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Ch.2.  Shallow Water Rossby Wave Dynamics 
 

Sec. 2.1.   Quasi-Geostrophic Equation    

1. Nondimensional Equations 

To focus on low frequency variability, we would like to filter out the high frequency 

modes in the shallow water equations. Mathematically, it will be convenient if we can 

have a single equation in a single variable to govern the variability of large-scale flows. 

The derivation of a simpler set of equations for specific temporal and spatial scales is 

accomplished usually with perturbation method. 

 

We first nondimensionalize the shallow water equations. Denoting dimensional variables 

with an *, we have 

     (u*, v* )  U(u, v),  ,** KK NDzB � �   BB Nzz  * ,    (x*, y* )  L(x, y),    t*  Tt,  

where  u, v, Bz ,K, x, y, t   are all O(1) dimensionaless variables.  The shallow water 

equations can be written in the dimensionaless variables as: 
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Assuming a beta-plane f  f0 � ELy  f0(1 �
EL
f0

y) and dividing the u- and v-equations 

by f0U, we have the nondimensional momentum equations 
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Dividing the mass equation by UD/L, we have the nondimensional mass equation 
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N G  and in dimensionaless parameters as 
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We are interested in the flow with: 

(1) a slow time scale (relative to 1/f) such that HT �� 1  (small KnGe:b No.), 

(2) a large scale or weak flow such that  H  << 1  (small Rossby No.)               

(3) a weak forcing and dissipation so that G ~ O(H) <<1     (or G ~ HE ,      E  ~  O(1) ). 

In the momentum equations, assumptions (1)-(3) lead to the first order balance between  

the pressure gradient force and the Corilois force, such that LgNUf /~0 . This gives the 

scale of the pressure anomaly in terms of those of velocity and space as  

 

 

Furthermore, we require that the surface elevation is small compared with the total depth.  
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LF as the Froude number, we therefore have 

1~~~
2

2

0

2
00 �� �¸̧

¹

·
¨̈
©

§
� HHKG F

L
LL

Lf
U

gD
f

gD
ULf

D D

 

or 

(4) F<< O(1/H) 

Therefore, the scale can’t be too much larger than the deformation radius. For synoptic 

processes with L ~ LD, this condition is satisfied. With assumptions (1)-(4), we have  

G  d  O(H)  <<1 .  

 

The other condition on the (meridional scale) of the motion is 

(5) b ~ 1~/~
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or  b ~ JH  with  J  ~ O(1). This requires that L can’t be global  (~ a). Finally, we assume 

that the time scale is comparable with the advective time scale 

(6) 
U
LTorT ~~ HH  . 

 

The nondimensional equations can be written as: 
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 (2.1.1a,b,c) 

The variables are expanded as  
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We will collect terms of the same order in (2.1.1) and derive the leading order equations.  

 

2.      O(1) Equations 

 

Collecting terms of order O(1), we have the geostrophic balance 

                  

�v0  �w xK0

u0  �w yK0

w xu0 � w yv0  0

�

®�
°�

¯�°�
             (2.1.2a,b,c) 

This is the same as the low frequency Z=0 geostrophic mode studied in section 1.5. As 

discussed before, geostrophic balance is degenerated: any pressure field satisfies the 

equation! The deterministic part is at the next order. The balance itself is simply a self 

consistent diagnostic relationship.    

    

Note 1 Why large scale tends to be geostrophic? 

Consider the u-equation, wtu � uw xu � vw yu � fv  �gKx � Aw xxu . The only term that is 

independent of spatial scale (at low frequency) is the Coriolis force fv. Therefore, as 

spatial scale increases, all the terms decrease except for the Coriolis force. For large 
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enough L,  fv has to be the dominant term to balance the pressure gradient force, that is 

geostrophy!   

 

Note 2 What happens for high topography? 

In the above, we have assumed that the topographic height is low compared with the total 

depth of the fluid 
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)(
)(

dd HG OO
DO
zO B  

For high topography, 1~
)(
)(

DO
zO B  . The flow, instead of climbing over mountains, flows 

around mountains. 

 

3.  O(H)  Equations 

At the next order, we have the equations          
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)3.1.2()3.1.2( ab yx ww �  gives the vorticity equation 

( )( )w w w w w w w J w wt x y x y x y x y y xu v v u u v v E E� � � � � �  �0 0 0 0 1 1 0   

 Plug in (2.1.3c) to eliminate the divergence, we have the quasi-geostrophic potential 

vorticity equation (QGPV) 

 

                                 ( )w w wt x yu v curlE� �  0 0 3            (2.1.4) 

where  

)( 000 Byx zFuvy ���� 3 KwwJ  

 is the QGPV. Furthermore, since u0  �w yK0 , v0  w xK0,  ,we have a single equation in 

K0  : 
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In the original dimensional variables, we denote the geostrophic component of the 

velocity as ),,(),( 00 vuUvu gg   and define the geostrophic streamfunction   as               

Kw\wKw\w ygyxgx f
gu

f
gv

00

, �{ {  

This implies that the streamfunction is related to the surface elevation as 

K\
0f

g
       (2.1.6) 

 The QGPV is written in terms of \ as 

 

         ¸̧
¹

·
¨̈
©

§
 

U
Fcurlq

Dt
Dg                      (2.1.7) 

 where   

),()( qJqqvu
Dt
D

tygxgt
g \wwww � ��  

and the QGPV is 

 
B

D

B
o

g

z
D
f

L
yf

z
D
f

yfQ

0
2

2
0

0 )(

����� 

���� 

\\E

K[E
   (2.1.8) 

Note 3  Derive QGPV from the SWPV. 

 

 

 

 

 

 

With small surface elevation and bottom topography K/D, zB/D <<1, we have 
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Note 4    Quasi-geostrophy and Geostrophy 

On a f-plane, geostrophy has no divergence and vertical velocity at  all. The quasi-

gesotrophy is geostrophy only at the leading order. Ageostrophic  effect appears at order 

O(H ) as  u1, v1,K1 . Indeed, 

           > @ )0(1)()( 1000 z��v��� � butOyvuvugfv yxtx HEwwwHKw      
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Accordingly, the vertical velocity is also reduced 
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Thus, rotation suppresses divergence and vertical velocity (by O(H)). Although small, 

however, the vertical motion is extremely important for the evolution of the system. 

 

 

 

 

 

 

Note 5: Diagnose secondary circulation at the jet entrance/eixt associated with 

ageostrophy:  for an upper level jet (geostrophic) u=U(x), the ageostrophy residual is 

           > @ > @ UUuvuuvugfv xyxtyxtx wwwwwwwHKw |��|�� � )()( 000      

Therefore, in the entrance of the westerly jet 0!UU xw , we have  
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That is there will be a northward (ageostrophic) flow across the jet (isobar), which will be 

associated with ascending in the south and descending in the north. The opposite occurs 

in the jet exit region. Therefore, the ascending region south of the jet entrance and north 

of the jet exit are usually the regions of severe storms. This explains the severe storms in 

the East Asia and North America, which are to the south of the entrance regions of the 

North Pacific jet and North Atlantic jet.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Energetics of a QG System 

Before deriving the energy equation of the QG equation, we first notice the identity 

])(
2
1[)( 2\ww\\ww\w\w xtxtxxxt �� �                (2.1.9) 

The energy equation of the QG model can be derived by mutiplying -\ on the QG 

equation as : 

0),(  �� QJQt \\\w . 

With (2.1.9), we have 

u0~U v1v1 
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It is also straightforward that  
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Notice 

          J(A, B)  w x Aw yB � w y Aw B  w x(Aw yB) � w y(Aw xB)  

and take x,y boundary conditions as rigid wall or periodic, we have  
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This is the conservation of the total energy: 

                      wt (KE � APE)dA  0
A
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where the QG KE and QG APE are 
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 The ratio between the KE and the APE is therefore 

                    
KE
APE

 
(\ / L)2

(\ / LD )2 v
LD

L
§�
©�

·�
¹�

2

 

Therefore KE is comparable with the APE for synoptic scales, LvLD, but becomes 

negligible relative to the APE for planetary scales L>>LD.                  

