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Ch.2. Shallow Water Rossby Wave Dynamics

Sec. 2.1. Quasi-Geostrophic Equation

1. Nondimensional Equations

To focus on low frequency variability, we would like to filter out the high frequency
modes in the shallow water equations. Mathematically, it will be convenient if we can
have a single equation in a single variable to govern the variability of large-scale flows.
The derivation of a simpler set of equations for specific temporal and spatial scales is

accomplished usually with perturbation method.

We first nondimensionalize the shallow water equations. Denoting dimensional variables
with an *, we have

u,v)=Uwv), n" —zy=D+Nn , z,=Nz,, (x,y)=L(x,y), t =T,
where u, v, z;,m, x, y, ¢t are all O(I) dimensionaless variables. The shallow water

equations can be written in the dimensionaless variables as:

U U? N 1
—Ju+—wi u+vou)— fUv=-g—on+—F
T t L ( X y ) fU gL x77 po X
U U?

N 1
—O0v+—Wov+vi v)+ fUu=-g—J n+—F
T t L( X y ) fU gL yn y

0

%én +%[uﬁx (7 —z2,)+v, (7 - zB)]+%[D N -z)|ou+0,v)=0

. L Dy :
Assuming a beta-plane f = f, + fLy = f,(1 + ﬂ7 y) and dividing the u- and v-equations

0
by foU, we have the nondimensional momentum equations

gN on+aG,
UL -

eru+ewldu+vou)—(1+by)yy=-

0

£:0v+ 5O v+vO,v)+(1+by)u = — fggL o,n+G,

0

1 U 18 . .
where &, =——,6=—-,b= 'B— are dimensionless parameters.

ST ol o
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Dividing the mass equation by UD/L, we have the nondimensional mass equation

NL N N
ﬁﬁtn+5[uﬂx(77—23) V8, (n—z,)]+ [1 +B(77—23)}(ﬁxu +0,1)=0

or, denote o = % and in dimensionaless parameters as

L 5o+ 8lud (- z,) + v, (7 - 2,) |+ [1 + (7 - 2,) |G+ 8,v) = 0.
&
We are interested in the flow with:

(1) a slow time scale (relative to 1/f) such that ¢, <<1 (small KndeCQ2b No.),

(2) a large scale or weak flow such that & <</ (small Rossby No.)
(3) a weak forcing and dissipation so that G~ O(g) <<I (ot G~¢E, E ~ O(l)).
In the momentum equations, assumptions (1)-(3) lead to the first order balance between

the pressure gradient force and the Corilois force, such that f U ~ gN /L. This gives the

scale of the pressure anomaly in terms of those of velocity and space as

N ~O(f,UL/g)
Furthermore, we require that the surface elevation is small compared with the total depth.

2

. L

Denoting F = (L_] as the Froude number, we therefore have
D

or
(4) F<< O(l/¢)

Therefore, the scale can’t be too much larger than the deformation radius. For synoptic
processes with L ~ Lp, this condition is satisfied. With assumptions (1)-(4), we have

5 < 0(g) <<I.

The other condition on the (meridional scale) of the motion is

(5)b~ﬂ~%~£<<l
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or b~ ye with y ~O(1). This requires that L can’t be global (~ a). Finally, we assume

that the time scale is comparable with the advective time scale

L
(6) 5T~50rT~U.

The nondimensional equations can be written as:

e(@u+udu+vd u)—(1+yey)v=-0n+ek,

e@v+ud v+vd v)+(1+yey)u=-0,n+ek, (2.1.1a,b,c)
Flon+ud (n-z,)+v0,(n-z)|+ 1+ eF -z ) ou+2,v)=0

The variables are expanded as

U=Uy+ & +E Uy +eene

V=V, FETV, e

77:7704-5771 +52772+ ........

We will collect terms of the same order in (2.1.1) and derive the leading order equations.

2.  0O(1) Equations

Collecting terms of order O(1), we have the geostrophic balance
(_Vo = =01,
fu, = —-O,m (2.1.2a,b,c)
[ﬁxuo +d,v, =0
This is the same as the low frequency w=0 geostrophic mode studied in section 1.5. As
discussed before, geostrophic balance is degenerated: any pressure field satisfies the

equation! The deterministic part is at the next order. The balance itself is simply a self

consistent diagnostic relationship.

Note 1 Why large scale tends to be geostrophic?
Consider the u-equation, Ju + udu + vou — fv = —gn, + AJ, u. The only term that is

independent of spatial scale (at low frequency) is the Coriolis force fv. Therefore, as

spatial scale increases, all the terms decrease except for the Coriolis force. For large
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enough L, fv has to be the dominant term to balance the pressure gradient force, that is

geostrophy!

Note 2 What happens for high topography?

In the above, we have assumed that the topographic height is low compared with the total

depth of the fluid

0Gs) 0(6)<0(¢) <1
o(D)
For high topography, 00((—21;) ~1 . The flow, instead of climbing over mountains, flows

around mountains.

3. O(g) Equations

At the next order, we have the equations
— v, + Oy +uyduy + v o uy — vy =—0,m, + E,
u + 0, +uyl vy +v0 vy +pu, =-0,n +E, (2.1.3a,b,c)
o.u, + ﬁyvl + F(ny —z3)(0u, + ﬁyvo) + F[o”tno +u,0 (1, —zz)+ voﬂy (M, — 2, )] =0
0,(2.1.3b) - J,(2.1.3a) gives the vorticity equation

(0 +u,d. + \/00';)(0';\/0 - ﬁyuo) +J.u, + é’yvl + W, = @Ey - éjvEx

Plug in (2.1.3c) to eliminate the divergence, we have the quasi-geostrophic potential

vorticity equation (QGPV)

(g +u 0, +v,O ) = curlE (2.1.4)
where
M=pw+v,—u,—F(n,—2z,)
is the QGPV. Furthermore, since u, = =2, n,,v, = .1, ,we have a single equation in
n

oI+ J (1, I1) = curlE

, (2.1.5)
M=pw+Vn,—F@,—zz)
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In the original dimensional variables, we denote the geostrophic component of the

velocity as (u,,v,)=U(u,,v,), and define the geostrophic streamfunction as

W =v, =2on, 0o Wo=u, =-—=-0n
fo f 0
This implies that the streamfunction is related to the surface elevation as
g
v ==n (2.1.6)
fo

The QGPV is written in terms of y as

D, F
—£qg= curl( J (2.1.7)
Dt Y2

where
Dg
D (0, +u,d,+v,0,)q=0,49+J(¥,q)

and the QGPV is

=1

(2.1.8)

Note 3 Derive QGPV from the SWPV.

[

With small surface elevation and bottom topography 7/D, zg/D <<I, we have

oo IFE__SrE  fE  frE -z {f s U é)( m}

H ~Dtn-zy pq,1=%, D D
D

For large scale, &/ f = ¢ << 1, we therefore have the relation between the SWPV and the
QGPV as
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Ou =\ +6=f(1-2,)/ D} —{f +&, = fn-2,)]
= Loy szl vy i+ gz, 0} 20

Note 4 Quasi-geostrophy and Geostrophy
On a f-plane, geostrophy has no divergence and vertical velocity at all. The quasi-
gesotrophy is geostrophy only at the leading order. Ageostrophic effect appears at order
O(e)as u,v,n,.Indeed,

fr—g0.m=e|0, +u,d, +v,0, uy + fyv, |oc O(e) << 1 (but # 0)

The divergence is also reduced because of the cancellation of Ju and Jv,

dg 1 N 1 )
V-v 4'p DL/U_ JUL (L
T oc U oc U ochoc I gox Og) <<1
L L L

Accordingly, the vertical velocity is also reduced
dp  NU AUE :
w JL@LIL@EEQLZO{LJ D

D
— oC . . . T L ET L
u u U L gD fL'L L, L L L

Thus, rotation suppresses divergence and vertical velocity (by O(g)). Although small,

however, the vertical motion is extremely important for the evolution of the system.

L

on-rotating

Note 5: Diagnose secondary circulation at the jet entrance/eixt associated with

ageostrophy: for an upper level jet (geostrophic) u=U(x), the ageostrophy residual is
fr—gd.n=e|0, +ud, +v,0,)u, |~ (8, +ud, +vé, u|~UoU

Therefore, in the entrance of the westerly jet UJ U > 0, we have

fv—gdn=UdU>0
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That is there will be a northward (ageostrophic) flow across the jet (isobar), which will be
associated with ascending in the south and descending in the north. The opposite occurs
in the jet exit region. Therefore, the ascending region south of the jet entrance and north
of the jet exit are usually the regions of severe storms. This explains the severe storms in
the East Asia and North America, which are to the south of the entrance regions of the

North Pacific jet and North Atlantic jet.

vi u0~U vi

5>

4. Energetics of a QG System

Before deriving the energy equation of the QG equation, we first notice the identity
1
YO0 = (O )+ ()] (2.1.9)

The energy equation of the QG model can be derived by mutiplying -y on the QG

equation as :
—yo,0+ylJ(y,0)=0.
With (2.1.9), we have
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2

vag=2 %[(‘/’ D) oo w4 0,(va )+ o, <%'Z—z>.

