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Ch.1: Basics of Shallow Water Fluid 
 
Sec. 1.1: Basic Equations 
 
1. Shallow Water Equations on a Sphere 
 
We start with the shallow water fluid of a homogeneous density and focus on the effect of 
rotation on the motion of the water. Rotation is, perhaps, the most important factor that 
distinguishes geophysical fluid dynamics from classical fluid dynamics.   
 
There are four basic equations involved in a homogeneous fluid system. The first is the 
mass equation:  
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where  ),,(, 33 wvuzyx  ukji    . The other three equations are the 

momentum equations, which, in its 3-dimensional vector form can be written as:  
   

  

33

33
3 1

2





u

FguÙ
u

tdt

d
where

p
dt

d




      (1.1.2) 

 

 
   
 
 
On the earth, it is more convenient to cast the equations on the spherical coordinate with 
,,r  being the longitude, latitude and radians, respectively. That is: 
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(1.1.3) 

 
This is a complex set of equations that govern the fluid motion from ripples, turbulence to 
planetary waves. For the atmosphere and ocean, many approximations can be made. 
Don’t be afraid of making approximations! Indeed, proper approximations are the keys 
for the understanding of the dynamics! You can never include everything in your 
equations, no matter how fast is your computer (even if you are a good programmer). 
Therefore, to truly understand a certain dynamic issue, you have to know what the most 
important is for this phenomenon and make sure you absolutely keep this term.  
 
Here, to study large scale flows, we will make 6 approximations.  
(i) First of all, for a homogeneous fluid, the density is constant. So the mass equation 
degenerates to   const , which, according to (1.1.1), gives the so called 
incompressibility condition: 
 
    033  u            (1.1.4)   

This is a very good approximation for the ocean, because the density of the water varies 
by less than a few percent. This is not a good approximation for the atmosphere, because 
the air density decreases significantly, even within the troposphere. Essentially, (1.1.4) 
states that the mass conservation becomes volume conservation. 
 
(ii) The second approximation is the thin layer approximation r  a . The thickness of the 
atmosphere and ocean is roughly D 10km , which is tiny compared with the radius of 
the earth a  6370km . Therefore, this is a very good approximation with an error of less 
than 1 percent. For convenience, we often use the new vertical coordinate z  r  a  that 
starts from the surface of the earth. 
 
iii) The third approximation is important for large scale circulation. This is the shallow 

water approximation 
D

L
1, where D and L are the characteristic scales of the motion in 

the vertical and horizontal respectively. Examples that satisfy the shallow water 
approximation are cyclone and ocean eddies, as well as planetary flows. A cumulus cloud 
has its scales of kmLD 011~~   and therefore does not satisfy the shallow water 
approximation. 
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The shallow water approximation results in an important simplification to the vertical 
momentum equation, and leads to the so called hydrostatic approximation.  Indeed, our 
scaling analysis below shows that all the terms in the w-equation is much smaller than the 
dynamic pressure gradient term. First, we separate the pressure into the dynamic p’ and 
static ps=-gz parts: p= ps+p’. The static part satisfies the hydrostatic equation  
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such that the vertical momentum equation reduces to 
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  (1.1.5) 

 
In a shallow water system, we can show that all the acceleration terms are unimportant. 
Take the term uxw for example:   
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Here we have used the scaling relationship
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, which can be derived from the  

continuity equation wz  ( xu   yv). 
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We have also used the scaling relationship between the dynamic pressure and the 
horizontal velocity as p~U2. This relation is derived from the horizontal momentum 
equation if one recognizes that the horizontal acceleration is driven by the dynamic 
pressure (in the case of weak rotation), and therefore,  
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Since all the terms in the w-equation (try other terms yourself!) are negligible relative to 
the pressure gradient term, (1.1.5) at the first order can be reduced to:    
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      (1.1.6) 

The total pressure therefore satisfies the hydrostatic approximation  
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or   
p(z)  psurface  g(  z)     (1.1.7a) 

 
where  is the free surface elevation and we have neglected the pressure above the free 
surface. The last equation states that the pressure at a level equals the weight of the fluid 
above it!  
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Eqn.(1.1.7a) in turn simplifies the horizontal pressure gradient force as: 
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Eqn. (1.1.6) (which is the result of the two approximations of shallow water and 
homogeneous fluid) states that the dynamic pressure gradient force is independent of the 
depth of the fluid. This implies the absence of vertical shear of horizontal velocities as 

 zu   zv  0 . Indeed, since 
1


p

x
 g x   and   (x, y,t), we have


z

(
1


p

x
)  0. 

