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Chapter 3: Forced General Circulation 

Sec. 3.1: Atmospheric Circulation    

On the horizontal plane (or isobar, isotropic surface), the atmospheric circulation is 

relatively simple. At the leading order, it consists mainly of zonal flows. At the next 

order, the zonal flow is distorted by stationary waves that are forced by localized surface 

heating (due to land-sea contrast) and topography.    (see Figs.3.1, 3.2).  One may think 

that the reason for the first order flow to be dominantly zonal U(y) is due to the solar 

radiation that is zonally uniform. This is only half true.  

 

The other fundamental reason for the presence of a dominant zonal flow U(y) is the 

rotation, or more precisely the beta effect. The rotation of the earth restrains the fluid to 

flow along constant potential vorticity lines (latitude circle) in the absence of strong 

damping and diabatic heating. Furthermore, the absence of meridional boundaries allows 

the U(y) flow to be free modes in the atmosphere (of zero frequency). These “free 

modes”, when forced by the zonally uniform heating, becomes dominant due to resonant 

excitation.    

 

The effect of beta can be seen easily in the context of the QG equation. The PV 

conservation gives the equation for the steady state circulation as: 

   J(, Q)=0,     (3.1.1) 

or 

   = (Q) 

At the first order, the potential vorticity is Q=y. Thus, we have  
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= (y) =G(y).     (3.1.2) 

This is a zonal flow, a free mode of the equation of motion.  

 

                                                                         

                       

 

 

At the next order, the effect of localized topography or land-sea contrast enters and the 

zonal flow is distorted. The distortion is the strongest in the surface layer (Fig.3.3), 

because of the strong dissipation and therefore the less efficient excitation of the zonal 

flow free mode. 
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Fig.3.1: Atmospheric circulation  
in the middle and upper levels. 
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Fig.3.2: Atmospheric circulation  
on the 200mb 
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Fig.3.3: Atmospheric circulation 
near the surface 
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Sec. 3.2 Ekman Flow, Ekman Layer and Ekman Pumping  

In comparison to the atmosphere, the general circulation is much more complex in the 

ocean. Most importantly, the circulation is no longer dominated by a zonal flow. Instead, 

it consists of huge gyres with flows comparable in both the zonal and the meridional 

directions. The most important reason for the difference of the circulations of the 

atmosphere and ocean is the presence of meridional boundaries. These meridional 

boundaries block the mean PV isoline (which is mostly around the latitude circle). As a 

result, the zonal flow (3.1.2), although satisfying the equation (3.1.1), does not satisfy the 

boundary condition anymore; they are no longer free modes and therefore can’t be 

excited resonantly as in the atmosphere. In the ocean, therefore, the circulation at the 

leading order is forced by a strong momentum and buoyancy flux forcing. In the 

following, we first study how the surface ocean is forced by the wind stress. 

1.Mixing  and Friction  

     The wind stress forces the ocean through momentum mixing at the surface  In  

general, fluid layers with different velocity have interfacial momentum exchanges due to  

cross-interface turbulences. These turbulence exchange heat and other water properties. 

The turbulences are usually strong near the boundary layer where the shear or gradient is 

the strongest. We will take the stress and the associated momentum flux as an example. 

(1) Stress and momentum  flux 

Consider two layers of fluid with different mean velocities, say, faster in the upper layer  
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Because of random turbulent mixing of water parcels across the interface, the lower layer 

transports slower water parcels to the upper layer. These slower parcels slow down the 

upper layer and therefore appears as an interfacial drag stress that decelerates the upper 

layer. To conserve mass, the upper layer transports the same amount of parcels that are 

faster then the lower layer  back to the lower layer. These faster parcels increases the 

mean velocity in the lower layer and therefore acts as a driving stress (such as the wind 

stress). This interfacial stress is the Reynold’s stress. Denoting nm as the stress of layer n 

on layer m, we have 

wu  12 21   

 

 

 

 

The simplest way to parameterize the stress is to realize that the interfacial stress is 

usually proportional to the shear of the mean velocity 
z

U


  . Thus at the lowest order, 

the stress is parameterized, in the so called K theory, as 

z

U
kwu

 12                   (3.2.1)         

(An example is in Section. 2.6 on the negative viscosity associated with  u v ) 
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(2) Net Effect  

       The net effect of the stress on a body of fluid is determined  by the shear of the 

stress. In the figure, the net effect is: 