        

5. Steady Geostrophic Flow    

At steady state, QGPV becomes  
                         J(\ , Q)  0  

That is the flow is along Q-isoline, or  

                          Q  Q(\ ). 

 

Example 1:  

On a f-plane, with a bottom topography zB(x,y), 

The streamline will be along the isobar. 
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Example 2: 

On a beta-plane without bottom topography,  

The steady flows are purely zonal.   
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Sec.2.2    QG Rossby Waves  

We now study small amplitude motions in the QG system. We will assume a mean flow 

without shear 

             ³ � � 
y

yUdyyU )(\  

and  a slope bottom topography varying only with latitude 

                                    0hyzB �/  . 

The mean QGPV is  
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 The total streamfunction is separated into the mean and perturbation parts 
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with  \\ ��'  . Accordingly, the PV is also separated into two parts    
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in the absence of external source and sink, the linearized QGPV becomes 
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This is a constant coefficient equation and therefore the solution can be assumed of the 

form  ^ `)](exp[Re~' tlykxiA Z\ �� .  Substitute this into (2.2.3), we have 
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where 222 lkK �  is the total wave number. For nontrivial solutions, the amplitude 

remains nonzero Az0. This gives the dispersion relationship for the Rossby wave as 
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or in phase speed 
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The Rossby wave propagates only in one direction – westward, relative to the mean flow 

advection. This is in contrast to the Inertial-Gravity waves which propagates in all the 

directions. These I-G waves have been filtered out in the QG equation.  Filtering out IG 

waves also implies an infinitely fast geostrophic adjustment time (or the IG wave 

propagate infinitely fast). As a result, the flow  is always in geostrophic balance. 

 

Waves of similar property can be found in the spherical coordinate, earlier by Haurwitz. 

The forced problem can be traced to the study of Laplace on tides about 150 years ago. 

However, it is Rossby who first realized that the beta-effect is the most important  

mechanism responsible for all the major features of these large scale waves.  

 

1. Dispersion Relationship  

In the simplest case of U=0, /=0, we have E  E . The dispersion relationship (2.2.4) 

becomes 
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The scale of the frequency satisifies 
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Therefore, the Rossby wave has a low (compared to 1/f) frequency, in contrast to the high 

frequency I-G waves. Indeed, on a f-plane, the Rossby wave is the zero-frequency 
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geostrophic mode (see Sec.1.5), in other words, the geostrophic mode becomes Rossby 

wave when f is not a constant..  

 

 

 

 

 

 

 

 

 

2. Barotropic Limit ( Rigid lid approximation) 

 When the scale of the waves are much smaller than the deformation radius, L<<LD
2, we 

have the dispersion relationship 

                   Z  Uk �
Ek
K 2        (2.2.5) 

This is the barotropic limit for Rossby waves, because barotropic Rossby waves have 

large deformation radius (thousands of kilometers). Now the flow is nearly 

nondivergence, because the free surface induced divergence, which is represented by K v 

\/LD
2,  is now negligible.  The negligence of the free surface, however, does not mean 

the absence of surface pressure. One can imagine this case as a water with vanishing free 

surface elevation, but finite pressure gradient, or the rigid lid approximation.   Since 

LD
2=gD /f2, the barotropic limit is easily realized in the limit of a deep water or strong 

interface gravity. 

 

3. Mechanism of Rossby Wave Propagation and the “E-effect” 

 To consider the mechanism of Rossby wave propagation, we consider the simplest case 

of U=0, 0 By zw , and L<<LD, we have now EE   and the PV conservation becomes 

the conservation of absolute vorticity 0)(  �[f
dt
d . A line of particles at latitude f0 

initially are at rest and therefore have the initial PV q=f0. A northward perturbation of a  

Z 

k 

I-G wave 

Zmax=-El/(2l2+LD
-2) 

Rossby wave 

High frequency Z>f, 
divergent �xv/(U/L)vO(1), 
strong vertical velocity W/U v D/L, 
propagate in all the directions  

Low  frequency Z<<f, 
quasi-nondivergent �xv/(U/L)<<1, 
weak vertical velocity W/U<< D/L,
propagate towards the west only 
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particle will generate a negative relative vorticity ]<0, because of the PV conservation 

such that f+]=f0.  The induced anticyclonic vorticity around this particle induces 

northward migration of particles to the west and therefore the perturbation appears to 

propagate westward. 

 

 

 

 

 

 

The discussion above also indicates that the restoring mechanism of the Rossby wave, in 

general, depends on the gradient of the background PV or the generalized beta, rather 

than the planetary vorticity alone. For example, bottom topography can generate an 

equilvalent beta effect. Assuming 0 E , but 0!By zw , we will have 

0/ ! Hzf ByowE , and the induced Rossby wave also propagates  westward. 

Therefore, a northward shallowing topography has the same effect as the planetary beta, 

and therefore can be called the topographic beta.  

 

What do we really mean by  “westward” in the case of the generalized Rossby wave?     

In general, the mean PV field q(x, y)  can be of any shape. In the absence of advection, 

the generalized perturbation equation is 

           0),'(  �c qJqt \w        

The generalized Rossby wave will propagate “westward” if we assume the mean PV 

gradient �Q points towards the “north”.  

 

 

 

 

 

 

Low Q

�Q 

Direction of local Rossby
Wave propagation 
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westward fn   =>   ]p 
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4. Non-Doppler-Shift  Effect 

One interesting and peculiar feature of long Rossby wave is the so called Non-Doppler-

shift effect. In the presence of advection, the Rossby wave speed is (2.2.5) 

22 ��
� 

DLK
Uc E

 

where the first part is the advection effect or the Doppler shift effect, and the 2nd part is 

the generalized beta-effect. In the long wave limit, k LD
2 2�� � , we have 
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The wave speed is now independent of the mean flow U, the so called non-Doppler-shift 

effect! This apparent non-Doppler shift effect is due to the cancellation of the dual roles 

of the mean flow U that induces advection and mean PV gradient. Take a U>0 as 

example. On the one hand, U advects the wave eastward; on the other hand, U is 

accompanied by a northward gradient of pressure, or a northward decrease of mean layer 

thickness. The latter enhances the planetary beta and therefore induces an additional 

westward propagation. This additional westward propagation cancels the eastward 

advection such that there is no net effect of the mean flow on the wave propagation.  

 

 

 

 

 

 

It should be pointed out that the complete non-Doppler shift occurs here because both the 

flow and wave have the same vertical structure, the barotropic mode structure in the case 

of the shallow water system and the 1st baroclinic mode structure in the case of the 1.5-

layer system. In the general case when the flow and the wave have different vertical 

structures, the complete non-Doppler shift effect does not exist anymore (see Chapter 5).  

 

5. Wave structure 

U

K 

gwyK= -fU 
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In general, the QG Rossby waves are transverse waves, because its velocity field is 

perpendicular to the direction of the wave vector (or phase propagation). With 

                  xy vu '''' , \\  � , 

we have '','' \\ ikvilu  � , and therefore 

    0),(),(),()','(~'  �� �� lkkllkvuku  

        

 

 

 

 

 

 

 

Therefore, there is no self-advection 

       0)(')(  �v�vc�c kuvlukqvu yx ww�  

Thus, a plane wave is also an exact solution to the full nonlinear equation because now 

     0''' '  ���c�� qQuqUqq
Dt
D

xxt uww  

(This is not true in the cases (i) on a sphere, (ii) with superimposition of plane waves and 

for iii) waves in  shear and dissipation) 

\’max C, K 
\’min 

u’=0 

\’max 
u’=0 

u’=0 Phase lines 
u’,v’ \’, 
K’=const 
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Sec. 2.3.    Group Velocity and Energy Propagation of Rossby Waves           

The most important reason that we study waves is that wave propagation is one of the 

two means by which fluid carries energy from one place to another  (the other is 

advection). In the case of the geostrophic adjustment, it is the I-G wave that takes the 

ageostrophic part of energy away and therefore achieves the geostrophic balance. (see 

Sec. 1.6.)  

