s

z

0
zH

zd

o

zd
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g

o epepp

p
RT
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g

z

p 



 

Since T is roughly constant (in Kelvin) with height, say T≈Ts, p decreases roughly 

exponentially with a scale height  

,sH

z

oepp


  

with a scale height 

g

RT
H s

s  .   (4.1.17) 

 

 

(the ocean can be taken as the case of an infinite scale height). So wave-like motions, 

which have a simple form in z, have a more cumbersome mathematical structure in p. To 

avoid the problem, we use the height-like vertical coordinate: 











o
s p

p
HZ ln        (4.1.18) 

or 

 ,sH

Z

oepp


         (4.1.18a) 

where H is constant ( so Z is still in p-coordinate). We could in principle choose H to be 

anything, but Z will be like the real height if we choose H to be a typical value of the 

scale height Hs  for the region of interest. For example, if we choose Ts  250 K, then 

Km3.7T
g

R
H ss  . 

 

 

 

 

 

 

Hs 
e-folding decaying 

p 
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For US standard atmosphere ( Po 1013.25hPa ) 

p(hPa)                               z(km)                             z (km) 

1000                      0.111                              0.096 

850          1.457                              1.282 

700               3.012                              2.700 

500                                     5.534                              5.156 

300                                     9.164                              8.885 

200                                     11.784                           11.884 

100                                     16.18                             16.904 

50                                       20.576                           21.965 

30                                       23.849                           25.694 

10                                       31.055                           33.714 

 

Now, we will write Zg  for the real geometric height (wg for vertical velocity in Zg  ).   

 
dp

dt
 

 pw
dZ

d
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d
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d
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d
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dt
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w

p

dp
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1

lnln


















 

The continuity equation in the log p or Z-coordinate can be derived from (4.1.16) as.  

  0
1

 pw
p

vu Zyx        (4.1.19) 

Furthermore, in the p- (or Z-) coordinate, we also have to change the form of the 

horizontal pressure gradient. Take the u-equation as an example. 

d

dt
u  fv  

1


 x p 

y ,zg


1


Fx  
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Here, we have used gBgACB ZZpp  , , the hydrostatic approximation gZgp   , 

so that )( gCgACA ZZgpp     and the definition of geopotential height as ggZ . 

This also shows another advantage of the p- (or log p-) coordinate: it gets rid of the 
1


 

factor in the pressure gradient term and therefore acts similar to the Bousinessq 

approximation in the ocean. Similarly, we have 

ZZ
yy

p

g








 
















1

 

Finally the hydrostatic approximation is 
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The complete set of the atmospheric equations are therefore 

B A

  

Zg=const 

Z=const,  
or p=const 

x 

Zg 

C
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   (4.1.20) 

where 


 









p

p
T o

ss  , ,sH

Z

oepp


 and  TkJ
p

p
Q o

a
2












. 

A comparison of (4.1.15) and (4.1.20) shows that the ocean equations (4.1.15) can be 

recovered from the atmospheric equations (4.1.20) by the substitution of 

a
ss

o Q
T

S
p

pp 0
0

0

,,,















  

and by interpreting Z as the geometric height in (4.1.20). 
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Sec 4.2: Vorticity Equation and Circulation Theorem 

 

1.Vorticity Equation 

The derivation of the vorticity equation in a stratified fluid is similar to that in the shallow 

water case but now with three dimensional components.  In addition, stratification adds 

terms to the equations. The momentum equations are: 

. 

We will use the vector operation. The absolute vorticity is  

 

Notice: 

kji

kji

BA )()()(

          

         

               

  XyyXzyxzyzzy

zyx

ZyX BABABABABABA

BBB

AAA   

Using the identity )(
2

1
)()( uuuuuuuζ  ,  

we have: 


 Fuu

uζu 


 )
2

(
1

)2( Pt  

.)( eq u , we have  

  )()
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

 F
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uζζ  P

t a
a

at    

Since 

 ( )i P P P  







       

1 1 1
2 


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         BAABABBABA  ....)(ii  

we finally have the vorticity equation  

      )
1

(
1

..
2

Fuζuζζuζ





  Paaaat  (4.2.1) 

           
local 
variability
. 

stretching 
 

adv. 
 

distortion Baroclinic
term 

Curl(forcing) 
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Compared with shallow water case, the two new terms are the distortion term and the 

baroclinic term.  