 

z
u

t
 12  23   

 

or in the limit of infinitesimal z 








u

t z
      (3.2.2) 

Using the K-theory parameterization, we have the effect of the stress as 

)(...........)(
1

...... uduK
t

u
zzzz 




       (3.2.3) 

where d=k/ is the kinematic diffusivity.  In the simplest case of a constant , ( 3.2.3) 

reduces to the standard diffusive equation 

udu zzt            (3.2.4) 

Similar idea can be applied to other directions and give the more general diffusive 

equationtu  k1 xxu  kz yyu  k3 zzu . Furthermore, similar idea can be applied to other 

water properties such as the temperature, resulting in the diffusive equation for 

temperature as tT  kzzT .    

 

It is important to notice that the mixing “eddy” is relative. In considering climate 

variability, mid-latitude cyclones can be considered as mixing “eddy”, whose meridional 

12 

31 
z 

z+dz 

23 

21 
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heat transport effect can be parameterized as a linear mixing, as used in the so called 

energy balance climate models.  

 

2.Ekman flow   

Now, we consider how the wind stress forces the ocean In a very thin layer at the air-sea 

interface, zz  is very large where the wind stress is very important by directly inputting 

momentum flux into the ocean. For large scale, low frequency flow, we have 

  










y
z

x

x
z

x

F
gfu

F
gfv  ,          

 There are two forcing here, the pressure gradient force  

and the wind stress force. To focus on the wind driven flow,  

we only consider the net wind driven flow 

gE vvv


  

where  v


g  (gy, g x) is the geostrophic flow. 

Notice zvg=0, we have 

              





 y
z

E

x
z

E

F
fu

F
fv  ,             (3.2.5) 

The boundary conditions are: 

                








yyxx FF
 ,                                at z = 0       (3.2.6a) 

0,0 


yx FF
    at z→-     (3.2.6b)  

 
U
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where ( xx  , ) are the surface wind stress .  

Before solving the equation, we consider the vertically integrated flow (transport) 

      V  vdz


0

  

Vertical integration of (3.2.5) gives  





 y

E

x

E fUfV  ,  

or  

fff
VU

xy

EEE 



 kτ

V


 ),(),(    (3.2.7) 

The wind driven flow is always to the right of the wind! This is called the Ekman flow or 

Ekman transport.  

 

 

 

 

One can think of the spin-up process similar to the geostrophic adjustment process, 

except to replace the pressure gradient force by the wind stress. In this sense, Ekman 

flow and geostrophic flow are the same, but for different driving force.  
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3. Ekman Layer 

In spite of the simplicity of the vertically integrated flow, the current is more complex 

within the thin boundary layer, or the so called Ekman layer. Using the K-theory of 

parameterization 

 vd
F

ud
F

z

y

z

x




, ,       (3.2.8) 

and the boundary conditions (3.2.6), the solution to eqns. (3.2.5) can be solved explicitly 

in the case of a constant d. With a wind stress of  0,τ , the Ekman layer velocity can 

be written as:  

  
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
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

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


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



 zzz

z
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e
EE ei

d
ivu 


 sincos

1
2

     (3.2.9) 

vE

v

C

 

 C

I-G wave 

t<< 1/f

t>> 1/f

If   is replaced by pressure gradient force, 
this is the geostrophic adjustment discussed   
in Sec.1.6 
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The surface current is o45  to the right of the wind stress. The velocity field rotates 

clockwise with depth in the northern hemisphere. The e-folding decay scale with depth is 

m
f

d
e 50~

2
  in the ocean and 500m in the atmosphere. 

                   

                          

 

 

        

It is important to realized that although the detailed structure of the Ekman layer depends 

on the mixing parameter (3.2.8), the vertically integrated Ekman transport EV  in (3.2.7) 

is independent of mixing parameterization. This is the beauty of the Ekman theory! 



Ekman Spiral 

z 

|uE| 
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Fig.3.4: Observed Oceanic Ekman layer 
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4. Atmospheric Ekman Flow 

In the atmosphere, there is also an Ekman flow in the opposite direction as the oceanic 

Ekman flow. This is because, when the wind stress forces the ocean, the ocean exerts an 

opposite stress on the atmosphere. This ocean-to-atmosphere stress is the retarding stress 

that makes atmosphere wind aloft vanish on the sea surface. 