 

1. Group Velocity of Rossby Waves 

Each single plane wave is valid only for a disturbance of infinite long wave patch. The 

phase speed for each plane wave only represents the speed of the phase. The energy of 

the wave, however, is represented by its amplitude, not its phase. In other words, the 

amplitude is represented by the envelop of the wave. The energy propagation speed 

therefore is the speed of the wave envelope, which could be different from the phase 

speed. The speed of energy propagation will be called the group velocity Cg. The group 

velocity can be derived as 

Cgx=wZ/wk,  Cgy=wZ/wl. 

In the case of the Rossby wave, take the case of U=0 as example, we have now 

  222 ���
�

 
DLlk

kEZ         
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C 

Propagation of a wave packet 
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For a given l, the maximum frequency occurs at KM
2  l2 � LD

�2  with mK2/|| max EZ  .  

The absolute maximum frequency (for all l) occurs at l=0 with ,2/|| 2
max DLEZ   and 

1� Dm Lk .   Therefore, the group velocity of the Rossby wave is westward for long waves, 

but eastward for short waves (although the phase velocity is always westward!). In 

addition, the maximum group velocity is 8 times faster towards the west than towards the 

east.  This east/west asymmetry of group velocity has important implications to the 

general ocean circulation, which also has a strong  east/west asymmetry (see Chapter 3). 
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long wave limit 
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l=0 

l=1 

l=2 
Cg=wZ/wk<0 

Cg=wZ/wk<0 
ELD
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Z 

Rossby wave dispersion relationship 

k 
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-E/(l2+LD
2) 

E/8(l2+LD
2) 

Long waves

Short waves

Rossby wave group velocity 



AOS611Ch.2, Z. Liu,01/20/2015 

Copyright 2014 Zhengyu Liu 

18

At the long wave limit, kLD
2EZ � , we therefore have the group velocity the same as the 

phase velocity, c
k

L
k D    

ZE
w
wZ 2 . The long Rossby waves are therefore nondispersive 

waves. The wave packet propagates without changing its shape, because all the single 

wave components propagate at the same speed. In general, 

 
k
ckc

k
ck

k w
w

w
w

w
wZ

�  
)(

. 

Therefore, the wave is nondispersive only when  0 
k
c
w
w . For a general nondispersive 

wave, different wave component travels at different speed and therefore the initial wave 

packet will change shape and disperse. Notice that each single wave component extends 

into infinity, the shape of their summation is therefore virtually unpredictable after the 

initial time if the different component travels at different speed. 

 

 

 

 

 

 

 

 

 

2. Energy Propagation Diagram 

There is a convenient way to judge the propagation direction of Rossby waves. On the 

one hand,  for a fixed frequency, the wave vectors falls on a circle in the (k,l) plane, 
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On the other hand, one can show the group velocity of a wave packet is parallel to the 

radius vector on this circle (pointing outward for k>0 and vise versa):                 
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The dispersion diagram is very convenient for judging the direction of wave energy 

propagation based on the information of the wave phase. 

Case 1:  

 

 

 

 

 

case 2:  
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Fig.2.1: Oceanic Rossby wave 
propagation 
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Fig.2.2: Propagation of a Rossby wave packet 
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Fig.2.3: Rossby wave refraction (beta-dispersion) 
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Sec.2.4.  Rossby Wave Reflection and Normal Mode 

Here we study the reflection of a plane Rossby wave on a solid wall. Furthermore, we 

will study the wave field in a channel.   

 

1.  Reflection on y=const 

First, we study the reflection on a zonal wall 

 

 

 

 

 

 

 

 

 

 

 

Assuming an incident wave of the form:            

    }Re{ )(
11

111 tylxkieA Z\ ��       

The energy of the incident wave propagates southward (Cgy<0, l1<0) on the wall at y=Y .  

The wave field \1 itself does not satisfy the solid wall condition (no normal flow). 

Therefore, when it hits the boundary, it excites a reflected wave \2 such that the total 

velocity field satisfy the boundary condition  

            \  \1 � \ 2 |y Y  0 .           (2.4.1) 

Since this condition is satisfied for all x and t, it is obvious that the frequency and along-

shore wave number of the reflected wave are the same as the incident wave 

k2=k1,  Z2=Z1.         (2.4.2) 

Therefore, the boundary condition (2.4.1) reduces to 

             A2e
il2Y � A1e

il1Y  0      (2.4.3) 

K1 

Cg 

K2 

Cg 
Incident  
wave 

reflected 
wave 
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Since both waves are free Rossby waves, they both satisfy the dispersion relationship, 

such that   

          �
Ek1

k1
2 � l1

2 � LD
�2  Z1  Z2  �

Ek1

k1
2 � l2

2 � LD
�2     (2.4.4) 

 This gives 
       l2  rl1 ! 0     

The final choice of l2 depends on the energy radiation condition. The reflected wave has 

to propagate energy away from the wall, Cgy>0, opposite to the incident wave, to keep 

the total energy flux zero across the wall. Thus, we should have 

       l2  �l1 ! 0            (2.4.5) 

and the amplitude of the reflected wave is derived from (2.4.3) as 

  A2  �A1e
2il1Y        (2.4.6) 

The reflected wave is therefore 

             \ Z
2 1

21 1 1 1 � � �Re{ }( )A e ei k x l y t il Y  

The total flow field is then  

        > @ )](sin[}Re{}Re{ )()( YyleeiAeeeA txkiYilYilyilyiltxki � � ����
11

2
1

11111111 2 ZZ\      (2.4.7) 

Now, the boundary y=Y is a node point.          

 

2.   Zonal  Channel 

 

With two parallel walls, or in a zonal channel, the solution can be derived using the 

solution of a single wall reflection solution (2.4.7). 

 

 

 

 

 

 

   

Taking the form of the solution (2.4.7), we have  

  \  Aei(kx�Zt ) sin(ly)      

y=Ly 

y=0 
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to satisfy the boundary condition at Y=0, and 

             \  AeilLyei(kx�Zt ) sin[l(y � LY)]    

to satisfy the boundary condition at Y=Ly. Since they have to be the same total wave 

field, which satisfy both boundary conditions simultaneously, we have 

                 eilLy sin[l(y � LY )]  sin ly , 

 

               eilLy eil (y�Ly ) � e� il( y�L y )> @ eily � e�ily                   ue�ilL y  

This leads to 

   )()( yy LyilLyil ee ����             

  e2ilLy  1    

 i.e.  

0)2sin(,1)2cos(   yy lLlL  

 

Therefore, the meridional wave number are quantitized as 

l  ln  
nS
Ly

  ,                 n=1,2,............    (2.4.8) 

The total streamfunction is then 

 ^ .sin}Re )( ylAe n
tkxi Z\ �       (2.4.9). 

Compared with the half-plane solution (2.4.7), the solution (2.4.9) has two node points on 

the two walls. Furthermore, the cross-channel wave number is quantitized. Therefore, the 

wave forms normal modes in the y-direction. The normal modes are formed after many 

reflections on the two parallel walls.  The key for the formation of the normal mode is 

that the wave energy has to be trapped between two boundaries. 

 

Note: The Eigenvalue Approach 

The method above to derive the reflected wave on a half plane and channel is physically 

more illuminating, but it is not a general mathematic approach. The same conclusion can 

be obtained mathematically using eigenvalue approach. 
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Since the wall is at y=constant, we will need to solve the y structure. Assume the form of 

the total streamfunction solution as  

)()( 11 yGAe txki Z\ � , 

where G(y) is a function to be determined by the boundary condition. Here, the along-

shore wave number k and frequencyZ  already taken the values of the incident wave. The 

equation (2.2.3) in the absence of the mean zonal flow U and  bottom topography is 

0)( 2
2  ��� \Ew\\w x

D
t L

. 

Insert the streamfunction into this equation, we have 

0)(]))([( 22  ������ �
yyD GiGikLki ZEZ . 