Thus  the pressure-driven flow should not have vertical shear either. The absence of 
vertical shear further simplifies the horizontal momentum equations and the continuity 
equation as follows.  For the momentum equations, the vertical advection terms are 
negligible now, such that the total derivative is now:  
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For the mass equation,  
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The kinematic boundary condition on the surface is: 

   )()(  utdt

d
w  

where u=(u,v). The kinematic boundary condition on the bottom, for a fixed bottom 
topography tzB=0, is 
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  (1.1.9) 

 
where Bzh   is the total depth of the water column.  
 
With all the approximations above, we have a simpler set of equations: the shallow water 
equations : 
 
  Fukuuu   gft )(  

  0)u(  hht  .      (1.1.10) 

In the spherical coordinate, the shallow water equations can be written as : 
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For most purposes, the curvature term 
u

a cos
 is much smaller than the Coriolis term, and 

therefore can also be neglected (except in the polar region and global scale flows, see 
next).  
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2. Local Cartesian Coordinate (-plane) 
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Unless one studies global scale (in  ) circulation, most of the time, we can simplify the 
equations further by using the local Cartesians coordinate: 
 
  x  a cos0 ( 0 ), y  a( 0 )  
This gives:  
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The shallow water equations (1.1.11) can be written as: 
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(1.1.12) 

Furthermore, we can use the beta-plane approximation  for motions of meridional scales 

less than the radius of the earth, 
Ly

a


a( 0 )

a
 1. Indeed, now with  0  1, we 

can have the first order approximations as: 
            cos  cos0  ( 0 )sin0  O[( 0 )2 ] 

  
  sin  sin0  ( 0 )cos0  O[(  0 )2] 
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  tg  tg0 O[ 0] 
The curvature terms become negligible even compared with the advection term (since 

u

a cos
 2  is easily satisfied). In the u-equation, we have 
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we can approximate the Coriolis parameter as 
yff  0 . 

Therefore, equations (1.1.11) can be approximated as 
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     (1.1.13) 

where h=-zB is the layer thickness. This is the typical form of shallow water equations 
to be used.  
 
3. 1.5-layer model  
 
Much of the shallow water equation results can be applied to a very (seemingly) different 
fluid.  (example, stratosphere, oceanic thermocline etc.)     
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Consider a general 2-layer fluid with the two layers of fluid of densities1 and 2 . In 
general, the upper layer fluid still satisfies the shallow water equations (1.1.13), except 
now the bottom depth of the upper layer fluid zB also varies with time zB  zB (x, y,t) and 
is an unknown variable to be determined. For a general 2-layer fluid, therefore, the 
problem is not closed, because we have three equations but four unknowns Bzvu ,,,  . 
Now, consider a special type of 2-layer fluid, in which the upper layer flow is much faster 
than the lower layer flow. In this case, the bottom layer can be treated approximated as 
motionless, in which the horizontal pressure gradient vanishes. It is this vanishing 
pressure gradient in the lower layer provides the addition relation needed to close the 
upper layer problem. This is the so called 1.5-layer fluid system. In the lower layer, the 
total pressure at a depth z can be derived from the hydrostatic balance as  
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zzgzggdzgdzgdzp BB

z

zz z

B

B

    

 
The condition of zero pressure gradient in layer 2 is 
  gzgp B )()(  12120   
Thus, the surface elevation can be represented as 
 

gzg B )()(  121         (1.1.14) 
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The pressure gradient in the surface layer can therefore be represented in terms of the 
layer interface as 

  g  (
2  1

1

)g(zB )  g (z B)  

 
where  

g 
2  1

1

g  g   

(g’ g  in the ocean) is called the reduced gravity. It is seen that the vanishing of the 
lower layer pressure gradient is now possible because the  pressure gradient at the upper 
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layer is completely compensated by that associated with the layer interface. This leads to 
the opposite slopes of the surface elevation and the layer interface.  
 
Assuming the average surface is at z=0, we have the thickness of the upper layer as  
 
   BB zzh   
where  we have used  g  g , so that  h  from (1.1.14). Thus, the equations for 

the upper layer, according to (1.1.13), can be written as: 
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,   (1.1.15) 

 
This set of equations for the 1.5-layer model therefore looks exactly the same as the one-
layer system equations for layer 1 in (1.1.13), except to replace g and  by g’ and h. 
 