 

 

 

 

 

 

Thus the Ekman flow in the atmosphere is  
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Therefore, the mass flux is the same in both Ekman layers. Since the atmospheric density 

is about 1000 times smaller than that of the ocean, the velocity of the Ekman flow must 

be about 1000 times faster in the atmosphere than that in the ocean. 
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100*/10,1000*/10 scmVsmV OEAE  , at the same order of our estimation. 

An interesting application is the heat flux 

4

1


pO

pA

OOEpOO

AAEpAA

C

C

TVC

TVC




 

This states that the meridional heat transport is about four times larger in the ocean than 

in the atmosphere. This is comparable with the observational estimation in the low 

latitude, where both Vae  and Voe  are the main heat transport mechanisms. (in the mid- and 

high latitudes,  atmospheric eddies and ocean boundary currents could play critical roles). 

 

In addition, in the meteorological convention, AEV  is always down the pressure gradient 

of the geostrophic wind field. 

 

 

 

 

 

 

This is because in the boundary layer, the friction effect balances part of pressure 

gradient force. This atmospheric Ekman flow can be understood as the atmospheric 

response to the oceanic stress on the atmosphere. The latter is the opposite to the 

atmospheric wind stress on the ocean. 

 

 

L 
Vg

VAE 

 O->A 
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5. Ekman Pumping 

If the wind stress forces Ekman flow only within the Ekman layer, does this mean the 

wind stress only drives the ocean current within the surface Ekman layer (aboute~50m)? 

A similar question in the atmosphere is that, if the Ekman flow is confined to  e , does 

this mean the bottom friction has no effect on the air above  e ? The answer is: No! 

Although the direct momentum mixing due to wind is limited within  e ,  the Ekman flow 

may produce vertical motion that penetrates deep into the subsurface ocean. For example, 

in a  subtropical gyre, 

 

 

 

 

 

 

 

The convergence of the Ekman flow produces a downward mass pumping into the 

subsurface ocean. The vertical motion distorts the subsurface pressure field to produce 

horizontal pressure gradient in the subsurface. The resulting pressure gradient force then 

forces geostrophic current through the geostrophic adjustment process.  Therefore, the 

wind can force the subsurface flow, albeit indirectly. The vertical motion produced is 

called the Ekman Pumping. 

The magnitude of the Ekman pumping can be obtained by integrating on the continuity 

equation in the Ekman layer as follows. 

Westerly 

we=w(-e)

-P  Vg 

Easterly 

VE
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The continuity equation  

 xu   yv   zw  0  

can be written as  

 xue   yve   zw  0  

because the geostrophic flow is non-divergent. Integrating this in the Ekman layer 

0)0(
0

 eeyex wwVUdz
e




    (3.2.9) 

where  ee ww   is the Ekman pumping velocity. 

Example 1: Oceanic wind driven circulation:  

Using a surface rigid lid w(0)=0, the Ekman pumping velocity is 









 



curl
ff

curl
ff

VUw
x

y

y

xeyexe

1



























    (3.2.10) 

In the subtropics, we  0, and in the subpolar region we  0, subsurface geostrophic 

currents will be generated.  

Example 2: Atmospheric Spin-Down 

 

 

 

 

 

 

A cyclonic circulation (>0) produces a convergent Ekman flow, which generates an 

Ekman upwelling 0ew . This compresses the water column above H  and reduces the 

WE 

H 

Z 

E 

(f+)/H=const 
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relative initial cyclonic vorticity   , and therefore acts as a spin down forcing due to 

the  bottom friction. More specifically, since guτ  , 2τcurl  .  Thus, on the 

RHS of the vorticity equation, the curl of the bottom stress appears as a damping 




22

2





r

rcurlq

t

t  

This indicates that 
1

r
 is the spin down scale 

Example 3: Coastal Upwelling 

Near the coastal region, even in the absence of Ekman pumping, an along shore wind can 

still generagte coastal Ekman upwelling. First, the along shore wind (as shown below in 

the Southern Hemisphere) forces an off-shore Ekman flow. Mass compensation requires 

subsurface water to upwelling along the cast. This generates an Ekman upwelling. This 

process is important for coastal fishery and El Nino.  

 

 

 

 

 

 

4. Equatorial Upwelling   

Equator also provides a natural boundary for the Ekman flow because f0. So even 

under a uniform easterly wind, a divergent surface Ekman flow is produced, which is 

accompanied by an equatorial upwelling. This upwelling is of critical importance to El  

vE 

Z
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Nino process. Indeed, it is this upwelling that cools the SST on the equator. 