This gives an equation for Y(y) as 

0]/[ 22  ��� � GkLkG Dyy ZE . 

The general solution for Y is therefore 

  yy beaeyG OO �� )(  

For the half plane problem (y>0), we have G(0)=0 and the solution is finite in y>0, this 

gives 

  a+b=0 

and therefore 

  )()( yy eeayG OO �� . 

To assure the finite disturbance away from the wall, we need il O and therefore 

)sin(2)()( lyaeeayG ilyily  � � . 

Here l should be the cross-wall wave  number of the incident wave.  Indeed, the Y(y) 

function is the sum of the y function part of the incident and reflected wave.  We 

therefore recovers the half-plane solution in (2.4.7) (with Y=0).  

 

For the channel problem, we have the boundary conditions G(0)=G(Ly)=0. One can 

easily verify that the solution gives the quantitized cross-wall wave number as in the 

solution (2.4.9).  This eigenvalue approach is the more general approach usually used, 

because it can be applied to more complex reflection problems, including the ones 
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discussed below. The discussions in 1. and 2. simply illustrate that the eigenvalue 

problem is physically equivalent to the wave reflection problem. |||| 

 

3.  Periodic in X 

The channel condition is similar to a periodic condition as shown below. 

 

          

 

 

 

 

Assuming the flow field is periodic in x with a length of Lx, that is )()( xLxx � \\ . The 

solution therefore satisfies 

                               )( xLxikikx ee �  

Therefore, 

        1 kiLxe  

or 

               cos(kLx )  1, sin(kLx)  0. 

Therefore, the zonal wave number is also quantitized as 

                
x

m L
mk S2

      

The periodicity condition guarantees the total energy conservation (energy flux out on 

one boundary is compensated by energy flux in from another boundary). This is similar 

to the case of a channel. Finally, in a meridional channel which is periodic in the x 

direction, the corresponding free mode (normal mode) has quantitized frequencies: 

         Z  Zm, n  Z (km , ln ) ,   m, n=1, 2, …. 

4. Reflection on a x Boundary 

 

 

 

 

y=0 

y=Ly 



AOS611Ch.2, Z. Liu,01/20/2015 

Copyright 2014 Zhengyu Liu 

31

 

 

 

    

      

An incident wave  \ Z
1 1

1 1 1 � �A ei k x l y t( )  impinges on the eastern boundary x=X, the 

reflected wave is assumed of the form \ Z
2 2

2 2 2 � �A ei k x l y t( ) . The solid wall reflection 

boundary condition requires \=0 on x=X for all the y and t. Thus, the meridional wave 

number and frequency of the reflected wave have to be the same as the incident wave 

             1212 , ZZ   ll  

This leads to the zonal wave number of the reflected wave as: 
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where “+” is for the short wave and “-“ for the long wave. Since the incident wave k1 has 

the group velocity eastward (short wave), the reflected wave must have a group velocity 

westward and therefore is a long wave, which has cgx � 0. This is necessary to oppose 

the eastward ( cgx ! 0) incident wave energy flux.  

5.  Basin Mode 

One can further discuss the Rossby wave modes within a basin. In principle, the presence 

of both the zonal and meridional channel walls quantitized the wave number in both the x 

and y directions 
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eastern boundary 
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The net energy flux is zero in any direction.  The reflection in both directions quantitized 

the wave number in both directions as. 

                    
»
»
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One can find the basin mode as:  

                  \ v cos
Ex

2Zm, n

� Zm ,nt
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The wave has a peculiar feature: it has westward phase propagation, but no net energy 

flux. 
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Sec.2.5   Forced Rossby Waves 

 

In general, observed atmospheric and oceanic variability are caused either by external 

forcing or internal flow instability. The flow instability is caused by the shear of the mean 

flow and the energy exchange with the mean flow. This will be discussed in chapter 6. 

Here we will focus on variability excited by external forcing such as wind stress and 

topography et al.. We will see that the free waves that we studied before are of critical 

importance in helping us understand these forced responses. In other words, the forced 

response can be understood in terms of free Rossby waves.  

 

In general, the forced linear wave response should have the same characteristics as the 

forcing. For example, if the forcing has a frequency Ω, the response should also have the 

same frequency. If the forcing has a speed of C, the response should also have the same 

speed C. Here, we consider two types of forced responses, all caused by a steady flow 

over mountains. The forcing can therefore be considered as a forcing speed of C=0. The 

first type involves the flow over an isolated mountain while the second type over periodic 

mountain. The former concerns with the excitation of free waves and wave energy 

radiation into the far field, while the latter concerns with the resonance. 

 

We first introduce the concept of stationary wave number. The general dispersion 

relationship of the Rossby wave (2.2.5) can be written as:             

                         c  U �
E

K2 � LD
�2  

U(K2 � Ks
2 )

K2 � LD
�2      (2.5.1) 

where,  in the absence of a mean topography,       

                           
ULU

K
D

s
EE

 � 2
2 1              (2.5.2) 

is the stationary wave number. (Here, we will mostly discuss the wave in terms of the 

wave speed C, because we are considering the mountain forced response of a phase speed 

C=0. Forced response for a given frequency will be better discussed in terms of the 

frequency in the dispersion relationship (see homework E2.7, E2.8)). With a typical wind 

of U=10m/s, the corresponding  wavelength is about 5000km A general Rossby wave 



AOS611Ch.2, Z. Liu,01/20/2015 

Copyright 2014 Zhengyu Liu 

34

propagates in different directions according to its wave length relative to that of the 

stationary wave. 

     long wave,                        K2 � Ks
2 � c � 0 ,  westward propagation, 

     stationary wave                K 2  Ks
2 � c  0,  stationary 

     short wave                       K 2 ! Ks
2 � c ! 0 ,   eastward propagation.  

 

1. Flow over isolated mountain  

 

Consider an infinite beta-plane, a uniform mean current U passes over an isolated 

mountain T. It is straightforward that the flow field locally near the mountain has to be 

distorted. The most interesting question here is if the mountain can also generate remote 

responses away from the mountain. 

 

 

 

 

 

Except inside the isolated T, zB=0, the response, if available, is simply free Rossby waves 

of the form: 

             ikctlykxie �� )(ˆRe(\\ )       (2.5.3) 

with )/()( 2222 ��� Ds LKKKUc  as in (2.5.1). For our interest here, c=0 (stationary) for 

the fixed mountain, we have the wave length of the forced response as 

             )(2222 UKlkK s � .      (2.5.4) 

The remote response depends on the stationary wave number or in turn the mean flow 

conditions. 

 (i) U>0 

With a mean westerly wind, Ks
2 ! 0  according to (2.5.2). The forced response has a real 

wave number, corresponding to propagating solutions. This free Rossby wave radiates 

energy into the far field and produces strong response there.  The conclusion that only 

westerly wind can generate downstream response can also be understood from the   

T U 

zBz0 only  
inside T 
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handwaving argument in terms of the conservation of potential vorticity (see Holton, 

Figs.4.9,4.10). 

 

The example above demonstrates a general principle. For an isolated disturbance ei(kx-Vt), 

if the forcing frequency V can excite free wave (with real wave numbers), the disturbance 

can be radiated away to the far field. Otherwise, the response is trapped near the wave 

maker. 

The direction of the wave energy propagation can be further studied in the case of 

Ks
2>0. From the dispersion relation (2.5.1), we have the group velocity for a general 

Rossby wave as:      

     kcg 222 )(
2)0,(),()0,(),(),(

��
� �   

D
lkgygx LK

kc
l
c

k
ckccc E

w
w

w
wZwZw        (2.5.5) 

For a stationary Rossby wave, c=0 and K2=Ks
2 as shown in (2.5.1), the group velocity is 

kkcg 22222

2
)(

2
�� �

 
�

 
DsDs LK

kU
LK

kE      (2.5.6) 

where we have used the stationary wave number ULK Ds /22 E � �  as in (2.5.2).  