 

The distortion term includes the two effects of rotating and stretching of the vortex tube.  

       

 

 

 

 

 

 

Following a vortex tube as a material line, we have 

      ulrulrul )(  ddd
dt

d
 

where ad ζl    is a material line following the vortex tube and defined in the local 

coordinate as the direction of z, such that  aa ,0,0ζ . Therefore, the distortion term is 

   wvu zazazazazaa  ,)(. , uuuζ    (4.2.2) 

 

The first two components represent the tilting effect, while the last component represents 

the stretching effect. 

 

 

 

 

 

 

  

 

The tilting effect changes the direction of the vorticity. Consider a vortex tube,  originally 

assumed in the z direction. The shear flow will tilts it down the direction of the shear, 

tilting stretching 

dl: a material 
line 

r+dl 

r 

t=0
t=dt 

zu>0
Tilting Effect 
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generating vorticity in the horizontal direction 0xt .  This is like a helicopter. The 

helicopter moves forward when its propeller axis tilts horizontally. As such, the rotation 

of the propeller has a component in the horizontal direction. 

 

The stretching effect has been seen in the shallow water system. When the vortex tube is 

stretched (zw>0 ) as in the figure above, the magnitude of the vorticity is increased ( 

tζz>0 ). This is like the case of figure skating. The stretching effect does not change the 

direction of the vorticity.  

 

 

 

 

 

 

Note 1:  The stretching of the distortion term is similar to the general stretching  uζa 

.  Indeed, take ζa=ζak, we have the sum of the distortion and general stretching terms as 

-
     

  vuvu

wvuwvu

yxazaza

zazazazyxaaa









,,

kjikuζuζ
                     

The net effect is a “horizontal” (normal to  a) convergence or divergence, which in the 

case of incompressible fluid  xu   yv   zw , is the same as the stretching effect. In 

fact, with incompressibility, the general stretching term   0 uζa . The stretching 

effect comes only from the z component of the distortion term. 

 

The effect of the baroclinic vorticity generation term can be seen in the following 

example. The differential density along the isobar creates horizontal density gradient. As 

such, the heavier fluid will sink and the lighter fluid rises, generating a clock wise 

rotation.  

 

 

 

zw>0  tz >0,  stretching increases z  !  
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One important special case is the barotropic fluid,  

p  p  .        (4.2.3) 

Now, the baroclinic term vanishes because 0 
dp

dp
p .  

In fact, (4.2.3) is the original definition of barotropic fluid, while  =const is the special 

case of the barotropic fluid. 

 

2: Circulation Theorem  

In Section 1.3, we have seen that the total circulation is conserved in the homogeneous 

fluid if forcing and dissipation are neglected. In the baroclinic case, the circulation is no 

longer conserved. 

Follow the derivation in Section. 1.3, but keep the term 
1


p ,  we have 

 

Since  

 

 

P 

lighter heavier 

- 
-P 



AOS611Ch.4, Z. Liu, 01/20/2015 

Copyright 2014, Zhengyu Liu 

13

We have the circulation equation 

  l
F

ddAn
p

A
dt

d

dt

d
na 


  

 
2

2    (4.2.4) 

The Kelvin’s Theorem can then be modified: the total circulation is conserved if the 

baroclinic term vanishes, or equivalently, the fluid has to be barotropic p  p   .  

Similarly, there is no Bernoulli equation in the presence of baroclinic term. 
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Section 4.3: Ertel Potential Vorticity 

 

1 Ertel Potential Vorticity Conservation 

Potential vorticity has been seen of critical importance in the shallow water dynamics. 

The concept of the shallow water potential vorticity (Rossby 1940) can be generalized to 

a stratified fluid (Ertel, 1942). Here, we will study the Ertel PV in its integral form, 

making use of the Kelvin’s theorem. A more detailed derivation can be found in Pedlosky 

(Ch 2). 

 

 

 

 

 

 

 

At a first sight, the Kelvin’s theorem (4.2.4) states that the total circulation is not 

conserved in the presence of baroclinity. This is a serious limitation on GFD applications 

because all our fluids are stratified and therefore strongly baroclinic. However, an 

alternate quantity, called the Ertel potential vorticity can still be derived from the 

Kelvin’s theorem. As in the shallow water case, this quantity is of fundamental 

importance to GFD! 