Consequently, the warmest surface water in the central-eastern tropical Pacific occurs off 

the equator, rather than right on the Equator (Fig.3.5), even through the solar radiation 

forcing is the strongest on the equator. 

EQ 

WE 

VE VE 
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Fig.3.5: World Ocean annual 
mean  SST 
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 Sec 3.3 Sverdrup Flow  

1 The Sverdrup Flow 

We consider how a downward Ekman Pumping, as in the subtropics, drives the ocean 

circulation. 

 

 

 

 

 

 

Since we are considering large scales, relative vorticity is negligible. The potential 

vorticity is therefore 
H

f

H

f
q 





. Since a downward Ekman pumping 0ew  

compresses the water column, H decreases. The conservation of potential vorticity 

requires that f also decreases, that is the water column must move southward.  

This can be shown directly from the QGPV equation.  

 
H

fw

H

curl
qJ e


 τ

,
    

where yyq   2    because  1
2




 



yfo

. 

Thus,  we have 

  βvgH=f0we,      (3.3.1)    

We 

VE VE 

f/H =const  
so H decreases => f decreases 

Z 

North 
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In the subtropical gyre, 0ew , the current is southward and in the subpolar gyre, we > 0 

the current is northward. Eqn. (3.3.1) is the so called Sverdrup flow (in the context of the 

QG model). 

 

 

 

 

 

 

 

 

N1: Sverdrup flow in the Planetary Geostrophic Model 

More precisely, the Sverdrup relation can be derived directly from the PG equations 

which allows  1O
f

f



. In the PG equations, the subsurface geostrophic flow is 

governed by 

















0zwgyvgxu
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g

fu

xg
g

fv





      (3.3.2) 

Substitute the geostrophic flows from the first two equations into the continuity equation 

   
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0






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 Curl  >0, Subpolar 

Curl  <0, subtropic 
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 βvg=f∂zw  

Integrate the water column beneath the Ekman layer 


z

H
dz


, 

     efwHwzwfgV  

 





z

H
dzvV gg


where  is the total geostrophic transport of the water column. Therefore,

 
βVg=f we     (3.2.3) 

The transport of the total geostrophic flow benearth the Ekman Layer is determined by 

the Ekman pumping forcing.  

The total flow is the sum of the geostrophic flow beneath the Ekman layer and the Ekman 

transport within the Ekman layer 
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This is: 












 curlVs             (3.2.4) 

This is the true Sverdrup relationship. Notice that the Sverdrup flow consists of two parts, 

the surface Ekman flow and the subsurface geostrophic flow. The ratio of the two parts 

is: 

1
a
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

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in the mid-latitude. With the QG approximation, 
























curl
f

fcurlfwe  and the 

Sverdrup relation (3.3.4) degenerates to (3.3.2). 

 

It should be noticed that Sverdrup balance also applies to atmospheric planetary 

circulation. For example, the formation of the subtropical high over summer subtropical 

oceans can be interpreated as being forced by the desending motion associated with the  

Rossby wave that is forced by the land heating to the east of the ocean.  

 

2. The problems with Sverdrup Flow 

At the first sight, it seems that the ocean circulation problem is solved. This turns out to 

be not the case. In the following two figures, both flow are consistent with the Sverdrup 

flow (3.3.4) in the interior ocean. Yet,  we could not decide which one is the correct one. 

Mathematically, this occurs because the Sverdrup flow (3.3.4) can’t satisfy the no normal 

flow boundary condition on both the eastern and western boundaries simultaneously. 

 

 

 

 

 

   

 Indeed if we solve the Sverdrup flow in the QGPV equation, we see this problem more 

clearly. 

Satisfy the eastern B.C. 

XW XE XW XE 

τ

Satisfy the western B.C. 
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

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      (3.3.5)

 

A general solution to this equation is 
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'
)]([

1

1





   (3.3.6) 

where x’ is a fixed x position.  

A proper solution should satisfy the no normal flow boundary condition on both the  

and wx :   

0
,


we XX


        (3.3.7) 

This assures the absence of a net meridional mass flux across the basin, as is required in 

the steady state solution. If we choose to satisfy the eastern boundary condition, we can 

set exx ' , so 

dx
curlx

ex



 τ

 

To further satisfy the western boundary condition, we need 

0 dx
w

x

e
x

curl


 τ

.
 