The 1.5-layer approximate is usually very good for the oceanic thermocline, because the 
upper ocean circulation is much faster than the abyssal flow. Indeed, the slope of the 
oceanic thermocline is usually opposite to that of the surface elevation (Fig.1.1) with a 
much smaller magnitude of the latter than the former. 
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Fig.1.1 
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Section 1.2: Conservation Laws 
 
We first consider some fundamental conservation laws that should be satisfied by a 
general fluid system. This is also a check for the consistency of the approximations that 
we made to our shallow water equations.  
 
1. Energy Conservation.  
 
To derive the energy equation, we first put the total derivative of any variable A into its 
mass conservation form. 
 

   hDtA = htA+huxA+hvyA+A[th+x(uh)+y(hv)]  
            = t(hA)+x(huA)+y(hvA)        (1.2.1) 
 
where we have used the mass equation th+x(uh)+y(vh)=0. The kinetic energy equation 
can be derived by first multiplying u and v onto the u- and v- equations, respectively and 
then sum them up as 
 

Dt[(u2+v2)/2] = -g[ux+ vy]+uFx+vFy 

                work by pressure grad.        Work by source/sink 

 
Multiplied by h,  and with (1),  we have the mass conservation form of the kinetic energy 
of the water column per unit area K= h(u2+v2)/2 as: 
 

tK+x(uK)+y(vK)= -g[hux+ hvy]+huFx+hvFy  (1.2.2) 
 
The potential energy in each column of water per unit area is  

2222 /)(/)( hzgzggzdzP B
z

B
B

  


  

The potential energy equation can be derived by multiplying  the mass equation by g as: 
 

tP+g[x(uh)+y(vh)]=0      (1.2.3) 
 

Therefore, the equation for total energy E=K+P is derived by adding (1.2.2) and (1.2.3) 
as: 
 

tE+x(uK)+y(vK)= -x (hug)+ y (hvg)+huFx+hvFy 

   
Integrating within a domain A with a solid or periodic boundary, we have the 
conservation of the total energy (in the absence of external source/sink) as: 
 

t AEdA=t A(K+P)dA = A huFdA     (1.2.4) 
where we have used the divergence theorem:  A (uS)dA= A Sundl with S being any 
variable,  A  the boundary of the domain A, n  the unit vector outwards, and dl the line 
element around the boundary. 
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2. Available Potential Energy (APE) 
 
How much of the potential energy can be changed to the kinetic energy ? Not all of them 
for sure. There is a basic part of the potential energy that can’t be converted to the kinetic 
energy. This is the minimum potential energy. (see figure, the leveled surface state is the 
minimum potential energy state). (Indeed, the absolute value of potential energy has no 
meaning, because one can choose the reference height arbitrarily.) 
 
 
 
 
 
 
 
 
 
 
 
Therefore, we define the part of P that can be converted to K as the APE, or 
    
    APE=P-Pmin 
 
In the shallow water system, define m=dA/A, we have 

 dm/dt=0        (1.2.5) 
(total mass conservation). Thus, the APE is APE=g(-m)2/2. Since 
dAPE/dt=t Ag[2-2m+ m

 2]dA=t Ag2  - 2gm t A =t Ag2=dP/dt, (see (1.2.5)), 
the total energy conservation equation (1.2.4) can be written as: 
 
   t A(K+APE)dA = A huFdA 
 
 
 

n 
dl 

A 

A

Pmin 
P>Pmin
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3. Bernoulli Equation 
 
In the absence of source and sink, the kinetic energy equation is: 
 

Dt[(u2+v2)/2] = -g[ux+ vy]. 
 

The mass equation tH+x(uH)+y(Hv)=0 can be rewritten as  
 

Dt (g)+gh(xu+yv) - g[uxzB+ vyzB]=0, 
 
we have 
 
Dt[(u2+v2)/2+g] = -g[ux+ vy]+ g[uxzB+ vyzB] -gh(xu+yv)  

= -g[ux  (- zB)+ vy(- zB)]-gh(xu+yv)= -g[x (uh)+ y(vh)]=gt  
 
Thus, for steady flow, t =0, and therefore we have the Bernoulli equation in the 
shallow water as: 
 

DtB= Dt(ke+pe)=Dt[(u2+v2)/2+g]=0. 
 