Since  

02
22

2

!
�

 
�
Ds

x LK
Ukcg ,   

wave energy always radiates to the east of the mountain.  
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Furthermore, eqn. (2.5.5) shows that the group velocity of the stationary Rossby wave is 

in the same direction as the wave vector K! 

 

 

 

 

 

 

 

The dominant direction of the propagation depends on k/l, which will be determined by 

the shape of the mountain, or more precisely its dominant projection on ei(kx+ly). For a 

mountain like the Rocky Mountain, the dominant projection has k>>l, because of its 

dominant north/south elongated shape. Therefore, the dominant stationary wave response 

is eastward downstream. 

 

 

 

 

The Alpes is the opposite, with l>>k, because of its dominant east/west elongated shape. 

The dominant response therefore is north/south. 

 

 

 

 

 

 

 

Rocky
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Cg, K



AOS611Ch.2, Z. Liu,01/20/2015 

Copyright 2014 Zhengyu Liu 

37

The Tibet is more rounded with k comparable with l. The resulted response therefore 

tends to radiate in the northeast and southeast directions. 

 

 

 

 

 

 

The magnitude of the group velocity of the stationary Rossby wave can be derived from 

(2.5.6) as (for short waves such that 22 �!! Ds LK ) 

Dcos222
22

U
K
kU

LK

kUc
sDs

g  |
�

 
�

     (2.5.7) 

where the angle D satisfies Kk /cos  D , and it represents the angle of the wave vector 

with the zonal direction. For a purely zonally propagating wave l=0, we have cgy=0 and 

therefore 1cos  D . The eastward group velocity is twice the speed of the mean flow! 

 

(ii) Easterly wind, U<0:  

Under an easterly wind, we have from (2.5.2) ,02 �sK .  The forced response (2.5.3) has 

an imaginary wave number. Since the wave energy originates from the mountain, the 

forced response can’t be infinitely large away from the mountain. The only possibility is 

that the forced response decays away from the mountain. Therefore, the response is an 

evanecsent solution with only localized responses. The flowI decays with distance from 

T. In other words, under the easterly wind, no free waves exist to match the stationary 

wave number. So there is no wave energy radiating away from the mountain.The 

response in the far field is weak.  

 

Note 1. Stationary Rossby wave propagation on a sphere and Teleconnection: 

The propagation of stationary Rossby waves plays a critical role in climate study. At the 

climate time scale, we can treat the Rossby waves virtually as stationary. Its propagation 

can relate the climate in one part of the world to that in the other part. This is called 

Tibet 
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atmospheric “teleconnection”.  The atmospheric teleconnection becomes particular 

complex on a sphere. For a simple mean flow, one can show that the planetary wave 

propagates along a great circle (Hoskins and Karoly, 1981).  

 

 

 

 

 

 

 

 

 

An important observational evidence of the atmospheric teleconnection is the PNA 

(Pacific/North America Pattern).  This atmospheric teleconnection pattern enables the 

eastern equatorial Pacific SST anomaly, as occurred during the El Nino years, to  

affect the climate in the North America. Here, the forcing is a local thermal anomaly.  

 

 

 

 

 

 

 

 

Several things need to be kept in mind. First, cross-equator propagation is usually 

prohibited by the dominant easterly wind there. Second, if dissipation is strong enough, 

the waves will be damped heavily before it propagates far away. Third, similar wave 

radiation can be found in the ocean, such as the Gulf Stream eddy radiation.  Finally, with 

strong shear in the mean flow, wave reflection will be refracted such that waves tend to 

be trapped along westerly jet, or the so called wave guide (see later section 2.6).  
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2. Flow over sinusoidal topography       

Now, we consider a mean zonal flow over a periodic mountain confined in a zonal 

channel. 

 

 

 

 

 

The bottom topography can be represented as 

kxlyyxzB cossin),( ' ,      l  
S
L

  ,      

where the amplitude of the mountain has been assumed small relative to the total depth 
'
D

�� 1  

such that the dominant flow climbs over the topography (instead of circling the 

topography) and represents a weak linear response. Thus, the basic state has no 

topography  0 Bz   and the mean PV field is simply 

                               q  f0 � Ey �
Uy
LD

2  

                                qy  E �
U
LD

2  E  

The topography affects the perturbation PV 

                              B
D

z
D
f

L
q 0

2
2 )1( ��� c \    . 

Assuming the dissipation is a Rayleigh damping,  

       \O
U

O
U

2),,( �� � 
FF curlorvu  

The linearized PV equation for the perturbation is  

   \OEww 2)( �� c�c� vqU xt  

or in terms of the streamfunction as 

   Bxx
D

xt z
D
Uf

L
U wE\w\O\ww 02

2
2 )1)(( � ������     (2.5.8) 
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For convenience, we write the topography as 

                         ^ `lyez ikx
B sinRe '  , 

the forced response will take the form of 

^ `lyeikx sinˆRe\\    . 

Substitute these into the equation, we have 

                               ^ ` '� ���� �

D
Uf

ikikKLKikU D
0222 ˆ)( \EO . 

This gives the amplitude of the forced response as 

                             
12
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The corresponding surface elevation is therefore:                  

                   
12
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Uk
KiKK

Lg
f

S
D

O\K     (2.5.9) 

Without no friction,  O  0 , we have the amplitude as 

                         ˆ K� 
'

LD
2 (K2 � KS

2 )
      (2.5.10) 

When the forcing wave number is the same as the stationary wave number K=KS , the 

amplitude of the response is infinite and the phase has an abrupt change across Ks. This is 

the resonance response. In general, with dissipation, the response amplitude is finite. The 

amplitude maximum amplitude depends on the ratio of the dissipation and advective time 

scales. The larger the dissipation time scale, the larger the response amplitude. In the case 

of weak dissipation,  
O

KU
v

1/ W Diss ..

1/ W Adv.

 
W Adv.

W Diss .

 << 1,  

the amplitude is finite and the phase still shifts abruptly across the resonant wave number.  

In contrast to the isolated mountain case, now if the forcing structure fits the free 

wave, it generate resonant responses. This is also a general principle when the forcing is 

applied onto every point of the flow field. In the former case, the forcing is applied to an 

isolated region and the response, when free wave is excited, appears as remote responses 
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in the far field, but with a finite amplitude. In the latter case, the forcing is applied 

everywhere on the fluid, and the response, when free wave is excited, exhibits an 

amplified amplitude. In both cases, the understanding of the free wave is of critical 

importance for us to predict the response for a given forcing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is important to recognize that forced resonance is a general concept, which exists for a 

linear system forced by a periodic forcing. For the Rossby wave here, a more generalized 

forcing of the form ei(kx+ly-ω) can be used on the linearized QG equation (See E2.10 for an 

example of U=0). The periodic topography case in (2.4.6) is a special case of stationary 

forcing with ω=0 in the presence of a mean zonal flow. 
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Fig.2.4: Stationary Rossby wave response and 
atmospheric teleconnection 



AOS611Ch.2, Z. Liu,01/20/2015 

Copyright 2014 Zhengyu Liu 

43

Fig.2.5: Stationary Rossby wave on the sphere and E-P 
flux 
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*Section 2.6:  Non-plane Waves  

 

We have so far been studying plane waves. These waves only exist on an infinite domain 

and in homogenous medium.  In a more general domain and medium, a wave can be 

represented as the summation of various plane waves: 

                  }),(ˆRe{ )(³ �� dkdlelk tlykxi Z\\      (2.6.1) 

The plane-wave case is the special case with the spectrum\̂  being a G-function:  

),(ˆ 00 llkk �� G\ ,        (2.6.2) 

the general wave (2.6.1) reduces to a single wave  

}Re{ )( 00 tylxkie Z\ ��        (2.6.3) 

Such plane waves are rarely seen in reality because it requires homogeneous medium and 

an infinite domain. For more general cases, the wave group is a wave packet, which 

consists of waves at many wavelengths and we are most concerned with the propagation 

of the wave packet in an inhomogeneous medium.  