This is too strong a constraint on the wind stress and is unlikely to hold in the general 

cases. For example, if  yττ  , we have      0 we

x

xxcurlcurl
w

ex

 . Therefore, one 
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can satisfy either the eastern boundary condition with: 
x

ex

curl


 τ

 or the western 

boundary condition with 
x

xW

curl


 τ

, but not both!   

Mathematically, the failure of the Sverdrup flow to satisfy both boundary conditions is 

obvious: the Sverdrup relation (3.3.6) has a first order derivative in x, so it can’t satisfy 

the two meridional boundary conditions (3.3.7) at the same time. Selecting the boundary 

condition therefore requires higher order dynamics such as diffusion and nonlinearity, as 

will be discussed in the next section. 

 

Physically, we can also understand why the ocean circulation solution is no longer a 

zonal flow. The meridional boundary blocks the PV contour such that, at the lowest 

order, the ocean circulation is not zonal flow (except in Antarctic Circumpolar Current, 

where no meridional  boundary exists.). 
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Sec 3.4. Rossby Wave Adjustment, Ocean Circulation and Western Boundary 

Current   

Here, we will examine how the steady Sverdrup flow is established, or the spin-up 

problem under a wind forcing. The general linear time-dependent QG equation can be 

written as: 

t  (2  -  /LD
2) + x   =  curl   - d 2   ,   (3.4.1) 

where a bottom friction (or linear drag Rayleigh friction) has been used.  After the 

sudden onset of a wind curl (for convenience, =(y) is zonally uniform), the initial 

response is a forced zonal flow in the interior ocean governed by 

t  ( yy  - /LD
2)  =  curl   for t<X/C  (3.4.2) 

where X is the distance of the point of consideration from the eastern boundary, and  

C= - LD
2 is the planetary wave speed. This forced zonal flow u= -y   intensifies  

linearly with time, similar to the initial stage of a resonant response 

  yy  - /LD
2  =  t curl   . 

However, this zonal flow satisfies neither the eastern nor the western boundary condition. 

Rossby waves are generated on the boundaries. The long waves, which satisfy 

t  ( - /LD
2) + x   =  0,      (3.4.3) 

 propagate westward from the eastern boundary at a group velocity  C that is much faster 

than  that of the short waves from the western boundary.  After the passing of the long 

waves of the point of consideration, the flow reaches a steady state, as a forced planetary 

wave response: 

x   =  curl .   for  t>X/C   (3.4.4) 
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The solution satisfies the eastern boundary condition at x=xe is  

   
dx

curlx

S
ex



 τ

 

This is the Sverdrup flow, which is see now as the superimposition of a forced and a free 

Rossby wave, as shown in (3.4.3) and (3.4.2), respectively. After the planetary wave 

across the basin width L ( t>L/C ), the Sverdrup flow is established in the entire basin.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

i) Initial response: 
 Forced zonal flow 

 X

 X

ii) Planetary wave 
adjustment, 
establishing the 
local Sverdrup 
flow after t>X/C 

 X
iii) Basin-wide 
Sverdrup flow and 
WBC after t>L/C 

S 
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The initial short Rossby waves are reinforced by the reflection of the long waves that 
cross the basin. All the short waves, however, have very slow eastward group velocity. 
Furthermore, these short waves are slow and of small scales, and therefore are subject to 
strong damping. Therefore, the short wave energy are trapped within the western 
boundary by friction and rapidly reaches the steady state: 
 

 x   =   -d2   ,      (3.4.5) 

This produces the Stommel’s western boundary layer, whose width can be derived from 

the scaling analysis as 

    S=d/ .      (3.4.6)   

In the boundary layer, x >>  y, so (3.4.5) becomes 

   x   =   -dxx  ,   

The general solution is  

  
)exp(

S

x
BA


   

At the western boundary 0
S

x


, we have =0. Towards the interior 

S

x


, the 

solution approaches the Sverdrup flow near the western boundary S(0,y). So we have 

 
.),,0( AByA S 
 

The basin-wide  solution that satisifies both eastern and western boundary conditions are 

therefore:  

  )].exp(1)[,(
S

S

x
yx


   

This boundary layer scale can also be seen from the Rossby wave viewpoint. The 

eastward group velocity of short Rossby waves is: 

    Cgs=/k2.  
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The bottom friction time scale is: 

    TB=1/d. 