This states that the Bernoulli function B, which is  the sum of the kinetic energy of a 
water parcel ke=(u2+v2)/2 and the potential energy pe=g, is conserved. following the 
motion of a steady circulation. (Note: this is the conservation of a particle, while total 
energy conservation is in a fixed domain). 
 
 
4. Angular Momentum Conservation: 
 
In the spherical coordinate, we can also show that the angular momentum of a particle 
M=a2cos2+u a cos  is conserved. Multiply the u-eq. in (1.1.3) by cos, we can show 
that: 
 

DtM= -g+Fa cos 
 
Thus, if there is no source/sink in zonal momentum, the zonally integrated angular 
momentum is conserved. 

 
 Dt(M d)=0. 

 
Here, we have used the condition that the pressure is continuous around the globle and 
therefore the integrated derivative along the latitudinal circle is zero. One should notice 
that if one neglects the curvature term u/cos in the term of  (2 +u/ cos)vsin  in the u-
equation, the angular momentum is no longer conserved. For example, in the beta-plane 
model, M d is not conserved.  
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Section 1.3: Circulation, Vorticity and Kelvin’s Theorem. 
 
(ref. Pedloksy, section 2.2, and Holton section 4.1). 
 
1. Vorticity and Circulation: 
 
How to measure the rotation rate of a fluid parcel? Unlike a solid body, different parts of  
the fluid usually does not rotate at the same rate, because of the velocity shears. One way 
is to calculate the integrated circulation of the velocity around the boundary of the surface 
domain A of a fluid parcel: 
 

 = A udr  = A  un dA = A n dA,   (1.3.1) 
 

where u is the 3-D velocity field in a non-rotating frame, and    
 
    =  u       (1.3.2)  
 
is the vorticity of this velocity field.   
 
In comparison, for a solid body, we have u = r valid at any point. Notice the vector 
multiplication 

   

zyx

zyx

BBB

AAA

kji

BA   

 
one can prove that vorticity is twice the rotation rate    
    = u = 2.      (1.3.3) 
 
For a fluid parcel, each point rotates at different rate. Therefore, vorticity is 
approximately the averaged circulation (or averaged rotation). This can also be seen 
clearly if one allows the domain of circulation to shrink to a point. Then, from (1.3.1), the  
area averaged circulation becomes  
 
   n =A u dr/A                    for A0     
  
Thus, vorticity can be thought as the area-averaged circulation.  
 
 
 
 
  
 
 
 
 

dA 

A 

n 

dr 

A 
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2. Kelvin Theorem. 
 
Kelvin theorem predicts the change of the circulation and is a fundamental theory in fluid 
dynamics. Let’s study how the circulation on a material surface varies with time. (denote 
dt  d /dt ) 
 
 dt = A dt udr+A u dt (dr). 
 
Notice that  A u  dt (dr)=A u du =A d|u|2/2 =0, where we have used  
 
dt (dr)= d (dt r)=du,  we have:  
 

dt = A dt u dr = - A p/ dr  +  A F dr    (1.3.4) 
                          pressure grad 

where we have used the momentum equation  
 

dt u  = - p/  +  F .                           
 
For a homogeneous fluid, the averaged pressure gradient vanishes, 
 

A p/ dr =1/  A p dr = 1/  A dp = 0.  
If, furthermore, there is no source and sink (F=0), circulation is conserved following the 
water parcel: 
 
   dt  = 0,      or        = const      (1.3.5) 
This is the Kelvin’s theorem.  

 
 
3. Kelvin’s theorem in a rotating frame 
 
In a rotating frame, the absolute velocity in the non-rotating frame is ua= u + r  
(prove it !), where u is the relative velocity in the rotating frame now. The absolute 
circulation is then (see Pedlosky, also Question Q1.3): 
   
  a = A ua dr  =A udr + A (r )dr = +2An .   (1.3.6) 
where An is the area projected by the surface A onto a plane normal to the rotation vector 
.. Here, we have used (1.3.3) and the Stokes’ theorem such that: 
 
  A (r )dr=A(r)ndA=A2n dA=2An 
Thus, the absolute circulation consists of a relative circulation and a planetary circulation. 
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The Kelvin’s theorem becomes:  
 

dta = dt (+2An)  = 0      (1.3.7) 
 
Or 

+2An= const.      (1.3.8) 
 

 
Eqn. (1.3.7) can also be proven directly in the rotating frame, if the Coriolis force is 
included in the momentum equation. 
 
4. Examples: 
 
The Kelvin theorem is very powerful.  It states that if there is a circulation, it will be there 
by itself forever (in the absence of dissipation). Below are some examples of  application. 
 