 

 

 

 

 

 

 

 

 

 

You may think that the energy of the wave packet is conserved during the propagation. 

This is not true if the mean flow has shear, so there is wave-mean flow interaction.  A 

more general conservation quantity, however, is the wave activity.  

 

 

\̂  

Plane wave 

Wave packet 

x

k 
\ 

k0 
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1.   Conservation of Wave Activity                

Consider a basic state of )(y< , the mean flow is 0),(   
<

� VyU
dy
dU . The 

background QGPV is:  

               22

2

0)(
DLyd

dyfyQ <
�

<
�� E  

For a small disturbance \’, we have the streamfunction 

                  ),,(' tyx\\ �<         

where  <��'\  and the flow   

                 u  U � c�u     

where    
c�u 

U
 <<1 (more precisely 

c�u 
U � c

 <<1). 

For later convenience, we first rewrite the northward QGPV flux c�v c�q  in the convergence 

form.      

                          2
2 ''

DL
q \\ �� c ,  
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yyxxx L
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Using the identities 
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 (2.6.4) 

we can write the PV flux as 

      )''(
2

')'(
2
1)'(

2
1

2

2
22

yxy
D

yxx L
qv \\w\\\w �

¿
¾
½

¯
®


�� cc    (2.6.5) 

Defining the E-P flux vector F as  
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F      (2.6.6) 

the PV flux can be written as the divergence of the E-P flux 

                   Fx� ccqvD 0U         (2.6.7) 

Now, we return to the linearized QGPV equation.  

                   GQvqU yxt  c�c� )( ww  

 Multiplied by c�q , we have 

                 GqQqvqU yxt c cc�
c

�
2

)(
2

ww  

  Again multiplied by yQD /0U  (which is a functoin of y), we have  

                A
yy

xt S
Q

GqDqvD
Q
qDU  

c
 cc�

c
� 0

0

2
0

2
)(

U
U

U
ww  

Therefore, we have:  

 

                     At SA  x���x� FU )(w      (2.6.8) 

where  

                       
yQ

qDA
2

02
1 c

 U       (2.6.9) 

 is the wave activity density per unit area.  Since  0 x� U  for QG flows, we can rewrite 

(2.6.8) as:        

                    At SAA  �x�� )( FUw      (2.6.10) 

This is the wave activity equation. It is important to realized that the equation is valid as 

long as <��'\  and there is no restriction on \’ being a plane wave at all.  This equation 

is also generalized Eliassen-Palm equation. The flux FU �A is the wave activity flux, the 

first part is due to advection by the mean flow, while the second part due to wave 

radiation relative to the mean flow.  

  

Since A and F are of quadratic form of the perturbation, they will have a higher 

harmonic/frequency component. In practice, A and F are made more manageable by 
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some kind of average (depending on the problem), such as the x-average, t-average or 

average over a wave length. (This kind of average makes no sense to a variable that is of 

linear on the perturbation, because it is always zero). Here, we take the zonal average, as 

in most cases.  

             (p)  
1

2L
P(x, y, t)dx  P (y, t)

� L

L

³ . 

Assuming either the disturbance vanishes at infinity, or the system is periodic in x such 

that P(-L)=P(L), we have 

                
wP
wx

§�
©�

·�
¹�  

1
2L

P(L) � P(�L)> @  0 

Averaging the wave activity equation (2.6.10), we have 

 

               wt A � w y (F y )  S A        (2.6.11) 

This is the shallow water version of the Eliassen-Palm equation, where the wave activity 

is 

            
yQ

qDA
2

02
1 c

 U        (2.6.12) 

and the E-P flux is 

            )(0 vuDFy cc� U .      (2.6.13) 

If further there is no source and sink, SA=0, we have the conservation of wave activity as 

            0)(  � yyt FA ww      (2.6.14) 

or wt A  �wy (F y ). This states that the accumulation of wave activity depends on the 

convergence of the E-P flux.  

 

One important application of the wave activity equation is the wave-mean flow 

interaction. We can easily show that the E-P flux also affects the mean flow. In the QG 

context with ∂xu+∂yv=0, the zonal momentum equation 

              xyxt Pfvuvuuu � ��� )()( www  

can be zonally averaged to give 
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0 cc� vuu yt ww  

where we have used      0  \w xv  using the QG approximation. Notice (2.6.13), the 

equation above can be written as 

                   00  � Fxt uD wUw         (2.6.15) 

or  with (2.6.14),  

00  � AuD tt wUw .       (2.6.16) 

This suggests that the wave activity and mean flow exchange with each other. The wave-

mean flow interaction occurs through the E-P flux convergence. (This can also be 

understood from the instability view later in Chapter 6: shear flow produces instability, 

and the unstable wave feedbacks on the mean flow).  

 

The above equations can be used to understand the negative viscosity. Consider a tilted 

wave in a sheared westerly jet,  

 

 

 

 

 

 

 

                      

In the middle of the jet, we have -wyFy<0 and therefore a decreasing wave activity wtA<0. 

The decayed wave energy is converted to increase the mean jet, i.e. wtu > 0 (in other  

words, because of the convergence of the Reynold stress). Therefore, in this case, the 

disturbance acts as a “ negative viscosity” to the mean flow (Starr, 1950).  

 

2:  Wave activity for almost plane waves 

1) Almost Plane Wave 

As discussed in (2.6.2), a plane wave has a spectrum of a delta function. Now suppose the 

wave spectrum is finite but of a narrow band width, 

x 

y Fy = -u’v’>0 

Fy = -u’v’<0 
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             Gk k0
�� 1                    Gl l0

�� 1     (2.6.17) 

we have from (2.6.1) that   
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Thus, M  is slowly varying in x, y, t. The wave packet  

]),,(Re[' TM\ ietyx       (2.6.18) 

is called an almost-plane wave, with the slowly varying part M as its envelope. 

 

(2) WKB approximation: (Wentzel, Kramers, Brillouin) (or WKBJ: with Jeffreys) 

Now, consider an almost plane wave,  

              ]),,(Re[' TM\ ietyx         (2.6.19a) 

 where the general form of phase ),,,,,( ZT lktyx4  takes the first Taylor expansion 

around the central wave number as:  

  tlykxtyx ZT ��|4 ),,(                 (2.6.19b) 
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an almost-plane wave 
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  The linearized QGPV and its derivatives at the leading order is:                     
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2 TM\ i
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q ���|�� c    

                    )Re()( 22 TMZw i
Dt eiLKq ���|c ,  

                     )Re()( 22 TMw i
Dx eiLKkq ���|c ,  

At the leading order, we have 

                   > @^ ` 0))((Re 22  ���� � MZ Ti
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Thus,  
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The dispersion relationship is therefore approximately                  

)(
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)( 22 y
LK
ykQ

ykU
D

y :{
�

� �Z      (2.6.20) 

This is similar to the plane wave case, BUT, valid even in an inhomogeneous background 

flow )(),( yQQyUU yy   . The price, however, is that the relationship is no longer 

exact. In general, )(ykk  , so wave number is locally determined at y and could vary 

with y. To be consistent with slowly varying nature of k, we need U and Qy  to be slowly 

varying in the sense that  

                              
dU
dy

�� l(U � c) ,  and     yy lQQ
dy
d

�� ,  

Or U and yQ  may vary on the scale of the wave packet 1/Gk   (WKB approximation) 

which is much larger than the wave scale 1/k. We can also define a slowly varying local 

group velocity as:  
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(3)  Wave-activity of almost-plane waves:    To derive the equation for the evolution of the 

wave packet, we could expand x, y, t in fast and slow variables (Pedlosky, Sec. 3.20). 

Here, instead, we use the more general wave activity equation (2.6.10): 

                                  At SAA  �x�� )( FUw  

Note, we define the phase average <> (over a period in x, y, or t) such that  0! � Tie .  