D

It is also straightforward that
wWy,0)=J(y’/2,0)
Notice
J(4,B) = 3.A0,B —J,A0B = J(AJ,B) — 0,(AJ.B)

and take x,y boundary conditions as rigid wall or periodic, we have
Lt + T () ey =
AL+ 0 T2 s =

This is the conservation of the total energy:

4[| (KE + 4PEyd4 = 0
A
where the QG KE and QG APE are

1, , ) 11//2
KE=—(y?+y?), APE=—"—
2(% v,) L

The ratio between the KE and the APE is therefore

KE _ (y/Ly m(ﬁf
APE  (w/Ly VL

Therefore KE is comparable with the APE for synoptic scales, L oL p, but becomes

negligible relative to the APE for planetary scales L>>Lp,.

5. Steady Geostrophic Flow

At steady state, QGPV becomes
J(y,0)=0

That is the flow is along Q-isoline, or

Q= 0(y).
Example 1:

On a f-plane, with a bottom topography zg(x,y),

The streamline will be along the isobar.
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Example 2:

On a beta-plane without bottom topography,

The steady flows are purely zonal.
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Sec.2.2 QG Rossby Waves
We now study small amplitude motions in the QG system. We will assume a mean flow

without shear

y=-[Udy=-Uy

v

and a slope bottom topography varying only with latitude

z, =Ay+h, .
The mean QGPV is 7B

5:f0 +,By+v2'/_/_l2+ﬁ(/\y+ho)a
L, D

and its gradient is:

U LA
L, D

q,=0, q,=p+ B, q,=0. (2.2.1)

The total streamfunction is separated into the mean and perturbation parts
=y ey

with p'<< ; . Accordingly, the PV is also separated into two parts
g=q+q

7

Lj,

'

with ¢'=V’y'- . Notice that

Jw.a)=Jw.0) +J(w.a) + I @)+ W' q) = T (v, ) + T (7.4 + T (¥'.q)
in the absence of external source and sink, the linearized QGPV becomes
(8, +U38.)q'+ po.w'=0, (2.2.2)

or

(2, +Ué’x)(v2y/'—%)+ﬁaxw'= 0. (2.2.3)

D

This is a constant coefficient equation and therefore the solution can be assumed of the

form '~ Re{dexp[i(kx + Iy — wt)]}. Substitute this into (2.2.3), we have

i(—w+uk)(-K* - Liz) + ikﬁ}A =0;

D
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where K* =k’ +1 is the total wave number. For nontrivial solutions, the amplitude

remains nonzero A=0. This gives the dispersion relationship for the Rossby wave as

5
o = Uk —% (2.2.4)
K +L,
or in phase speed
@ g
=—=U-—FF"7 225
Tk K+ L} 22.)

The Rossby wave propagates only in one direction — westward, relative to the mean flow
advection. This is in contrast to the Inertial-Gravity waves which propagates in all the
directions. These I-G waves have been filtered out in the QG equation. Filtering out IG
waves also implies an infinitely fast geostrophic adjustment time (or the IG wave

propagate infinitely fast). As a result, the flow is always in geostrophic balance.

Waves of similar property can be found in the spherical coordinate, earlier by Haurwitz.
The forced problem can be traced to the study of Laplace on tides about 150 years ago.
However, it is Rossby who first realized that the beta-effect is the most important

mechanism responsible for all the major features of these large scale waves.

1. Dispersion Relationship

In the simplest case of U=0, A=0, we have B = f. The dispersion relationship (2.2.4)
becomes

Pk {0, whenk — 0,  longwave limit
o=- -

K* + L;,Z 0, whenk —> o, shortwave limit

The scale of the frequency satisifies

0] g . PL

—~—m1n(L2,L2D)S—oc£<<l.
a

Jo Ly o

Therefore, the Rossby wave has a low (compared to 1/f) frequency, in contrast to the high

frequency I-G waves. Indeed, on a f-plane, the Rossby wave is the zero-frequency
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geostrophic mode (see Sec.1.5), in other words, the geostrophic mode becomes Rossby

wave when f'is not a constant..

High frequency o>f,
/ divergent Vev/(U/L)<cO(1),
© strong vertical velocity W/U oc D/L,

¥ y propagate in all the directions

k

\__// N Low frequency o<<f,

quasi-nondivergent Vev/(U/L)<<I,
Rossby wave weak vertical velocity W/U<< D/L,
propagate towards the west only

Omax—- ﬁl/(z 12+LD-2) -

2. Barotropic Limit ( Rigid lid approximation)

When the scale of the waves are much smaller than the deformation radius, L<<LD2, we

have the dispersion relationship

w = Uk - % (2.2.5)

This is the barotropic limit for Rossby waves, because barotropic Rossby waves have
large deformation radius (thousands of kilometers). Now the flow is nearly
nondivergence, because the free surface induced divergence, which is represented by 1 oc
y/Lp’, is now negligible. The negligence of the free surface, however, does not mean
the absence of surface pressure. One can imagine this case as a water with vanishing free
surface elevation, but finite pressure gradient, or the rigid lid approximation. Since
Lp’=gD /£, the barotropic limit is easily realized in the limit of a deep water or strong

interface gravity.

3. Mechanism of Rossby Wave Propagation and the “[-effect”

To consider the mechanism of Rossby wave propagation, we consider the simplest case

of U=0), é’yz 3 =0, and L<<Lp, we have now,Z’ = f and the PV conservation becomes

the conservation of absolute vorticity %( f+&)=0. A line of particles at latitude f;

initially are at rest and therefore have the initial PV g=f). A northward perturbation of a
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particle will generate a negative relative vorticity {<0, because of the PV conservation
such that f+{=f;. The induced anticyclonic vorticity around this particle induces
northward migration of particles to the west and therefore the perturbation appears to

propagate westward.

westward

The discussion above also indicates that the restoring mechanism of the Rossby wave, in
general, depends on the gradient of the background PV or the generalized beta, rather
than the planetary vorticity alone. For example, bottom topography can generate an

equilvalent beta effect. Assuming f =0, but &, z, >0, we will have

E = f,0,z5 / H > 0, and the induced Rossby wave also propagates westward.

Therefore, a northward shallowing topography has the same effect as the planetary beta,
and therefore can be called the topographic beta.

What do we really mean by “westward” in the case of the generalized Rossby wave?
In general, the mean PV field (}(x, y) can be of any shape. In the absence of advection,
the generalized perturbation equation is

04" +J(y'.q)=0
The generalized Rossby wave will propagate “westward” if we assume the mean PV

gradient VQ points towards the “north”.

\> Direction of local Rossby
Wave propagation
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4. Non-Doppler-Shift Effect

One interesting and peculiar feature of long Rossby wave is the so called Non-Doppler-

shift effect. In the presence of advection, the Rossby wave speed is (2.2.5)

B

c=U-—"——
K*+L;

where the first part is the advection effect or the Doppler shift effect, and the 2nd part is

the generalized beta-effect. In the long wave limit, k*> << L, we have

- - ﬂ+f°A+% ﬂ+ﬁA
c=U-_ B _y B _y_ D Ly __
Y G R L2 - L2
D D D D

The wave speed is now independent of the mean flow U, the so called non-Doppler-shift
effect! This apparent non-Doppler shift effect is due to the cancellation of the dual roles
of the mean flow U that induces advection and mean PV gradient. Take a U>0 as
example. On the one hand, U advects the wave eastward; on the other hand, U is
accompanied by a northward gradient of pressure, or a northward decrease of mean layer
thickness. The latter enhances the planetary beta and therefore induces an additional
westward propagation. This additional westward propagation cancels the eastward

advection such that there is no net effect of the mean flow on the wave propagation.

77\
an=-#U

841= +

@U

It should be pointed out that the complete non-Doppler shift occurs here because both the
flow and wave have the same vertical structure, the barotropic mode structure in the case
of the shallow water system and the 1* baroclinic mode structure in the case of the 1.5-
layer system. In the general case when the flow and the wave have different vertical

structures, the complete non-Doppler shift effect does not exist anymore (see Chapter 5).