Example 1: Contraction spin-up: When the fluid converges towards the sink, the 
circulation will accelerate because of the decrease of the area An.    
  
 
 
 
 
 
 
 
 
 
 
Suppose  a ring of air of radius L is initially at rest. The ring is deformed such that  it is 
squeezed into a strip with zero area. The final relative circulation  can be estimated as 
from the conservation of absolute circulation as a=0+2A=+0.  Suppose the average 
speed is U, we have the scaling as:  U2πL~2πL2.      U~L. where, for the earth’s 
rotation,  ~10-41/s.  For an initial radius of L~1m, we have the speed induced by the 
rotation as U~ 0.1mm/s (very small!). For a large size of ring, L~10km, we have a 
significantly strong velocity U~1 m/s. So a large scale can induce strong wind purely 
from the earth’s rotation. This is one way to tell how large a scale rotation becomes 

 



A 

An

n 
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important. If a ring of air is observed to have an average speed of u, the ratio of this speed 
to the rotation induced speed is u/U=u/L (Rossby number). If this number is small, it 
means the wind is weaker than that induced by the rotation. So, rotation is important. 
This is rapidly rotating system or small Rossby number, large scale flow.  
 
 
Example 2: Tilting: When the surface of circulation tilts away from the plane of rotation, 
circulation increases because of the decrease of An. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 3: Rossby wave 
 
 On a sphere, we have the area of a latitudinal belt of air as An=Asin . Now, 
Kelvin’s theorem gives the so called Rossby wave (see Section 2.2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

A 

AnAn 

A 

 
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Since  dt (+2An) = 0, we have dt= - 2 dt An = - 2 Acos  dt = - A v, where  
= 2 cos  /a  and v= a dt .  Since relative vorticity is the averaged circulation 
=/A,  we have: 
   dt+   v = 0. 
This will be seen later as the equation for the Rossby wave. 
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Sec. 1.4: Potential Vorticity Conservation 
 
1. Vorticity Equation   
 
Vorticity equation governs the local change of fluid rotation from an Eularea view and is 
therefore practical. From the momentum equations 
 

  








yyyxt

xxyxt

Fgfuvvvuv

Fgfvuvuuu




  

we apply the vorticity operation )()( equeqv tytx    to eliminate the pressure 

gradient term. This gives the equation for the relative vorticity = xv  yu . First, notice 

that 

  )
2

()
22

()(
2222 vu

v
vu

uvvuvuu xxyxyx


   

  )
2

()
22

()(
2222 vu

u
vu

uvuvvvu yyyxyx


   

we can rewrite the u, v   equations as 

  xxt FBvfu   )(  

  yyt FBufv   )(  

where 

  B 
u2  v2

2
 g            is the Bernoulli function.  

 

Now,  )()( equeqv yx      eliminate B, we have  the vorticity equation  

  


 Fcurlvuffvu yxyxt ))(())((    (1.4.1) 

 

where  curl F

 x Fy   yFx .  

 
Or 
 

  
D

Dt
 a   a  u


 curl F


      (1.4.2) 

 
where   a    f  is the absolute vorticity. Again, we see that a divergent flow, in the 
presence of background vorticity field, can generate vorticity. This is similar to the  
Kelvin’s theorem.  
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2. Potential Vorticity Equation 
 
From the continuity equation, we have 

  u
h

hDt  

Notice the vorticity equation (1.4.1) or (1.4.2), we have 

  
a

t

a

a curl

h

hDDt

D




F

  

 

  
a

a

curl
h

Dt

D

Dt

D


 F

)(ln)(ln   

 

  
a

a curl

hDt

D


 F

)ln(   

 
Or, finally 
 

  
h

curl

h

f

Dt

D
q

Dt

D F
)( 





     (1.4.3) 

 
where 

  
h

f
q





    

is the potential vorticity. Thus, in the absence of source and sink terms, we have 
 

  
D

Dt
q  0 

 
The PV is conserved along a particle trajectory. This is a very strong constrain on fluid 
motion. (Rossby, 2-D, 1940; later, Ertel, 3-D, 1942).  
 
 
3. P.V. Conservation and Kelvin's Theorem 
 
The conservation of PV can be derived directly from the Kelvin’s theorem.  
         

  
D

Dt
(  2An )  0  

 
Now An  Asin , and   A .  
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A

An sin
 

 
For a small area element A, we have 

d

dt
(A 2 sinA) 

d

dt
[(  f )A]  0 . 