This is the average in the wave length scale, which is still much smaller than the wave 

packet scale. For example, cos2 M  
1
2

(1 � cos 2M  
1
2
�

1
2

cos 2M  
1
2

. This 

removes higher harmonics. Now, phase average of the wave activity equation gives 
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In general, for two complex variables (a, b)=Re [(A, B) e iT], we have <ab>=Re(A,B*)/2. 

Therefore, we have 
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This reminds us of the local group velocity (2.6.20),  

 

                  )( UCF �!! �� gA       (2.6.22) 

The wave activity flux is the wave activity density transported by the group velocity 

relative to the mean flow! 

 

Finally, for an almost-plane wave, the wave activity equation (2.6.10) becomes : 

 

                  > @ ! �!�x��!� Agt SAA Cw     (2.6.23) 

 

If Cg is slowly varying, we further have 

                  !! ���x�!�w Agt SAA C  

This demonstrates that wave activity is transported by the group velocity speed. The 

concept of group velocity is the special case of almost plane waves. For more general 

cases, including those where the almost-plane wave concept fails, the corresponding 

concept of wave activity flux is always valid! This enables us to diagnose the wave 

activity flux in observations, which has complex variability and often violate the 

conditions for the almost-plane waves. 
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(4) Wave Activity and Wave Energy 

What is the relation between the wave activity and wave energy? As in Section 2.1, the 

energy of a general perturbation is  

                                 »
¼
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ª
�c�c �2

2
22 '

2
1

DL
vuDE \U  

For the wave packet, the wave energy for almost-plane waves is therefore                               
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The wave activity equation for the almost plane wave (2.2.23) can be put in different 

forms.  

 

(i) Conservation of wave action:  

Since k is independent of y, multiplying 1/k in (2.2.22), we have 
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where we have used (2.6.24) and the wave action 

kU
EA
�

!�
! �

Z
      (2.6.26) 

The equation above therefore represents the conservation of wave action, which is the 

conservation of wave activity in the special case of almost-plane waves. 

 

(ii) Wave energy equation: 

Multiplying (2.6.25) by U-c, we have the wave energy equation 

                > @ !��! �
�
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g
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EE )(
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Therefore, wave energy is conserved ONLY IF the mean flow U is uniform or has no 

shear (relative to the direction of Cg). In the presence of shear, there is energy exchange 

between the mean and the wave. The wave energy is no longer conserved! However, 

wave activity is still conserved, because it has already taken into account of wave-mean 

interaction. 

 

For the special case of a uniform basic state, U and Qy are uniform, k and Cg are uniform, 

so that  

                           !! ���x�!� Agt SAA Cw  

In a uniform medium, wave activity (wave action and wave energy) of an almost plane 

wave packet all propagate at the group velocity. The wave packet will propagate without 

changing its shape. With an inhomogeneous medium, however, wave activity or wave 

action is a much more useful concept than the wave energy, the former tends to be 

conserved while the latter not.  

 

 

 

   

 

(iii) Dissipation  

With a dissipation, say a Rayleigh damping, uF c� OU ,  we have 
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U
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Fcurl ,      yA QqDS /'2

0 \U �c . 

For an almost -plane wave (2.6.18), we have 
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Thus, the wave activity equation (2.6.22) can be written as: 
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The effective damping rate is therefore:  
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3:  Wave propagation and Ray Tracing 

In a sheared mean zonal flow U(y), assuming the wave length is short relative to 

the scale of the shear flow, we can take the wave as the almost-plane wave and assume 

the wave of the form (WKB approximation), 

]),,(Re[' ),,( tyxietyx TM\        (2.6.28) 

with the dispersion relationship (2.6.20) 
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The propagation of a wave packet can be traced using the kinematic ray tracing theory, 

that is tracking the trajectory of the group velocity as 
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Now, however, since the background state, and in turn the frequency function (2.6.29) 

varies with y, the wave number will no longer remain constant. Indeed, for a general 

wave of the form (2.6.28), 
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       (2.6.31) 

 Here, (2.6.31) can be derived from the kinematic relationship as 
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The wave ray can be obtained by providing the initial position of the wave packet and 

wave number 000,0 ,, lkyx , and then integrating the set of equation (2.6.30) and (2.6.31).  

 

Example: Wave ray of stationary barotropic Rossby wave (K2>>LD
2) in a mean westerly 

U(y). (Hoskins and  Ambrizzi, 1993, JAS). The dispersion relationship (2.6.29) is now 

reduced to 
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where the mean PV gradient is 

y
U

2

2
*

w
w

� EE        (2.6.32b) 

and the stationary wave number is  

0
*

2 ! 
U

KS
E .       (2.6.32c) 

For stationary wave, we have 
22,0 SKKand   Z      (2.6.32) 

The group velocity for stationary Rossby wave can be derived similar to (2.5.6) and 

(2.5.7) in the limit of K2>>LD
2as 

Dcos2,ˆ Ucc gg   kcg      (2.6.33) 

where D is the angle between wave vector and the east and k̂ is the normalized wave 

vector. Since the mean flow depends on y only U(y), we have 0,0 z:w :w yx . 

Therefore, along the wave ray, the zonal wave number will remain constant, k=k0, but the 

meridional wave number will vary. So, the wave numbers are determined from (2.6.31) 

and (2.6.32) as 

2
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              (2.6.34). 
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The wave numbers are determined from (2.6.30) and (2.6.34) as 
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Where we have used sggy Kclc //  as derived from (2.6.33). The slope of the wave ray is 

determined from (2.6.30) as 

Dtan   
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gy

gx               (2.6.36) 

Therefore, the bending angle of the wave ray is 

dy
dK

k
c

dt
d sgg  Dtan   

Or 
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dK
K
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d s

s
g

g
2 D              (2.6.37) 

Therefore, the wave ray tends to bend towards the latitude of higher Ks. Especially, in a 

westerly jet, the wave tends to be trapped around the jet maximum, which therefore forms 

the so called wave guide.  
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Questions for Chapter 2 
Q2.1: (a) The perturbation streamfunction of the Rossby wave is  

\’(x,t)=cos(kx-Zt). What is the wave pattern on the x-y plane? (b) The mean zonal flow 
is U=const. What is the pattern of the total streamfunction \(x,y,t) = -Uy+ \’(x,t)? 
 

Q2.2: Why does the localized topography force a finite response remotely, while a 

periodic topography produces an infinite response? A similar comparison is seen between 

E2.8 and E2.10 for time dependent forcing.  
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Exercises for Chapter 2 

 

E2.1: (Wave envelop and group velocity) Two plane Rossby waves have similar wave 

numbers such that the streamfunctions are \1=cos(kx-Zt) and\2=cos[(k+'k)x-(Z+'Z)t], 

where 'k<<k. (a) Show that the total streamfunction \=\1+\2 consists of a Rossby 

wave of wave number close to k and an wave envelope with the wave number 'k. (b) 

What is the propagation speed of each individual wave crest (phase speed)? (c) What is 

the propagation speed of the wave envelope (group velocity)? (d) Give a wave number 

and plot the evolution of the wave. 

 

E2.2: (Propagation of planetary wave) For a Rossby wave whose wave length is much 

longer than the deformation radius (planetary wave), relative vorticity is negligible such 

that the potential vorticity is approximately q=f/h. In this case, why does the planetary 

wave propagate westward? Illustrate the propagation mechanism based on the principle 

of PV conservation. 

 

E2.3: (Dispersion diagram) In the absence of mean flow and bottom topography, (a) 

Calculate the group velocity of the Rossby wave Cg=(Cgx,Cgy). (b) Verify that the 

direction of the group velocity of the Rossby wave is as indicated in the dispersion 

diagram in Sec.2.3 (outward from the center in the case of  k>0)..  

 

E2.4: (Group velocity) Given the dispersion relationship Z=-Ek/(k2+l2+LD
-2) and a 

specific meridional wave number l, find the maximum eastward and westward group 

velocities as well as the wave number at which each maximum is achieved.  

 

E2.5: (Rossby wave reflection) An incident Rossby wave \1=A1exp[i(k1x+l1y-Z1t)] 

impinges on a tilted eastern boundary xE(y)=y/a, where a is a constant. Identify the 

incident and reflected waves on the dispersion diagram. 