5. Wave structure
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In general, the QG Rossby waves are transverse waves, because its velocity field is

perpendicular to the direction of the wave vector (or phase propagation). With
w=-y', V=y'.,

we have u'=—ily',v'=iky', and therefore

u'k~ @' W)-(k1)=(-Lk) (k,1)=0

G K

Phase lines
u )} v ’ l//,,
n’=const

Therefore, there is no self-advection
(U, +V'0)q e (uk+vl)cu-k=0
Thus, a plane wave is also an exact solution to the full nonlinear equation because now
D , :
Eq =q',+U0 q¢'+u'd O+u -Vq'=0

(This is not true in the cases (i) on a sphere, (i1) with superimposition of plane waves and

for ii1) waves in shear and dissipation)
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Sec. 2.3. Group Velocity and Energy Propagation of Rossby Waves

The most important reason that we study waves is that wave propagation is one of the
two means by which fluid carries energy from one place to another (the other is
advection). In the case of the geostrophic adjustment, it is the I-G wave that takes the
ageostrophic part of energy away and therefore achieves the geostrophic balance. (see

Sec. 1.6.)

1. Group Velocity of Rossby Waves

Each single plane wave is valid only for a disturbance of infinite long wave patch. The
phase speed for each plane wave only represents the speed of the phase. The energy of
the wave, however, is represented by its amplitude, not its phase. In other words, the
amplitude is represented by the envelop of the wave. The energy propagation speed
therefore is the speed of the wave envelope, which could be different from the phase
speed. The speed of energy propagation will be called the group velocity C,. The group
velocity can be derived as

Cop=00/k, Cq=0c/al.
In the case of the Rossby wave, take the case of U=0 as example, we have now

- Ek

0=
K*+1°+L,;

Propagation of a wave packet
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For a given /, the maximum frequency occurs at K;, = I’ + L, with |@|_ = B/2K, .

max

The absolute maximum frequency (for all /) occurs at /=0 with |@|_ = L} /2, and

k, =L, . Therefore, the group velocity of the Rossby wave is westward for long waves,
but eastward for short waves (although the phase velocity is always westward!). In
addition, the maximum group velocity is 8 times faster towards the west than towards the
east. This east/west asymmetry of group velocity has important implications to the

general ocean circulation, which also has a strong east/west asymmetry (see Chapter 3).

Lp

=2 7

C=0w/ok<0

BLp/2
—.

C=00/0k<0

| o= -BkLp’
long wave limit

Rossby wave dispersion relationship
Short waves

Cox
BRI+l 1 ° /\ L

rd

Long waves

BAPHLy)  —»

Rossby wave group velocity
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At the long wave limit, @ = — L’ k , we therefore have the group velocity the same as the

phase velocity, % = pL;, = % = c¢ . The long Rossby waves are therefore nondispersive

waves. The wave packet propagates without changing its shape, because all the single
wave components propagate at the same speed. In general,

v _ k) _ . X
& & &

: . : a : :
Therefore, the wave is nondispersive only when — = 0. For a general nondispersive

wave, different wave component travels at different speed and therefore the initial wave
packet will change shape and disperse. Notice that each single wave component extends
into infinity, the shape of their summation is therefore virtually unpredictable after the

initial time if the different component travels at different speed.

nondispersive

’
\
’

/ ﬁ — (_\\ dispersive

2. Energy Propagation Diagram

There is a convenient way to judge the propagation direction of Rossby waves. On the

one hand, for a fixed frequency, the wave vectors falls on a circle in the (k,I) plane,

a)z—ﬁ :>k2+12+L1;2—(_ﬂ;))=0
D
_ 2 —
NI P
2(-w) 4o
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On the other hand, one can show the group velocity of a wave packet is parallel to the

radius vector on this circle (pointing outward for k>0 and vise versa):

(o oo, 2pk __F
(Cora) =0 a?) " ko 1) {k 2(_@),1}

N

G,

(a,0 [B/(-2w), 0]

Rossby wave dispersion diagram

where a=f/(-20)-[(f/(-2w) )2_ Ly? ]1/2

The dispersion diagram is very convenient for judging the direction of wave energy
propagation based on the information of the wave phase.

Case 1:

K,

case 2: /_\
k
K,
K,

K;
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Fig.2.2: Propagation of a Rossby wave packet

Copyright 2014 Zhengyu Liu



AOS611Ch.2, Z. Liu,01/20/2015

(4.8)

nvolved formula
,) sin @] (4.9)

ned at w/4, demonstrating

»t. For slopes of oppositel

the equator of Fig. 7.

s it did for an ocean with
engthy caleulation it ca
ies expansion for the

(4.10)% !

(4.11)

and a smaller displace- ,
scean boundary tilts

mngth of time. Near the;

t a given point there is §
information after six

-ars, say. Of course, thi

201

Tx A} G
A >
Vo & W

T T
100° 500

Fig. 8A. Time contours for semi-annual period waves generated at a meridional boundary.
The tick marks indicate the latitude, at intervals of 5°, where the wave originated.

diagram does not tell us where the energy comes from. This can be obtained
from the ray diagrams (Figs. 3 and 7). The explanation of the above paradox
is then obvious: the older information has come at a relatively slow group
velocity from remote latitudes.

5. COMPARISON WITH MODAL THEORY

When the boundary conditions to (2.1) are separable, the theory of equa-
torial modes can be applied to the problem, and should provide consistent
results, The case of a straight north—south coast furnishes such an example,
and we will compare the two approaches, especially in regard to the focus
and shadow-zone features of the ray solutions.

The separation of variables is made in the form

b, ¥, 1) = 20 apm(¥) expli(kmx’ — w't))] (5.1)

where x', y' and t' are non-dimensionalized variables as used in the current
literature (e.g. Moore and Philander, 1977):

(', ¥y = (x, ) (BIYE, # = t{Be)® (5.2)

and v, are the eigensolutions appropriate for the unbound equatorial §-plane:

Umgyy = exp(—¥2/2) Hpo(y)/(27m!int/ 2)12 (5.3)
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203

where H,. is the mth-order Hermite polynomial,

Using (5.1), equation 2.1 becomes a dispersion relation between w, k,, and ‘
m:

i
ko = {715 [1 = d40'2(2m + 1)]92) 2 (5.4)
The solutions are therefore specified completely by (5.1), (5.8) and (5.4), ’
once the amplitude faétors @, ate known.

To compare the results of Section 8 with the modal theory,

we consider
the westward Propagation of energy from a limited portion of

the eastern
boundary:
vix =0,y ¢)= e*"“"[tanh(y' +12) = tanh(y' — 12)1/2 (5.5)

This forcing is then approximated by a finite eigenmode expansion, with a
truncation limit of m = 100. Let

v, ¥, ) = eIV Yy gy

(5.6)
where Vis a compiex amplitude. Then
100 ] .
Ve y) = X gy ettme g, () (5.7) g

Here, the m = 0 Yanai wave is dropped from the solution because it hag only
eastward energy propagation. The amplitude envelope of the waves will be «
given by (VV*)1/2 anq the real part of V will show the appearance of the

H
.
3
:
w h
u :
> -
2 3
- .
: v
M et
o
B3
]
.
i

"

"

LONGITUDE
Fig. 9. Solutions to (2.1) calculated using equatorial modes. The value at x =
determine the spectrum of the eigenfunction ex
100. The real part shows the solution at ¢ =

—0.ltnn= 1,23... avoiding the very small~amplitude, short-wave pattern in the
shadow zone,

0 was used to H
pansion up to a truncation limit of m = !
2nn years. The real Ppart is contoured at

Fig. 8B. Time contours for annual period waves generated at a sloping coastline

Fig.2.3: Rossby wave refraction (beta-dispersion)
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Sec.2.4. Rossby Wave Reflection and Normal Mode
Here we study the reflection of a plane Rossby wave on a solid wall. Furthermore, we

will study the wave field in a channel.

1. Reflection on y=const

First, we study the reflection on a zonal wall

Incident
wave // C,
K,
Kl \
c, N

Assuming an incident wave of the form:

reflected
wave

v, = Re{4,e' "y
The energy of the incident wave propagates southward (C,,<0, /;<0) on the wall at y=Y .
The wave field y; itself does not satisfy the solid wall condition (no normal flow).
Therefore, when it hits the boundary, it excites a reflected wave . such that the total
velocity field satisfy the boundary condition
v =y +ty,|_,=0. (24.1)
Since this condition is satisfied for all x and ¢, it is obvious that the frequency and along-
shore wave number of the reflected wave are the same as the incident wave
k>=k;, or=a;. (2.4.2)
Therefore, the boundary condition (2.4.1) reduces to
Ae™ + 4" =0 (2.4.3)
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Since both waves are free Rossby waves, they both satisfy the dispersion relationship,

such that
k
—% =0 =0, = —% (2.4.4)
ki +1 + L, ki +0L + L,
This gives
L==%>0

The final choice of /> depends on the energy radiation condition. The reflected wave has
to propagate energy away from the wall, C,>0, opposite to the incident wave, to keep
the total energy flux zero across the wall. Thus, we should have

L, =-1>0 (2.4.5)
and the amplitude of the reflected wave is derived from (2.4.3) as

A, = -4 (2.4.6)

The reflected wave is therefore

w, = —Re{d,e' " ¥y
The total flow field is then

W = Ref A, 00| — e |20 Refid o™ O Jsinfl (y-Y )] (2.4.7)

Now, the boundary y=Y is a node point.