The total mass conservation can be written as 
  consthA  . 
Therefore, we have the PV conservation  

 0)( 

h

f

dt

d 
 

 
 

       

H

A  
 
 
Thus, PV conservation, in principle, is the same as the Kelvin’s theorem. They represent 
two different views of the fluid rotation: the PV provides a microscopic view, while the 
circulation (and Kelvin theorem) the macroscopic view. This law on PV is of 
fundamental importance to GFD.  
 
4. Angular momentum conservation and PV conservation: 
 
The PV conservation can also be understood intuitively from the angular momentum 
conservation 

r2=const. 
For a water column of a fixed volume (or mass),  

r2H=M= mass = const. 
Thus,  

 

H

const  

This recovers PV conservation. Thus, PV conservation is simply angular momentum 
conservation in the case of a solid body. 
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5. Applications 
 
(i) Stretching—Contraction: 
Stretching of a water column generates positive vorticity, while compressing of a water 
column generates negative vorticity, according to PV conservation. 





H

  0

st ret ching

  0




H compressing





A















  0

convergence
A

















divergence

  0

 
 
  
 
On, say, a f-plane, f f const 0 , we therefore have 
 
     H       
 

    H       
Application: intensification of the center of a storm, figure skating. 
 
 
(ii) Abyssal circulation (Stommal-Arons model).  
 
The thermohaline circulation at the abyss is forced by sinking water at polar region. For a 
deep water column, this means that the water column will be stretched H  because of the 
accumulation of waters. Thus, f   (  f ) , or and the water moves northward.  This is 
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rather surprising because the interior flow goes towards the source water, opposite to the 
non-rotating case.  

source wat er

y
x

source wat er

y
x

  0f  0
f  0

 
 
 
 f  0       f  0 ,   0  
 
 
 

  N

source wat erz

 
 
However, the source water at the pole has to get to the lower latitude to satisfy the mass 
conservation. The equatorward transport is carried in a narrow western boundary current. 
This flow pattern is confirmed in lab rotating tank experiment (Fig.1.2). 
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Fig.1.2 
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Sec.1.5   Shallow Water Waves on a f-Plane 
 
Consider small amplitude motions on an f-plane with a flat bottom zB=0 and in turn a 

constant depth H. The basic state is motionless constHVU  ,0 . The perturbed 

variables are therefore: 

  HvvuuH   ,,,  

Linearizing the shallow water equations (1.1.13), we have:  

  













0)(

0

0

vuH

gufv

gvfu

yxt

yt

xt






 

 

The vorticity and divergence equations can be derived from  x(v eq)  y (u eq) and 

 x(u eq)   y(v eq) as 

  t (x v  y u )  f0 ( x u   y v )  0 , 

and 
  t (x u   y v )  f0 ( x v  y u )  g2   
respectively. Note that vorticity can generate divergence, and vise versa.  
 

Using the divergence and vorticity equations t (div eq)  f (vort eq) , we have 

  (tt  f0
2 )( x u   y v )  g2t   

 
Substitute in the continuity equation to eliminate divergence, we have finally, 
 

  0'])[( 22
0

2
0   cfttt     

          

where gHc 0  is the gravity wave speed. 

 
Assuming free waves of the form   Re 0e

i(kx lyt ) , we have 

  [ f0
2  2  c0

2K 2]0  0  

where the total wave number is K 2  k 2  l2 . For nontrivial solution 0  0 , so we have 
the dispersion relationship 
  [ f0

2  2  c0
2K 2]  0      (1.5.1) 

There are three roots: 

 
1  0

2, 3
2  f0

2  c0
2K2       (1.5.2a,b) 

They represent two very different types of waves.  
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Dispersion diagram 
for a given l.  
 
 
 
 
 
 
 
 
 
 
 

 
 

1) The geostrophic mode. 
 
The first group is the low frequency mode:1  0 . The eigenfunction for this mode can 
be derived from (1.5.1) by settingt  0  as 
 

  

 f v  g x 

f u  g y 

 x u   y v  0







    

 
This mode is in geostrophic balance and is therefore a low frequency geostrophic mode. 
If the Coriolis parameter varies with latitude (the so called beta-effect 0/  dydf ) , 

or a varying bottom topography 0Byz ,  this mode will be modified and will be called 

the Rossby wave. (see later).  
 