 

Neglecting forcing and dissipation, and using the Stoke’s theorem, the Kelvin’s theorem 

can be written as 

     (4.3.1) 

It is seen that the baroclinic term that prohibits the conservation of the circulation. 

However, as seen below, by carefully selecting our integral surface, the baroclinic term 

can be eliminated. We choose a quantity  which is a material surface (
d
dt

 0), and   

A

A

n a 

=o 

P 

 
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consider the circulation on a surface A that is on a constant  surface. Furthermore, we 

assume   , p  , such that n is parallel to  



 

p

p . This leads to: 

   n p p             0  

Therefore, (4.3.1) becomes 

d

dt
 a

A(const)
 ndA  0 

 

 

 

 

 

 

When the area of the surface element A → 0, we have approximately 

d

dt
 a nA   0       (4.3.4) 

Since  is a material surface, mass conservation states that  

AAlm 





  = const.      (4.3.5) 

 following the flow. (we have used =||l, whose one-dimension analogy is 

=xx ). Also, we can write the normal vector as 

 






n .         (4.3.6) 

Substitute δA and n from (4.3.5) and (4.3.6) in (4.3.4), we have the Ertel potential 

voriticity conservation  

,0
dt

d



       (4.3.7) 

where 

       (4.3.7a) 

a 
n||

A

dl 

 

+d 
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is the Ertel potential vorticity. The derivation above shows that the conservation of Ertel 

PV is a direct result of the Kelvin’s theorem, but on a special material surface =(,p). 

In other words, the conditions for the conservation of Ertel PV are: 

i) 

 













= e.g. ,,

surface) (material 0
dt

d

p
 

ii) no forcing or dissipation to the system. 

Here are some most commonly used Ertel PVs. In the ocean, since dρ/dt=0 in the 

adiabatic flow, we set ,
2

2   and the Ertel PV becomes 

 

where we have used yx  ,z  . If furthermore,   fa  because ζ/f=ε<<1, we have 

the planetary potential voriticity 

z
f



 . 

In the atmosphere, 0
dt

d
 in the adiabatic flow, we set 

g

   and the Ertel PV 

becomes 

 

 

The conservation of PV provides a powerful constrain on the course of the motion of a 

fluid parcel. In the mean time, PV can also be used for diagnostic studies in the 

observation. Finally, it can also be used as a tracer to track the long term particle motion. 
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Questions for Chapter 4 

Q4.1: With hydrostatic approximation, prove mathematically that the pressure gradient 

force in the Zg coordinate is transferred to the geopotential height in the p (or Z≈- lnp 

coordinate). 

ZZ xx

p

g







 
















1

 

here p=p(x, y, Zg, t) is the pressure in the Zg coordinate and Φ= Φ(x,y,Z,t) is the 

geopotential height in the p (or Z) coordinate. 

 

Q4.2: The stretching term and tilting term are important in the vorticity equation (4.2.1), 

but play no role in the circulation theory (4.2.4). Why? 
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Exercises for Chapter 4 

E4.1: (f-plane waves) For the continuously stratified fluid satisfying the general 

equations (4.15), small perturbation satisfies the linearized equations  

 

0

0











zt

zyx

m

z

m
t

m

y
t

m

x
t

w

wvu

pg
w

p
fuv

p
fvu




















 

on a f-plane, for a uniform stratification (such that 
m

zg
N




2  is a positive constant) 

(a) Show that the dispersion relationship for the waves of the form 

)](exp[ tmzlykxi  are: 

  01    

for the geostrophic (vorticity) mode, and  

  
222

22222
2

3,2

)(

mlk

mflkN




  

for the internal inertial-gravity waves.  

(b) Under hydrostatic approximation such that the vertical momentum equation is 

m

z

m

pg







 , show that the dispersion relationships are 

  01  ,  

for the geostrophic (vorticity) mode, and  

  
2

22222
2

3,2

)(

m

mflkN 
  

for the internal internal-gravity waves. What is the relation between the dispersion 

relationships of this internal inertial-gravity wave and the inertial-gravity wave derived 

from the 1.5-layer model? 

(c) Under what conditions, you think that the hydrostatic approximation is not good 

because it distorts the wave dispersion relationships too much.  
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(d) In a homogeneous fluid, what are the dispersion relationships for these waves with 

and without hydrostatic approximation? 