2. Zonal Channel

With two parallel walls, or in a zonal channel, the solution can be derived using the

solution of a single wall reflection solution (2.4.7).

7

Taking the form of the solution (2.4.7), we have

w = A" sin(ly)
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to satisfy the boundary condition at Y=0, and

w = A" e sin[l(y — L,)]
to satisfy the boundary condition at Y=L,. Since they have to be the same total wave
field, which satisfy both boundary conditions simultaneously, we have

e™ sin[l(y — L,)] = sinly,

eilLy [eil(y—Ly) _ e—il(y—Ly)]: eily . e—ily Xe—ilLy
This leads to

o 10mL) _ ileLy)

2ulL, _ 1

1.€.

cos(2IL,) =1, sin(2IL,))=0

Therefore, the meridional wave number are quantitized as

I=1 = '2—” , A=12m. (2.4.8)

y
The total streamfunction is then

w = Re{de™™ ) }sinl, y. (2.4.9).
Compared with the half-plane solution (2.4.7), the solution (2.4.9) has two node points on
the two walls. Furthermore, the cross-channel wave number is quantitized. Therefore, the
wave forms normal modes in the y-direction. The normal modes are formed after many
reflections on the two parallel walls. The key for the formation of the normal mode is

that the wave energy has to be trapped between two boundaries.

Note: The Eigenvalue Approach
The method above to derive the reflected wave on a half plane and channel is physically
more illuminating, but it is not a general mathematic approach. The same conclusion can

be obtained mathematically using eigenvalue approach.

Copyright 2014 Zhengyu Liu



AOS611Ch.2, Z. Liu,01/20/2015 29

Since the wall is at y=constant, we will need to solve the y structure. Assume the form of
the total streamfunction solution as

v = 4e“G(y),
where G(y) is a function to be determined by the boundary condition. Here, the along-
shore wave number k and frequency @ already taken the values of the incident wave. The
equation (2.2.3) in the absence of the mean zonal flow U and bottom topography is

O/(VPy =)+ o,y =0.

D

Insert the streamfunction into this equation, we have
[(~iw)(—k* — L))+ Pik]G + (-iw)G,, = 0.
This gives an equation for Y(y) as
G, k> +L; + pk/w]G=0.
The general solution for Y is therefore
G(y)=ae” +be ™
For the half plane problem (y>0), we have G(0)=0 and the solution is finite in y>0, this
gives
a+b=0
and therefore
G(y)=a(e” —e™).
To assure the finite disturbance away from the wall, we need A =i/ and therefore
G(y) = a(e” —e™) =2asin(ly).
Here 1 should be the cross-wall wave number of the incident wave. Indeed, the Y(y)

function is the sum of the y function part of the incident and reflected wave. We

therefore recovers the half-plane solution in (2.4.7) (with Y=0).

For the channel problem, we have the boundary conditions G(0)=G(L,)=0. One can
easily verify that the solution gives the quantitized cross-wall wave number as in the
solution (2.4.9). This eigenvalue approach is the more general approach usually used,

because it can be applied to more complex reflection problems, including the ones
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discussed below. The discussions in 1. and 2. simply illustrate that the eigenvalue

problem is physically equivalent to the wave reflection problem. ||||

3. Periodic in X

The channel condition is similar to a periodic condition as shown below.

y=Ly

VL ! \ 4 y:()

Assuming the flow field is periodic in x with a length of L,, thatis y(x) =y (x+ L ). The

solution therefore satisfies
ok = (L)
Therefore,
et =1
or
cos(kL. ) = Lsin(kL ) = 0.

Therefore, the zonal wave number is also quantitized as

m
L

X

_2mrm

The periodicity condition guarantees the total energy conservation (energy flux out on

one boundary is compensated by energy flux in from another boundary). This is similar

to the case of a channel. Finally, in a meridional channel which is periodic in the x

direction, the corresponding free mode (normal mode) has quantitized frequencies:
o=o0,,=a0k,l), m,n=1,2, ....

4. Reflection on a x Boundary
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/ K,
K,

x=X,
eastern boundary

An incident wave y, = 4,¢'“*"""“" impinges on the eastern boundary x=X; the

i(kyx+hy—m,

reflected wave is assumed of the form y, = 4,e Y. The solid wall reflection

boundary condition requires =0 on x=X for all the y and ¢. Thus, the meridional wave

number and frequency of the reflected wave have to be the same as the incident wave
L =1, o =0,

This leads to the zonal wave number of the reflected wave as:

- Bk k

2 '281 2O =0, =7 ﬂzz )
ki +17 +L, ky +1; + L,
k22+’8k2
1

k, = —ii\/(i)2 ~(" +Ly)

20, 20,

+1P+L, =0

where “+” is for the short wave and “-* for the long wave. Since the incident wave k; has
the group velocity eastward (short wave), the reflected wave must have a group velocity

westward and therefore is a long wave, which has ¢, < 0. This is necessary to oppose
the eastward (c,, > 0) incident wave energy flux.

5. Basin Mode

One can further discuss the Rossby wave modes within a basin. In principle, the presence
of both the zonal and meridional channel walls quantitized the wave number in both the x

and y directions

AN
S B
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The net energy flux is zero in any direction. The reflection in both directions quantitized
the wave number in both directions as.

K =| B ymr 7
"ol -20 L, L

y

One can find the basin mode as:

. Max . n
W o oS L +w,, ,t sin == gin =2
2 m,n ’ Lx Ly

The wave has a peculiar feature: it has westward phase propagation, but no net energy

flux.
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Sec.2.5 Forced Rossby Waves

In general, observed atmospheric and oceanic variability are caused either by external
forcing or internal flow instability. The flow instability is caused by the shear of the mean
flow and the energy exchange with the mean flow. This will be discussed in chapter 6.
Here we will focus on variability excited by external forcing such as wind stress and
topography et al.. We will see that the free waves that we studied before are of critical
importance in helping us understand these forced responses. In other words, the forced

response can be understood in terms of free Rossby waves.

In general, the forced linear wave response should have the same characteristics as the
forcing. For example, if the forcing has a frequency €2, the response should also have the
same frequency. If the forcing has a speed of C, the response should also have the same
speed C. Here, we consider two types of forced responses, all caused by a steady flow
over mountains. The forcing can therefore be considered as a forcing speed of C=0. The
first type involves the flow over an isolated mountain while the second type over periodic
mountain. The former concerns with the excitation of free waves and wave energy

radiation into the far field, while the latter concerns with the resonance.

We first introduce the concept of stationary wave number. The general dispersion

relationship of the Rossby wave (2.2.5) can be written as:

UK - K
c=U- e fLZ = 5{2 N L;) (2.5.1)
D D
where, in the absence of a mean topography,
K’ p_1L_8 (2.5.2)

TUTB U
is the stationary wave number. (Here, we will mostly discuss the wave in terms of the
wave speed C, because we are considering the mountain forced response of a phase speed
C=0. Forced response for a given frequency will be better discussed in terms of the
frequency in the dispersion relationship (see homework E2.7, E2.8)). With a typical wind
of U=10my/s, the corresponding wavelength is about 5000km A general Rossby wave
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propagates in different directions according to its wave length relative to that of the

stationary wave.

long wave, K® < K? = ¢ < 0, westward propagation,
stationary wave K’ = K! = ¢ = 0, stationary
short wave K> KS2 = ¢ > 0, eastward propagation.

1. Flow over isolated mountain

Consider an infinite beta-plane, a uniform mean current U passes over an isolated
mountain 7. It is straightforward that the flow field locally near the mountain has to be
distorted. The most interesting question here is if the mountain can also generate remote

responses away from the mountain.

zp#() only
’ inside T
U _

Except inside the isolated 7, zzp=0, the response, if available, is simply free Rossby waves

of the form:
w = Re(ye' ™7 (2.5.3)
with ¢ =U(K? - K2)/(K* + L) asin (2.5.1). For our interest here, c=0 (stationary) for
the fixed mountain, we have the wave length of the forced response as
K’ =k>+I’ =K (U). (2.5.4)
The remote response depends on the stationary wave number or in turn the mean flow
conditions.
(1) U>0
With a mean westerly wind, KS2 > 0 according to (2.5.2). The forced response has a real

wave number, corresponding to propagating solutions. This free Rossby wave radiates
energy into the far field and produces strong response there. The conclusion that only

westerly wind can generate downstream response can also be understood from the
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handwaving argument in terms of the conservation of potential vorticity (see Holton,
Figs.4.9,4.10).