2). The Inertial-Gravity wave 
The second group are 2, 3 . For these waves, 2  f 2 . So these are high frequency 
modes (faster than about the rotation period). These are the gravity waves modified by 
the rotation. They are called the Inertial-Gravity waves (also Poincare wave in 
oceanography).  
 

For short waves with  K2  (
f0

c0

)2 
1

LD
2

 (or L>>LD), we have approximately 

22
0

2 Kc . The inertial gravity wave reduces to the shallow water gravity wave and 

does not feel much of the rotation. On the other limit, for very long inertial-gravity 

 

= -Ck =Ck 

fo 

k 
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waves, K2  (
f0

c0

)2 
1

LD
2

,  we have approximately2  f 2 . This is simply the inertial 

oscillation.  
 
Here we see an important scale  

00

0

f

gH

f

c
LD  ,       (1.5.3) 

the so called Rossby deformation radius. This scale separates the motions that are 
affected by the rotation. Large scale motions with L  LD  feel rotation, while small 
scale waves with L LD  do not feel rotation.   
 
Typical values for the deformation radius can be calculated as follows. For shallow water 
system (they resemble the so called barotropic mode), we have g=10m  s2 , f0  104 s 1  
So,   

  Hatmosphere  10km  LD  3000km  

  H km L kmocean D  4 2000  

   
For the 1.5 layer system (they resemble the so called 1st baroclinic mode), we have the so 
called internal deformation radius 

00

0 '

f

Hg

f

c
LID        (1.5.4) 

 

  g atmosphere 
g




g

10
, H 10km,  LD  1000km  

 

  kmLkmHsm
gg

g D
ocean

ethermoclinocean 50,1,10
1000

12 


 




 

 
Thus, rotation is important for baroclinic oceanic processes even at very small scales (L 
~10 km), while it is important only for those atmospheric processes of  L 1000 km. 
 
3)Coastal Kelvin wave 
 
The geostrophic mode and inertial-gravity mode discussed above are open plane waves. 
The two waves are well separated,  the former being low frequency and the latter high 
frequency (relative to f). If, however, there is a boundary (coast, or plateau), there will be 
a new type of wave, coastal Kelvin wave, which can go from very low frequency at long 
wave length comparable to the geostrophic mode to very high frequency comparable with 
I-G mode at short wave length. Suppose the coastal boundary is y=0 and the ocean is the 
upper half plane. Now, we need to seek a wave mode that satisfy the boundary condition 
of v=0 at y=0. We see a special type of solution which has no v,   

0v ,  everywhere.       (1.5.4) 
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The remaining u and h satisfy 
 








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0

0

uH

guf
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xt
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xt






       (1.5.5a,b,c) 

Assuming the wave of the form )()](),([],[ tkxi
oo eyhyuhu  , and plug into the (1.5.5a,c), 

we have the dispersion relationship the same as the pure gravity wave 
kc0         (1.5.6) 

and the eigenfunction relationship in (1.5.5a,b,c) as 
















000

0
00

00

Hku

dy

d
guf

gku






       (1.5.7a,b,c) 

Plug (1.5,7a)  (or c) into the geostrophic relation (1.5.7b), we have an ODE  

dy

d
g

gk
f 0

00




 , 

Using the dispersion relationship (1.5.6), the solution is then of the form 



















DL

ykf
expexp 0

0 
   

Since the solution has to be finite away from the boundary y , we can only pick 
one  solution from (1.5.6) as  

kc0         (1.5.8) 

That is the valid boundary wave (coastal Kelvin wave) travels to the east when the coast 
is to the south, at the speed of gravity wave, with the along shore current in geostrophic 
balance. It is a hybrid of geostrophic mode (geostrophic balance offshore, low frequency 
for long wave) and gravity wave (ageostrophic along shore, high frequency for short 
wave)  
 
 
 
       

 
Coast

Coast Kelvin wave propagation 
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Sec.1.6: Geostrophic Adjustment 
 
One general question is why the observed large scale atmosphere and oceanic flows are 
always close to geostrophic balance? From the last section, we have seen that, on an f-
plane, there is a low frequency free mode that is in geostrophic balance. If there is an 
initial imbalance of geostrophy (or ageostrophic disturbance) forced by external forcing 
or some other processes, how can the system always recovers back to the observed 
geostrophic balance? This is the geostrophic adjustment problem that was first studied by 
Rossby on the Gulf Stream problem in the late 1930s. 
 