 

 

 

XE

K1 

Cg1 

x 
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E2.6: (Coastal Kelvin wave) On a half-plane x>0, shallow water disturbances satisfy 

wtu-fv = -gwxK, wtv+fu = -gwyK, wtK+H(wx u+wy v) = 0, 

in x > 0. The flow has to satisfy the solid wall boundary condition u|x=0 =0. In addition, 

there is no energy source from the infinity, so the energy radiation condition requires 

finite u, v, K at xo+f. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Assume this is an f-plane, find the linear wave solution.(Hint:   set u=0 as part of the 

solution). 

 

E2.7: (Radiating Rossby wave): A wavemaker on the eastern boundary x=0 has a 

frequency Z and a meridional wave number l, such that the surface elevation on x=0 

satisfies K=K0cos(ly- Zt). The wavelengh is sufficiently long (large scale) and the 

freqnecy is sufficiently low such that quasigeostrophic dynamics can be applied. Find the 

Rossby waves generated by this wavemaker. (Hint: find the Rossby wave that satisfies 

the eastern boundary condition \=\0 cos(ly- Zt) at x=0,  where \0=gK0/f0 . 

 
 
 
 
 
 
 

x=0 

y 

x 

x 

y 

 \0 cos(ly- Zt) 

x=0 

? 
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E2.8. (Radiating gravity wave) On a nonrotating tank, the shallow water waves satisfy 

the equations:  ∂tu=-g∂xh-ru,  ∂th+H∂xu=-rh, where r is the damping rate. There is a 

wavemaker on the eastern boundary x=0, such that the coastal sea level is forced to 

oscillate as h(x=0,t)=h0cos(ωt). Find the sea level response in the interior ocean for two 

cases. (a) No damping such that r=0, (b) finite damping with r>0. In each case, discuss 

the physics of the solution. 

 

 
 
 
 
 
 
 
 
 
 
 

 

E2.9: (Resonance of Rossby Waves) The linearized damped QG model is forced by a 

periodic forcing as follows: 

)()cos()( 2
2

2
2

D
x

D
t L

tlykxF
L

\\OV\E\\ ����� w���w  . 

(a) Find the forced response. 

(b) Discuss the response in the limit of 0oO . 

 

E2.10. (Damped Transient response): A forced swing set satisfies the equation 

dA/dt-iZA=Fexp(iVt)-dA, where A is the position of the swing and Z is the frequency of 

the free oscillation,  V is the forcing frequency, F is the forcing amplitude and d is the 

damping coefficient. The forcing amplitude F is applied at t=0. (a) Derive the forced 

solution that satisfies the initial condition: A(t=0)=0. (b) What is the forced solution after 

a long time? 

 

x=0 

h0cos(ωt) 
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E2.11. (Transient resonant solution): A forced swing set satisfies the equation 

dA/dt-iZA=Fexp(iVt), where A is the position of the swing and Z is the frequency of the 

free oscillation,  V is the forcing frequency and F is the forcing amplitude. The forcing 

amplitude F is applied at t=0. Derive the forced solution that satisfies the initial 

condition: A(t=0)=0 for (a) VzZ and (b) V=Z. (c) Prove that the solution in (b) can be 

derived as the limit case of V→Z  from the solution of (a). [Hint for b): try the solution of 

the form  A=C1exp(iZt)+C2t exp(iZt) and determine the coefficients C1 and C2]. 
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E2.12: (Rossby Wave-Guide in westerly jet using the WKB method) (ref: Hoskins, B and 

T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. 

J. Atmos. Sci., 50, 1661-1671) With the mean zonal flow varying with latitude U(y), the 

Rossby wave dispersion equation in (2.5.1) is still (in the WKB sense)  

22 ��
�{: 

DLK
kykyUy )()()( EZ      (1a) 

or 

                         22

22

22 �� �

�
 

�
� 

D

s

D LK
yKKyU

LK
yyUc

)]()[()()( E    (1b) 

but now 2��{
DL
yUyy )()()( *EE ,  where )()(* yUy yyw� EE .  The stationary wave 

number (2.5.2) is now 

)(
)()(

*

yU
y

LU
yK

D
s

EE
 � 2

2 1       (2) 

For stationary Rossby wave (c=0 or K=Ks) prove 

(a) The group velocity is still 

KC 222
2

)( ��
 

D
g LK

kE      (3) 

(b) In WKB theory, the wave number along the group velocity changes as 

xdt
kd g

w
:w

 ,      
ydt

ld g

w
:w

 . 

With eqns. (1) and (2), show that 

  0 
dt

kd g ,            (4a) 

dy
dK

C
l

K
dt

ld s
gy

sg  .       (4b) 

where we have used  gy
g C
dt

yd
{ . 

(c)  Defining the angle of group velocity with x-axis is D , using (3) show that  
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k
l

C
C

gx

gy  {)tan(D .      (5) 

(d) With (5), show from (4b) that  

dy
dK

c
dt

ld s
g

g         (6) 

where || ggc C .  

(e) Using (6), (4a) and (5), show that the change of the angle of the group velocity 

follows 

dy
dK

k
c

dt
d sgg  )tan(D  

or 

dy
dKc

K
k

dt
d s

g
s

g
2 D        (7) 

(f) Based on (7),  give several examples showing the following statement is correct: 

“ the stationary Rossby wave propagates towards the latitude of increased sK ”. 

(g) Based on the statement in (f), discuss if the following statement is correct: “the 

latitude of maximum sK  forms a wave-guide, i.e., waves tend to be trapped around the 

latitude of maximum sK ”.  

(h) Based on (g), see if the following statement is true: “A westerly jet tends to form a 

wave-guide around the jet ”.  
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E2.13: (Rossby wave energy flux) A free Rossby wave has the form \=Re[A e i(kx+ly-Zt) ] 

and the dispersion relationshipZ=-Ek/(k2+l2+LD
-2). 

a) Prove that the wave energy (averaged within a wave length) is: 

  E=<{\x
2+\y

2+(\/LD) 
2}/2 >= |A|2(k2+l2+LD

-2)/4 

b) Prove that the group velocity can be written as: 

  (Cgx, Cgy)=[k+E/(2Z),  l]u(-2Z)/(k2+l2+LD
-2). 

The energy flux of a wave packet F=(Fx, Fy) is the wave energy multiplied by the group 

velocity F=Eu (Cgx, Cgy)=  -2Z|A|2(k+E/2Z,  l).  

c) If this wave is reflected on an eastern boundary y=ax (see E2.6), prove that the 

reflected wave I=Re[B e i(mx+ny-Vt) ] has the same alongshore energy flux as the incident 

wave, that is Gx(1, a) = Fx(1, a), where G = (Gx, Gy) is the energy flux of the reflected 

wave.  

d) Are the alongshore group velocities the same for the incident and reflected waves? 

e) Prove that the incident angle Ti is 

 
f) A similar expression can be derived for the reflection angle. Is the incident angle the 
same as the reflection angle?  
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E2.14 (Topographic Rossby Wave): On a f-plane with homogeneous fluid, a Northern 

Hemisphere ocean basin (Fig.E2.12.1: a. top view, b. side view) has a continental slope 

of several hundred kilometers wide. For large scale, low frequency disturbances,   

a) What kind of low frequency waves will be produced in the basin? Which direction 

does it propagate?  State clearly the physical mechanism for this wave and how it 

propagates in the direction you proposed. What will be the equation that controls the 

basic dynamics of this wave? 

b) What will happen if this basin is in the Southern Hemisphere (Fig.E2.12.2)? 

c) What happens around a large scale seamount in the Northern Hemisphere (Fig.2.12.3)? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

North 

East 

a. 

Ocean 

Land Land 

Depth 

East, or North 

b. 

Fig.E2.14.2: SH basin with continental slope,  f<0 
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Fig.2.14.1: NH basin with continental slope, f>0 
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Fig.E2.14.3: NH Seamount,  f>0 
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