The example above demonstrates a general principle. For an isolated disturbance ¢/,

if the forcing frequency o can excite free wave (with real wave numbers), the disturbance
can be radiated away to the far field. Otherwise, the response is trapped near the wave
maker.

The direction of the wave energy propagation can be further studied in the case of
K,”>0. From the dispersion relation (2.5.1), we have the group velocity for a general
Rossby wave as:

2kp

a &
ng) = (é’kw,é’]a)) = (C,O) + k(g,g) = (C,O) +m

¢, = (c (2.5.5)

gx?

For a stationary Rossby wave, ¢=0 and K*=K,’ as shown in (2.5.1), the group velocity is

2kp 2kU
€, = I Sl e
(KS + LD ) Ks + LD

(2.5.6)

where we have used the stationary wave number K>+ L? = #/U as in (2.5.2).
Since
2k°U
Co =73 57 0,
K~ +L,

wave energy always radiates to the east of the mountain.
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— O~

Furthermore, eqn. (2.5.5) shows that the group velocity of the stationary Rossby wave is

in the same direction as the wave vector K!

\C.. K

NS

The dominant direction of the propagation depends on 47/, which will be determined by
the shape of the mountain, or more precisely its dominant projection on &% For a
mountain like the Rocky Mountain, the dominant projection has k>>1, because of its
dominant north/south elongated shape. Therefore, the dominant stationary wave response

1s eastward downstream.

- [

The Alpes is the opposite, with />>£, because of its dominant east/west elongated shape.

The dominant response therefore is north/south.

l
Ilelll'
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The Tibet is more rounded with &£ comparable with /. The resulted response therefore

tends to radiate in the northeast and southeast directions.

NS

The magnitude of the group velocity of the stationary Rossby wave can be derived from

(2.5.6) as (for short waves such that KS2 >> L))

2 2
c, = kU ~ kU =2Ucosa (2.5.7)

VK +L; K

where the angle « satisfiescosa =k /K , and it represents the angle of the wave vector

with the zonal direction. For a purely zonally propagating wave /=0, we have c,,=0 and

therefore cosa =1. The eastward group velocity is twice the speed of the mean flow!

(1) Easterly wind, U<0:
Under an easterly wind, we have from (2.5.2) K} <0,. The forced response (2.5.3) has

an imaginary wave number. Since the wave energy originates from the mountain, the
forced response can’t be infinitely large away from the mountain. The only possibility is
that the forced response decays away from the mountain. Therefore, the response is an
evanecsent solution with only localized responses. The flow¢ decays with distance from
T. In other words, under the easterly wind, no free waves exist to match the stationary
wave number. So there is no wave energy radiating away from the mountain.The

response in the far field is weak.

Note 1. Stationary Rossby wave propagation on a sphere and Teleconnection:

The propagation of stationary Rossby waves plays a critical role in climate study. At the
climate time scale, we can treat the Rossby waves virtually as stationary. Its propagation

can relate the climate in one part of the world to that in the other part. This is called
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atmospheric “teleconnection”. The atmospheric teleconnection becomes particular
complex on a sphere. For a simple mean flow, one can show that the planetary wave

propagates along a great circle (Hoskins and Karoly, 1981).

An important observational evidence of the atmospheric teleconnection is the PNA
(Pacific/North America Pattern). This atmospheric teleconnection pattern enables the
eastern equatorial Pacific SST anomaly, as occurred during the El Nino years, to

affect the climate in the North America. Here, the forcing is a local thermal anomaly.

(O
-

Several things need to be kept in mind. First, cross-equator propagation is usually
prohibited by the dominant easterly wind there. Second, if dissipation is strong enough,
the waves will be damped heavily before it propagates far away. Third, similar wave
radiation can be found in the ocean, such as the Gulf Stream eddy radiation. Finally, with
strong shear in the mean flow, wave reflection will be refracted such that waves tend to

be trapped along westerly jet, or the so called wave guide (see later section 2.6).
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2. Flow over sinusoidal topography

Now, we consider a mean zonal flow over a periodic mountain confined in a zonal

channel.

o ()

The bottom topography can be represented as

z4(x,y)=Asinlycoskx, [= LLZ 7

where the amplitude of the mountain has been assumed small relative to the total depth
A
— <<1
D
such that the dominant flow climbs over the topography (instead of circling the
topography) and represents a weak linear response. Thus, the basic state has no
topography z, =0 and the mean PV field is simply
- Uy
q=t B+

D

q,=p+ = B

e

The topography affects the perturbation PV

1 i
=V -+
Assuming the dissipation is a Rayleigh damping,
F_ -A(u,v), or curlE =-AVy U
P —
The linearized PV equation for the perturbation is — A

= N
(6, +U3)q' +V'f=-AV’y

or in terms of the streamfunction as

(0, +UONV* == + 20y + Oy f = -T2

D

8.z, (2.5.8)
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For convenience, we write the topography as
zy = Re{Ae”‘" sin ly} ,

the forced response will take the form of
W = Re{y?e”“ sin ly} .

Substitute these into the equation, we have

L ikU(K? + 12 - AK? + ik Blyr = —ik f;)U A.

This gives the amplitude of the forced response as

-1
~ fOU 2 -2 =y l‘ﬂ«Kz
=——AUK +L;))-p -
V=5 ( p)=F-—
U Ak
_ fO—A{U(K2 ~K2)-1 }
D k
The corresponding surface elevation is therefore:
-1
~ fo. A iAK?
D

Without no friction, 4 = 0, we have the amplitude as

A

_— (2.5.10)
L (K* - K3)

n=

When the forcing wave number is the same as the stationary wave number K=Ky , the

amplitude of the response is infinite and the phase has an abrupt change across K. This is
the resonance response. In general, with dissipation, the response amplitude is finite. The
amplitude maximum amplitude depends on the ratio of the dissipation and advective time
scales. The larger the dissipation time scale, the larger the response amplitude. In the case

of weak dissipation,

ﬂ, o 1/ TDiss.. — TAdv. << 1’
KU 1/ TAdv. TD[SSA

the amplitude is finite and the phase still shifts abruptly across the resonant wave number.
In contrast to the isolated mountain case, now if the forcing structure fits the free

wave, it generate resonant responses. This is also a general principle when the forcing is

applied onto every point of the flow field. In the former case, the forcing is applied to an

isolated region and the response, when free wave is excited, appears as remote responses
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in the far field, but with a finite amplitude. In the latter case, the forcing is applied
everywhere on the fluid, and the response, when free wave is excited, exhibits an
amplified amplitude. In both cases, the understanding of the free wave is of critical

importance for us to predict the response for a given forcing.

resonance

n|

Arg(n)

KZ

K2

It is important to recognize that forced resonance is a general concept, which exists for a
linear system forced by a periodic forcing. For the Rossby wave here, a more generalized

forcing of the form "™

can be used on the linearized QG equation (See E2.10 for an
example of U=0). The periodic topography case in (2.4.6) is a special case of stationary

forcing with w=0 in the presence of a mean zonal flow.
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180°

Fig- 11.6. Planetary wave propagation on a sphere, as found in a numerical experiment of Grose and Hoskins
t1979). Contours are of perturbation vorticity, and disturbances 1o a superrotation zonal flow (i.e, an eastward
flow with uniform angular velocity about the earth's axis} are produced by a circular mountain centered at 30°N
and 180° longitude, and with radius equal to 22.5° of latitude. Waves travel backward and forward across the equator
along ray paths that are curved because of variation in the Coriolis parameter 1 with latitude. The equatorial trapping
effect is evident. The amplitude of the wave decays with distanice because of dissipative effects included in the
model. [From Grose and Hoskins (1979, Fig.-3al]

Fig.2.4: Stationary Rossby wave response and
atmospheric teleconnection
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90" W

90°E

FiG. 1. Gm_potenlial response 10 a |ocalized vorticity forcing centered on the Greenwich meridian
at latitude 30°N. Solution of (6.2) with the forcing (6.5), Amplitude is arbitrary.