The distance at which the waves are trapped by dissipation is therefore: 

    lB= Cgs TB =/dk2  .  

Since the waves are short waves trapped within this friction distance, their wavelengths 

can’t be much longer than lB. Thus, we have 1/k  lB .  Substitute it into the equation 

above for lB, we recover the Stommel’s boundary layer width lB= d/2 =S . The 

discussion above suggest that the beta effect and the friction are critical for the selection 

of the boundary layer in the west: the beta effect creates an east/west asymmetry 

associated with the Rossby wave, while the friction captures energy within a narrow 

boundary layer. The friction here is the higher order dynamics on the Sverdrup flow and 

enables us to establish the basin-wide steady circulation.  

 

N1: We have seen another analogy of wave adjustment to an equilibrium state. We can 

compare the three types of adjustment in the following table. They share many similar 

features and in essence all represent the adjustment from one equilibrium to another. 

Equilibrium State Transient Waves Adjustment 
Processes 

Rotation Effect 

Rest state, 
Flat surface 

Gravity waves Gravity wave 
adjustment 

f=0 

Geostrophic 
balance  

Inertial-Gravity 
waves 

Geostrophic 
adjustment 

f0 

Sverdrup flow 
and WBC 

Rossby waves Circulation spin-up 0 

 

N2: The effect of stratification. 
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The Sverdrup flow is the vertically integrated transport and is independent of 

stratification (in the absence of bottom topography, as seen from the derivation of general 

Sverdrup relation  (3.2.4) from the planetary geostrophic model. Therefore, the Sverdrup 

relationship remains valid in the stratified ocean, as long as there is no bottom 

topography. The Sverdrup relation, however, does not tell the vertical structure of the 

flow. In the case of a stratified ocean, we can show that there is no flow in the subsurface 

ocean at the final steady state. This follows because the linearized density equation 

becomes now: 

   wz = 0  

and therefore  

w=0 

if  the stratification does not vanish z0. With the meridional boundary, continuity 

equation further shows that u=v=0 beneath the Ekman layer. Therefore, the Sverdrup 

flow transport has to be trapped singularly beneath the Ekman layer as a delta function. 

 

 

 

 

 

V 

Depth 

Barotropic 
case 

Baroclinic  
case 
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Appendix: Rossby wave adjustment in a 1.5-layer QG model: 

∂tq+β∂xψ=we(t) 

where the PV is  

q=∂xxψ+∂yyψ-ψ/L2
D. 

The equation is nondimensionalized such that β=1, L2
D=1, The variables are 

nondimensionlized with ψ by βL2
D, x by LD and t by 1/ βL2

D,. 

Case 1: Initial value problem: initial short wave case 

Case 2: Initial value problem: initial long wave case 

Case 3: forced wave radiation, fast forcing (σ=2), 

Case 4: forced wave radiation, slow forcing (σ=0.5), 

Case 5: forced wave radiation, ultra-slow forcing (σ=0.1), 

Case 6: spin-up forcing, Sverdrup flow and the western boundary current 
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Case 1a 
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Case 1b 
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Case 2a 
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Case 2b 
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Case 3a 
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Case 3b 



AOS611Ch.3,  Z.Liu, 01/21/2014 

Copyright 2014, Zhengyu Liu 

40

Case 4a 
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Case 4b 
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Case 5 a 
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Case 5 b 
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Case 6 a 
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Case 6 b 
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Questions for Chapter 3 

Q3.1. What happens to the western boundary layer when beta is reduced? Does the 

western boundary layer still exist when beta vanishes? Why? 

Q3.2. Can the atmosphere have western boundary intensification and western boundary 

current? Where do you think it most likely to occur? 

Q3.3. An island exists in a northern hemisphere ocean basin. Suppose a uniform westerly 

wind stress is switched on at t=0, how would the ocean response? Would there be a 

circulation at its final state? 

 

 
 
 
 
 
 
 
 
 
 
 

Island
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Exercises for Chapter 3 

 

E3.1. (Ekman Spiral) Suppose the Ekman layer is governed by -fv=Azzu,  fu=Azzv 

where the viscousity A is a constant. For a given wind stress in  y direction,   

Azv|z=0 =/,  verify that the Ekman layer solution satisfies 

 u=V0cos[/4 + z/DE]exp(z/DE),  v=V0sin[/4 + z/DE]exp(z/DE). 

where V0=21/2/( DEf), and  DE =(2A/f)1/2. D iscuss the structure of the Ekman spiral. 