 

E4.2: (PV of -f-plane waves) The linarized Ertel PV can be derived from the equations in 

E4.1 as ,
'

  ]')[( '

z
f

z
f z 



   Using the equations and results in E4.1, 

derive the PV disturbances corresponding to the geostrophic vorticity mode and the 

internal inertial-gravity wave mode. 

(a) For the geostrophic mode, show that we can define a streamfunction ,  such that 

 ,qQGPVz    and   )(
2

2
2

zN

f
q o

zHQGPV 
   

where QGPVq  is the perturbation QGPV, which can be (see Chapter 5) derived from eqn. ( 

5.1.20b). 

(b) For inertial-gravity wave modes, show that the PV is zero (regardless of hydrostatic 

approximation)  

  0  

(hint: With the wave form )](exp[ tmzlykxi   in E4.1, using the eigenfunctions 

derived from the four equations  

0,0,,  ztzyx
m

y
t

m

x
t wwvu

p
fuv

p
fvu 








   

such that u and v can be represented in terms of density) 

 

E4.3: For the continuously stratified fluid satisfying the equations (4.15), the low 

frequency, large scale, small perturbation satisfies the linearized equations  

 

0

00

00

0

11

11

Sw

wvu

gp

Fpfu

Fpfv

zt

zyx

z

yy

xx
























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where we have dropped ‘ for the perturbation, and z  is the mean stratification.  
(a) Show that the equations can be reduced to a single equation for the perturbation 
density as 

               
zzz

z
x

zzz
t

S

f

F
curl

f

g

































 0

00
2



 

(b) Assume constz  , and the momentum and density forcing vanish, the free mode 
satisfies 

                 0
2

2

 xtzz f

N   

where z

g
N 

0

2   represents the Brunt-Vasara frequency. Assume the perturbation 

has the form of a plane wave )](exp[ tkxmzi   , derive the dispersion relationship 
of the wave. Can you guess what wave is this?  
 
E4.4: (Monsoon-Desert, or Stationary atmospheric response to deep heating in the 
subtropics): On a subtropical beta-plane, yff  0 , with a mean vertical potential 

temperature profile )(z ,  a large scale atmospheric circulation is forced by a steady 
diabatic  heating Q. With proper nondimensionalization, the stationary atmospheric 
response satisfies the following set of equations 























)1(

)1(0

)1(

)1(

)1(

2 eQWN

dWVU

cTP

bPfU

aPfV

zyx

z

y

x



    

where 



 zg
N 2  is the Brunt-Vasala frequency,  and (U, V), W, P, W, Tare winds, 

vertical velocity, pressure and potential temperature, respectively. The steady state is 
achieved by a thermal damping  , which is associated with the long wave cooling.  
 
1)For a deep heating  in the middle atmosphere, associated with an latent heating of a 
summer monsoon,  what do you expect the vertical structure of the forced atmospheric 
response is? barotropic, equivalent barotropic or baroclinic? 
2)For the baroclinic response, a student assumed that the response of the atmosphere can 
be approximated in the vertical in 3 levels  as shown below 
 
 
 
 
 
 
Level 3 --------------------------  0,,,  wpvu      upper level (z=2h,   ~200mb)  
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Level 2 --------------------------   ,,, wq                      mid-level   (z=h, ~500mb) 
 
 Level 1 --------------------------   u, v, p,w=0              lower-level (z=0,   ~850mb) 

 
Fig.1: The three-level model 

He then approximate equations (1a-e) using the finite-difference in the vertical. In terms 
of the lower level winds (u,v), pressure (p), and middle level diabatic heating q, potential 
temperature   and vertical velocity w, please show that the baroclinic response is now 
determined by the following equations 
  























)2(

)2(0/

)2(

)2(

)2(

2 eqwN

dhwvu

chp

bpfu

apfv

yx

y

x



    

   
3)For a localized heating in x, 



 


elsewhere

Lxq
xq

,0

0,0
)( 0       (3) 

Find the forced atmospheric circulation. Discuss the spatial structure of the response, in 
terms of the pressure, wind, temperature, and vertical velocity. 
4)Do you expect a desert region to be generated by this monsoon heating? If you do, 
where is it (relative to the heating) and why?  
5)Give examples where you think this monsoon-desert mechanism applies to our real 
world.  
(for mathematic convenience, you can assume N=1, h=1). (plot the solution for  =1, 

222 / fhNc  =1).  
 