90" W

90°E

{ Fig.2.5: Stationary Rossby wave on the sphere and E-P
flux
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*Section 2.6: Non-plane Waves

We have so far been studying plane waves. These waves only exist on an infinite domain
and in homogenous medium. In a more general domain and medium, a wave can be

represented as the summation of various plane waves:
w = Re{ [y (k, e~ didl) (2.6.1)
The plane-wave case is the special case with the spectrumy/ being a 3-function:
w=0(k—-kyl-1)), (2.6.2)
the general wave (2.6.1) reduces to a single wave
w = Refe' oo (2.6.3)
Such plane waves are rarely seen in reality because it requires homogeneous medium and
an infinite domain. For more general cases, the wave group is a wave packet, which

consists of waves at many wavelengths and we are most concerned with the propagation

of the wave packet in an inhomogeneous medium.

|
—_— Plane wave |
I
I

You may think that the energy of the wave packet is conserved during the propagation.
This is not true if the mean flow has shear, so there is wave-mean flow interaction. A

more general conservation quantity, however, is the wave activity.
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1. Conservation of Wave Activity

45

Consider a basic state of W(y), the mean flow is U = —;[ﬂ =U(y), V' =0.The
'y

background QGPV is:
¥
d’y L

o) =fo+Pr+

For a small disturbance ’, we have the streamfunction
y=Y+y'(x,».1)
where y'<<¥ and the flow

u=U+1u

! !

where <<1 (more precisely <<1).

For later convenience, we first rewrite the northward QGPV flux v'q’ in the convergence

form.
I=V2 y_ﬂ)
q 4 2
W=l wio v
vq WoRWtro,v——
D
Using the identities

1
l//'x l//'xx = ﬂx E(l/l'x )2 2

1
v' ', =0, v )y vy =0, .y, )0, [E(I//'y i } (2.6.4)

I
v y'=0, [—(w’)z},

2

we can write the PV flux as

12

r_r 1 1 1 1 1 1
vq=ﬂx{5(t//x)2—5(t//y)2—w }+5y(v/xl//y)

2L

Defining the E-P flux vector F as
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I
F |ippp—u? ¥
F:{ "}: R PPy~ = (2.6.6)

—Dpu'v'
the PV flux can be written as the divergence of the E-P flux

Dp,v'q'=V eF (2.6.7)
Now, we return to the linearized QGPV equation.

(0, +Ud,)q'+v'0, =G

Multiplied by ¢', we have

12

@, + Uax)%+ vq'0, =4'G

Again multiplied by p,D/Q, (which is a functoin of y), we have

D qg'* D 'G
0, +U0 )=y ppvg =PI =5,
2 0, 0,

Therefore, we have:

O, +UeV)4A+VeF =5, (2.6.8)
where

1 q!Z
A=—Dp, (2.6.9)

2 0,
is the wave activity density per unit area. Since VeU =0 for QG flows, we can rewrite

(2.6.8) as:

0 A+Ve(UA+F)=5, (2.6.10)

This is the wave activity equation. It is important to realized that the equation is valid as
long as w'<< ¥ and there is no restriction on i’ being a plane wave at all. This equation
is also generalized Eliassen-Palm equation. The flux U4 + F is the wave activity flux, the
first part is due to advection by the mean flow, while the second part due to wave

radiation relative to the mean flow.

Since 4 and F are of quadratic form of the perturbation, they will have a higher

harmonic/frequency component. In practice, 4 and F are made more manageable by
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some kind of average (depending on the problem), such as the x-average, t-average or
average over a wave length. (This kind of average makes no sense to a variable that is of
linear on the perturbation, because it is always zero). Here, we take the zonal average, as

1n most cases.

17 -
P)=7; ILP(x, y.0)dx = P(v,1).
Assuming either the disturbance vanishes at infinity, or the system is periodic in x such
that P(-L)=P(L), we have
(P 1
KE) =5 (L) ~P(L)]=0

Averaging the wave activity equation (2.6.10), we have

84 +0,(F) =S, (2.6.11)

This is the shallow water version of the Eliassen-Palm equation, where the wave activity
is

5
a-Lop, 9" (2.6.12)

279,
and the E-P flux is
F, =—p,D"). (2.6.13)
If further there is no source and sink, S,=0, we have the conservation of wave activity as
G,A+0,(F,)=0 (2.6.14)
or QZ = -0, (IT:,). This states that the accumulation of wave activity depends on the

convergence of the E-P flux.

One important application of the wave activity equation is the wave-mean flow
interaction. We can easily show that the E-P flux also affects the mean flow. In the QG
context with o,u+0,v=0, the zonal momentum equation

Ou+0 (uu)+ é’y (uv)— fv=-P

can be zonally averaged to give
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where we haveused v = &_w = 0 using the QG approximation. Notice (2.6.13), the
equation above can be written as
8, pyDu—3.F =0 (2.6.15)
or with (2.6.14),
O, p,Du+3,4=0. (2.6.16)
This suggests that the wave activity and mean flow exchange with each other. The wave-
mean flow interaction occurs through the E-P flux convergence. (This can also be

understood from the instability view later in Chapter 6: shear flow produces instability,

and the unstable wave feedbacks on the mean flow).

The above equations can be used to understand the negative viscosity. Consider a tilted

wave in a sheared westerly jet,

v

In the middle of the jet, we have -JF,<0 and therefore a decreasing wave activity g4<0.
The decayed wave energy is converted to increase the mean jet, i.e. Ju > 0 (in other
words, because of the convergence of the Reynold stress). Therefore, in this case, the

disturbance acts as a ““ negative viscosity” to the mean flow (Starr, 1950).

2: Wave activity for almost plane waves

1) Almost Plane Wave

As discussed in (2.6.2), a plane wave has a spectrum of a delta function. Now suppose the

wave spectrum is finite but of a narrow band width,
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[Vl<<r %

we have from (2.6.1) that

<«<1 (2.6.17)

p'=Re{ [[§' U+, 1 +)e ™™™ d(F)d () x e e

= Re{ o(x,y,t)x ! koxhoy=an) }
= Re{ p(x,p,1)x e}

I A
wia ©
where L | K
ko

a0 a0 a0

—=ky,—=1,—=-0,

& ¥ a Power spectrum of

Q oy an almost-plane wave

a
=ik << ky ~ —
g SRS

Thus, ¢ is slowly varying in x, y, ¢. The wave packet
y'= Re[p(x, y,1)e”] (2.6.18)

is called an almost-plane wave, with the slowly varying part ¢ as its envelope.

(2) WKB approximation: (Wentzel, Kramers, Brillouin) (or WKBJ: with Jeffreys)

Now, consider an almost plane wave,

v'=Re[p(x, y,t)e’] (2.6.19a)
where the general form of phase 8 =0(x, y,t,k,l,®) takes the first Taylor expansion
around the central wave number as:

0=0(x,y,t) ~kx +1y—at (2.6.19b)

«— [/h ————
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O.u'=Reld pe"” +ikge” |~ Re{ik(pe”[l 4 %—4"]} = Refikpe[1+ O(k / k)] }~ k Refige |
Ik
The linearized QGPV and its derivatives at the leading order is:

[ 1 ] — i
q'=(V’ —L—z)l// ~—(K* +L, ) Re(pe”)

D
0.9 ~—w(K* + L )Re(ige),
0.q' ~=k(K* + L, )Re(ipe”),
At the leading order, we have
Ref|-i(K? + L2 Y@ - kU) + ikg, ”p}=0
Thus,
—kQ, | ok

0(=-)

a)—kU:ﬁ
K +L, k

The dispersion relationship is therefore approximately

kO, (y) _

w=kU(y)—- =
) K*+L;

Q(y) (2.6.20)

This is similar to the plane wave case, BUT, valid even in an inhomogeneous background
flow U=U(y), 0O, =0,(y).The price, however, is that the relationship is no longer
exact. In general, k = k(y), so wave number is locally determined at y and could vary

with y. To be consistent with slowly varying nature of k, we need U and Q, to be slowly

varying in the sense that

'y

<< ‘le

2

d
< |/(U=c), and |—
-l s |0

Or Uand Q, may vary on the scale of the wave packet //6k (WKB approximation)

which is much larger than the wave scale //k. We can also define a slowly varying local
group velocity as:

[O”a) ﬁa)}
C’: —,— |=
8 o a

. O,(K*~I*~L}) 2KkQ,

U ,
(K*+L;) (K*+L,)

:Izcg(y) (2.6.21)
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(3) Wave-activity of almost-plane waves: To derive the equation for the evolution of the
wave packet, we could expand x, y, ¢ in fast and slow variables (Pedlosky, Sec. 3.20).
Here, instead, we use the more general wave activity equation (2.6.10):

O,A+Ve(UA+F)=S5,

Note, we define the phase average <> (over a period in X, y, or t) such that <e” >=0.

This is the average in the wave length scale, which is still much smaller than the wave

/

1 1 1 1
packet scale. For example, (cos2 (0> =\3 (1 + cos 2(0) =3 + 3 {cos2¢p) = bE This

removes higher harmonics. Now, phase average of the wave activity equation gives

O, <A>+VelU<A>+<F>|=<S,>,

PoD

<A>= <q”>/0,,
Here,

' - i 1 - i *
q'~—(K*+ L, )Re(ge”) = —E(Kz + L) Nge” +9’e™),
<q” >:%(K2 +L)) <p’e” + 200" +go*2e’2f" >,

1 2 2820 |2
:E(K +Ly) |§0 )

Therefore,
D (K*+ L7
<A>_’0° ( 5) |¢2,

In general, for two complex variables (a, b)=Re [(4, B) ¢ '’], we have <ab>=Re(4,B*)/2.