 

E3.2.(Ocean circulation in the presence of topography) A homogeneous ocean in a 

Northern Hemisphere ocean basin is forced by a negative  wind curl. The ocean floor has 

a slope that shallows towards the east. Suppose the linear QG dynamics applies and the 

friction is bottom friction (or Raleigh friction) such that the flow is governed by 

  J(,  y+h) = curl  - r 2 

where  h = f0hB/H and hB = ax is the bottom topography with  a>0.  The wind curl is 

negative within the basin curl  <0 everywhere. (a) Find the interior ocean circulation,   

(b) draw schematically the basin circulation and describe the location of the boundary 

layers. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

X=0 X=1 

Y=1 

Y=0 

z 

x 

hB
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E3.3. (Advective-diffusive boundary layer) In a 1-D pipe 0≤x≤1, the temperature of the 

fluid is governed by the steady advective-diffusive equation   uxT= A xx T, where u is a 

constant velocity and A>0 is a constant diffusivity. The boundary conditions are:  

T(x=0)=0,  and T(x=1)=1.  

(a) Find the exact solution analytically, for the three cases: u>0, u=0 and u<0.  

(b) Under what conditions, there exists a boundary layer? Where is it?  

(c) Plot some examples. 

(d) Do you see a similarity of the above result with the Stommel’s boundary layer in a 

wind-driven gyre.  

 
E3.4: (Wind forced oceanic response) An open upper ocean is governed by the 1.5-layer 

QG model 
H

wf

L
E

x
D

t
0

2
)(  

, where the Ekman pumping forcing has the form 

wE(y, t)=w0 cos(σt-ly).  (a) What is the forced oceanic response if the ocean is unbounded 

in x?  What happens when the forcing frequency σ approaches zero? (b) What is the 

forced oceanic response if the ocean is bounded by an eastern boundary at x=0?  What 

happens when the forcing frequency σ approaches zero? (c) Is it possible the oceanic 

response in (b) is also limited east of a western boundary at xw (<0), especially in the case 

of forcing frequency σ approaching zero?  

 

E3.5: (Wind forced oceanic response) Repeat E3.4, but keep the relative vorticity such 

that the equation is 
H

wf

L
E

x
D

t
0

2
2 )(   .  

 

E3.6: (Planetary wave basin mode) In a rectangular basin ,0,0 YyXx    find the 

baroclinic planetary wave basin modes that satisfy the eastern boundary condition and 

basin wide mass conservation condition. In the QG context, the planetary wave equation 

is 0  xt C , where C=LD
2 =g’D/f0

2; the eastern boundary condition of no 

normal flow is equivalent to )(| toXx   (NOT necessarily 0!) and  the basin wide 
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mass conservation becomes .0
sin

  dxdy
Ba

t   The basin normal mode can be assumed of 

the form ),( yxGe t  .  (a) To satisfy the equation and the eastern boundary condition, 

show that the solution has the form 
)(

C

x
t

Ae





 , where A is a constant. (b) To satisfy 

the mass conservation condition, show that the eigenvalues are =2ni/T  (n=1, 2, 3….) 

where T=X/C is the transient time of the Rossby wave across the basin  (c) Plot the 

eigenfunction of mode 1 and 2 at the phases t=0, i/2, i and i3/2. (d) How does the 

eastern boundary change with time? (e) Interpret the formation process of the planetary 

wave normal mode, in light of the basin adjustment study of Liu et al., 1999 (JPO, 29, 

p2383-p2404).  (f) If the planetary wave speed varies with latitude (that is C=g’D/f2 and 

f=f0+y), would the basin mode still be neutral modes? 

 

E3.7: A homogeneous ocean is forced by a zonal wind stress that changes from a 

westerly at the northern boundary to easterly in the southern boundary (so the wind curl 

is negative). Draw qualitatively the circulation pattern for three cases. 

a) f=0 (no rotation),  b) f>0, but =0 (f-plane), c) f>0, >0 (beta-plane).  

In each case, state if there is a boundary current, and if yes, where it is located.  

 

 

 

 

 

 

 

 

 

 

 

 

y 



y 



y 



a) f=0 

b) f>0, =0  

c) f>0, >0  