Therefore, we have

D 12
<F, >=< po—(v’2 ~u'"? —l//—z) >
5 .

D
<v'? >=< (Reikpe')? >=%k2|(p|2
<u'? >=<(Reilpe)’ >=%12|¢|2

' 2_1 2
<y'>*=_lg|
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<F >z%(k2 —I* =L

_ .
<F,>=-p,D<uv >

u' = —Re(ilpe'®), v' =Re(ikpe'?)

<u'v' >= —% <(ige’ —ipe?)? >= —%kl|(p|2

P.D 2
< F, >==2=kllg|
>0
F=(F ,F)=——2-(k"-1"-L, 2kl).
( x y) (K2+L_Dz)2( D )

This reminds us of the local group velocity (2.6.20),

<F>=<4>(C,-U) (2.6.22)

The wave activity flux is the wave activity density transported by the group velocity

relative to the mean flow!

Finally, for an almost-plane wave, the wave activity equation (2.6.10) becomes :

P, < A>+Ve|C, <A>|=<S, (2.6.23)

If C, is slowly varying, we further have

0,<A>+C,eV<4>=<S§, >

This demonstrates that wave activity is transported by the group velocity speed. The
concept of group velocity is the special case of almost plane waves. For more general
cases, including those where the almost-plane wave concept fails, the corresponding
concept of wave activity flux is always valid! This enables us to diagnose the wave
activity flux in observations, which has complex variability and often violate the

conditions for the almost-plane waves.
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(4) Wave Activity and Wave Energy

What is the relation between the wave activity and wave energy? As in Section 2.1, the

energy of a general perturbation is

-2

D

12
EzépD{u'z +v'? + id }

For the wave packet, the wave energy for almost-plane waves is therefore

D
<E> poT(K2+LZ>2)|(/’|2
<A>
=0 — = _—(U-=-¢)<A4> 2.6.24
Qy(K2+L;f) ( ) ( :

The wave activity equation for the almost plane wave (2.2.23) can be put in different

forms.

(1) Conservation of wave action:

Since k is independent of y, multiplying //k in (2.2.22), we have

<E> <E> 1
ﬁ{ }+V0{Cg }:—;<SA > (2.6.25)

where we have used (2.6.24) and the wave action

<d>=E> (2.6.26)
o—-kU

The equation above therefore represents the conservation of wave action, which is the

conservation of wave activity in the special case of almost-plane waves.

(i1)) Wave energy equation:

Multiplying (2.6.25) by U-c, we have the wave energy equation

C,eVU
o”t<E>+V0[Cg<E>]+Z—<E>:(U—c)<SA> (2.6.27)
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Therefore, wave energy is conserved ONLY IF the mean flow U is uniform or has no
shear (relative to the direction of C,). In the presence of shear, there is energy exchange
between the mean and the wave. The wave energy is no longer conserved! However,
wave activity is still conserved, because it has already taken into account of wave-mean

interaction.

For the special case of a uniform basic state, U and O, are uniform, k and C, are uniform,
so that

o, <A>+CgVo<A>:<SA >
In a uniform medium, wave activity (wave action and wave energy) of an almost plane
wave packet all propagate at the group velocity. The wave packet will propagate without
changing its shape. With an inhomogeneous medium, however, wave activity or wave
action is a much more useful concept than the wave energy, the former tends to be

conserved while the latter not.

(ii1) Dissipation

With a dissipation, say a Rayleigh damping, F = —4pu’, we have

curl X = V', S, =Dpyq'Vy'l0,.
Y2

For an almost -plane wave (2.6.18), we have
curlF = AK* Re pe’’

q'=(V* = L,)y'~ ~(K* + L, )Re(pe”),

<A4>.

D , AK*(K*+L7), » —2AK?
0 < q'VPy'>=-Dp, EQM el
D

qy y

<S§,>=

Thus, the wave activity equation (2.6.22) can be written as:
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2
0, <A4A>=-Ve(C <A>)—%<A>.
¢ K*+L;

The effective damping rate is therefore:

21K

K2 +Lz_)2 baratropic  Limit (L% —w)

324

3: Wave propagation and Ray Tracing

In a sheared mean zonal flow U(y), assuming the wave length is short relative to
the scale of the shear flow, we can take the wave as the almost-plane wave and assume
the wave of the form (WKB approximation),

w'=Re[p(x, y,t)e "] (2.6.28)

with the dispersion relationship (2.6.20)

Lk
where
— o’U U
= =f- - 2.6.29b
p=0,=p & L ( )

The propagation of a wave packet can be traced using the kinematic ray tracing theory,

that is tracking the trajectory of the group velocity as

dgx_c _a_a)
dt - gx_@k 2.6.30
4y _ . 0o 2030
dt ol

Now, however, since the background state, and in turn the frequency function (2.6.29)
varies with y, the wave number will no longer remain constant. Indeed, for a general

wave of the form (2.6.28),

dk_oo
dt  ox
d] o0 (2.6.31)
dt oy

Here, (2.6.31) can be derived from the kinematic relationship as
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dk 9 [89} 0 (68)_8@_89

dt at\ox) ox\or) ox  ox
4I_0(s0)_0(00) ou_o0
dt ot\oy) oy\ ot oy 0oy

The wave ray can be obtained by providing the initial position of the wave packet and

wave number x, y,, k, [,, and then integrating the set of equation (2.6.30) and (2.6.31).

Example: Wave ray of stationary barotropic Rossby wave (K”>>Lp’) in a mean westerly

U(y). (Hoskins and Ambrizzi, 1993, JAS). The dispersion relationship (2.6.29) is now

reduced to
k K’ K]
a)=U(y)k—ﬂ2 =UWk| ——— =) (2.6.32a)
K K
where the mean PV gradient is
2
B =p- 82U (2.6.32b)
'y
and the stationary wave number is
ﬂ*

K’ = T 0. (2.6.32¢)
For stationary wave, we have

0=0, and K=K (2.6.32)

The group velocity for stationary Rossby wave can be derived similar to (2.5.6) and

(2.5.7) in the limit of K*>>Lp’as

c, =c ﬁ, c, =2Ucosa 2.6.33
g g g

where « is the angle between wave vector and the east and k is the normalized wave

vector. Since the mean flow depends on y only U(y), we have 0,Q2=0,0,Q#0.

Therefore, along the wave ray, the zonal wave number will remain constant, k=ky, but the
meridional wave number will vary. So, the wave numbers are determined from (2.6.31)
and (2.6.32) as

k=k,

(2.6.34).
P K-k
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The wave numbers are determined from (2.6.30) and (2.6.34) as
d k _o

dt
d,l _&dgKS K, dK dK

S —
_cg

(2.6.35)

N

dy

dt 1 dt [ % dy
Where we have used ¢, /I =c, /K, as derived from (2.6.33). The slope of the wave ray is

determined from (2.6.30) as

d_y:"ﬁ:é:tana (2.6.36)

dx Co

Therefore, the bending angle of the wave ray is

c
—~tang == dK,
t k dy
Or
d, k dK,

Therefore, the wave ray tends to bend towards the latitude of higher K;. Especially, in a

westerly jet, the wave tends to be trapped around the jet maximum, which therefore forms

the so called wave guide.

K K2 Ks
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FI1G. 3. The climatological DJF 300-mb flow based on ECMWF data for the period 1979-85.
(a) Westerly component of the wind, U; contour interval 6 m s~'. (b) Mercator coordinate
meridional gradient of the absolute vorticity, @, defined in (2.12); contour interval
1.107" s m™", {c) Stationary wavenumber, K, defined in (2.13) for 8, and U positive; contours
at zonal wavenumbers 0, 4, 5, 6, 7, 8, 10, and 15, and also 25-30, producing a thickened contour
indicating singular values of K;. In all panels, negative contours are dashed and zero contours
are dotted. Lines of latitude and longitude are drawn every 30°, and arrows indicate 0° latitude
and longitude.
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Questions for Chapter 2
02.1: (a) The perturbation streamfunction of the Rossby wave is

v’(x,t)=cos(kx-ot). What is the wave pattern on the x-y plane? (b) The mean zonal flow
is U=const. What is the pattern of the total streamfunction y(x,y,t) = -Uy+ v’(x,2)?

02.2: Why does the localized topography force a finite response remotely, while a
periodic topography produces an infinite response? A similar comparison is seen between

E2.8 and E2.10 for time dependent forcing.
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Exercises for Chapter 2

E2.1: (Wave envelop and group velocity) Two plane Rossby waves have similar wave
numbers such that the streamfunctions are y;=cos(kx-at) andy>=cos/[(k+Ak)x-(w+Aw)t],
where Ak<<k. (a) Show that the total streamfunction yw=;+ > consists of a Rossby
wave of wave number close to k and an wave envelope with the wave number 4k. (b)
What is the propagation speed of each individual wave crest (phase speed)? (¢) What is
the propagation speed of the wave envelope (group velocity)? (d) Give a wave number

and plot the evolution of the wave.

E2.2: (Propagation of planetary wave) For a Rossby wave whose wave length is much
longer than the deformation radius (planetary wave), relative vorticity is negligible such
that the potential vorticity is approximately g=fh. In this case, why does the planetary
wave propagate westward? Illustrate the propagation mechanism based on the principle

of PV conservation.

E2.3: (Dispersion diagram) In the absence of mean flow and bottom topography, (a)
Calculate the group velocity of the Rossby wave C,=(Cyy, Cy,). (b) Verify that the
direction of the group velocity of the Rossby wave is as indicated in the dispersion

diagram in Sec.2.3 (outward from the center in the case of k>0)..

E2.4: (Group velocity) Given the dispersion relationship w=-Sk/(k’+F+Lp?) and a
specific meridional wave number /, find the maximum eastward and westward group

velocities as well as the wave number at which each maximum is achieved.

E2.5: (Rossby wave reflection) An incident Rossby wave ;=4 exp[i(k;x+1y-w1t)]
impinges on a tilted eastern boundary xz(y)=y/a, where a is a constant. Identify the

incident and reflected waves on the dispersion diagram.

Copyright 2014 Zhengyu Liu Xi



AOS611Ch.2, Z. Liu,01/20/2015 61

E2.6: (Coastal Kelvin wave) On a half-plane x>0, shallow water disturbances satisfy
o = -gan, Avtfi =-gdn, An+H(Eu+3v) =0

in x > 0. The flow has to satisfy the solid wall boundary condition u|,-y =0. In addition,

there is no energy source from the infinity, so the energy radiation condition requires

finite u, v, natx—>+o

x=0

Assume this is an f-plane, find the linear wave solution.(Hint: set u=0 as part of the

solution).

E2.7: (Radiating Rossby wave): A wavemaker on the eastern boundary x=0 has a
frequency @ and a meridional wave number /, such that the surface elevation on x=0
satisfies n=mnycos(ly- wt). The wavelengh is sufficiently long (large scale) and the
freqnecy is sufficiently low such that quasigeostrophic dynamics can be applied. Find the
Rossby waves generated by this wavemaker. (Hint: find the Rossby wave that satisfies

the eastern boundary condition y=uy cos(ly- wt) at x=0, where wy=gno/fy.

y
? wy cos(ly- wt)

Copyright 2014 Zhengyu Liu
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E2.8. (Radiating gravity wave) On a nonrotating tank, the shallow water waves satisfy
the equations: Ju=-go,h-ru, 0h+HoOu=-rh, where r is the damping rate. There is a
wavemaker on the eastern boundary x=0, such that the coastal sea level is forced to
oscillate as h(x=0,t)=hycos(wt). Find the sea level response in the interior ocean for two
cases. (a) No damping such that »=0, (b) finite damping with »>0. In each case, discuss

the physics of the solution.

hocos(wt)

E2.9: (Resonance of Rossby Waves) The linearized damped QG model is forced by a
periodic forcing as follows:
2, Y _ o) - AV -
0,(Vy——)+p0.y=Fcos(tkx+ly—ot)—A(Vy ——-) .
Ly } L,
(a) Find the forced response.

(b) Discuss the response in the limit of 4 — 0.

E2.10. (Damped Transient response): A forced swing set satisfies the equation
dA/dt-iwA=Fexp(iot)-dA, where A is the position of the swing and @ is the frequency of
the free oscillation, ois the forcing frequency, F is the forcing amplitude and d is the
damping coefficient. The forcing amplitude F is applied at t=0. (a) Derive the forced

solution that satisfies the initial condition: 4(¢=0)=0. (b) What is the forced solution after

a long time?
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E2.11. (Transient resonant solution): A forced swing set satisfies the equation
dA/dt-iwA=Fexp(iot), where 4 is the position of the swing and w is the frequency of the
free oscillation, ois the forcing frequency and F is the forcing amplitude. The forcing
amplitude F is applied at t=0. Derive the forced solution that satisfies the initial
condition: A(t=0)=0 for (a) o#w and (b) o=w. (c) Prove that the solution in (b) can be
derived as the limit case of c—® from the solution of (a). [Hint for b): try the solution of

the form A=Cexp(iwt)+Cst exp(iwt) and determine the coefficients C; and C5].
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E2.12: (Rossby Wave-Guide in westerly jet using the WKB method) (ref: Hoskins, B and
T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow.
J. Atmos. Sci., 50, 1661-1671) With the mean zonal flow varying with latitude U(y), the
Rossby wave dispersion equation in (2.5.1) is still (in the WKB sense)

0=0(y)=U(yk —% (1a)
or

= U(y)- K?:yL)g ) U(y)gi:—éf(y)/ ab)
butnow B(y)= B (y)+ UL(;;), where B"(y)=-8,,U(y). The stationary wave
number (2.5.2) is now

K2y)=P LB @)

u 13 U(y)
For stationary Rossby wave (c=0 or K=Kj;) prove
(a) The group velocity is still
o=k )
(K- +L;)

(b) In WKB theory, the wave number along the group velocity changes as

dk_co a1 _eo
dt  ox’ dt oy
With eqns. (1) and (2), show that
M =0, (4a)
dt
%:%ng dzs . (4b)

d gV
where we have used 7 =C o -
t

(c) Defining the angle of group velocity with x-axis is & , using (3) show that
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C [
t =2 - 5
an(a) C,. K (5)
(d) With (5), show from (4b) that
d,l
% & (6)
dt dy

where ¢, =[C, |.

(e) Using (6), (4a) and (5), show that the change of the angle of the group velocity

follows
d c, dK
—Ltan(a ):—gd S
dt k dy
or

d, k  dK

a=—-c g 7
d K> ° dy @)

(f) Based on (7), give several examples showing the following statement is correct:
“ the stationary Rossby wave propagates towards the latitude of increased K.

(g) Based on the statement in (f), discuss if the following statement is correct: “the

latitude of maximum K forms a wave-guide, i.e., waves tend to be trapped around the

latitude of maximum K _”.

(h) Based on (g), see if the following statement is true: “A westerly jet tends to form a

wave-guide around the jet .
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E2.13: (Rossby wave energy flux) A free Rossby wave has the form w=Re[4 e © - |

and the dispersion relationshipw=-Gk/(k’+F+Lp>).
a) Prove that the wave energy (averaged within a wave length) is:
E=<{y’+y’+(w/lp)*}/2 >= |A (K +F+Lp”)/4
b) Prove that the group velocity can be written as:
(Cao Cop)=[k+p/(20), 1]x(-20)/(K+F+Lp?).
The energy flux of a wave packet F=(F,, F),) is the wave energy multiplied by the group
velocity F=Ex (Cyy, Cg)= -20|A]’ (k+2w, 1).
c) If this wave is reflected on an eastern boundary y=ax (see E2.6), prove that the
reflected wave g=Re/B e ™% ] has the same alongshore energy flux as the incident
wave, that is Ge(1, a) = Fe(1, a), where G = (G,, G,) 1s the energy flux of the reflected
wave.
d) Are the alongshore group velocities the same for the incident and reflected waves?

e) Prove that the incident angle ;s

f) A similar expression can be derived for the reflection angle. Is the incident angle the
same as the reflection angle?
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E2.14 (Topographic Rossby Wave): On a f-plane with homogeneous fluid, a Northern

Hemisphere ocean basin (Fig.E2.12.1: a. top view, b. side view) has a continental slope

of several hundred kilometers wide. For large scale, low frequency disturbances,

a) What kind of low frequency waves will be produced in the basin? Which direction

does it propagate? State clearly the physical mechanism for this wave and how it

propagates in the direction you proposed. What will be the equation that controls the

basic dynamics of this wave?

b) What will happen if this basin is in the Southern Hemisphere (Fig.E2.12.2)?

67

¢) What happens around a large scale seamount in the Northern Hemisphere (Fig.2.12.3)?

a.

North

East

Ocean Depth

Liand

— > East, or North

Fig.2.14.1: NH basin with continental slope, />0

North

East

1d

Ocean

Depth

Lland

A\

— > East, or North

Fig.E2.14.2: SH basin with continental slope, <0
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S- ‘

—— > East

Ocean

Land

Ocean

Depth

Fig.E2.14.3: NH Seamount, />0
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