1. Equilibrium State 
 
Let’s consider the simplest case, small amplitude flow on an f-plane, with a constant 
depth:  

  













0)( vuH

gfuv

gfvu

yxt

yt

xt






 

If the system eventually reaches steady state, we have a flat surface equilibrium for 
f  0 : 

  














0

0

0

yx

y

x

vu




      (1.6.1)    

and the geostrophic balance for f  0,    















0vu

gfu

gfv

yx

y

x






      (1.6.2) 

In the latter case of f  0 , the first two equations satisfy the last equation automatidcally. 
Therefore, the final equilibrium is degenerated (geostrophic degeneracy) in the sense that 
there are 3 unknowns but only 2 equations. In addition, it is possible now to have 
x  0 ,y  0, so the final state has a finite available potential energy (APE). But how 

much? Some information is missing! This will be seen is the potential vorticity (PV). 
 
2. f=0 adjustment 
First, we study the cases without rotation. We will study the simpler case with y = 0.  
 
Case 1: An “jump” initial condition:  i=0 sign(x),   ui =vi =0.      
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tu  gx

tv  0

t  H xu







 

 
Since x  0  i , the initial state is not in equilibrium. The final state can be obtained 

as   const  0 , constuv   ,0 , where the final velocity will be derived from 

the energy conservation below.  
 
The KE and APE equations can be derived as:   

t H
u2

2
 gHux ,  and  g t

2

2
 gHux .  

The total energy equation is therefore 

  t (KE  APE)   t(
Hu2

2


g2

2
)   x (gHu)  

Before wave front, u=0, 0, after wave front, u0, =0. Thus, the energy flux u  0  
anywhere any time. Within each section, the total energy is conserved locally 

  t (KE  APE)
x1

x 2

 dx  gHu
x1

x 2  0  

Thus at final equilibrium which has no APE ( 0  ), all the initial APE is converted to 

KE. This gives the final velocity as Hgu /0 .   (One should notice that this local 

total energy conservation is usually not true, as will be seen in the next case. It occurs 
here because of the initial condition of an anti-symmetric elevation of infinite length.) 
 
 

x 

0 

u=(g/H)1/2 
=0 

Cot 

t=0 

t=t1 

t=t2 
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Case 2: An initial condition with a finite “bump”. 
One can speculate that the finite initial disturbance will eventually radiates away through 
gravity waves, leaving neither KE nor APE.  

 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We can estimate the adjustment time as follows. From the equation ,02  xxtt c    

where gHc  is the gravity wave speed, the final equilibrium is  reached 

when xxtt c  2  . Thus, the adjustment time T satisfies   
2

2

2

1

L

c

T
  and in turn 

gT
c

L
T  , where Tg is  time for gravity wave to arrive.  

 
At a fixed position of, say, x > 0, the velocity experiences 5 stages and reaches the 
equilibrium after the passing of four wave fronts (fronts and wakes).  
 
3. f0  adjustment 
 
With y=0, the final equilibrium is  

 



















0

0

x

x

u

u

gfv 
 

 
This state is undetermined. Rossby (1940) found the solution from the piece of missing 
information – the PV conservation. 

x 
0 

t=0 

u=0, =0 

t=t3 

t=t2 
0/2 

wave 
wake 

wave 
front 

t=t1 
0/2 
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0





0





z

x

 
 

The linearized vorticity equation can be derived from x(v eq)  y (u eq)as  

  t   f (xu  yv). 

Substitute in the continuity equation, we have the linearized version of PV conservation.  

  t (  f

H

)  0  

Thus 

  
H

x
fPVinitial

H
f

H
fv i

x

)(
0





  




  

Since 

  v 
g

f
x  

we have 

   xx 


LD
2
 

i(x)

LD
2

 

where LD
2 

gH

f 2
 is the deformation radius. The general solution is therefore:  





















0

0

0

0

xforeBeA

xforeBeA

DD

DD

L

x

L

x

L

x

L

x

,

,



 .  

 
The coefficients will be determined by boundary conditions as follows.   
 Radiation condition means that perturbation energy should propagate away from the 
source region (x=0 here), or the response has to be finite at infinity, 

 xat . This requires 0  BA . The solution is therefore 

 



















0

0

0

0

xforeA

xforeB

D

D

L

x

L

x

,

,



  

 
 The continuity condition requires the continuity of   and v  across x  0 (therefore x  
and vx are finite).  
 
Thus, we have the final solution as 
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   
0 (1  e

x

L D ), x  0

0 (1  e


x

L D ), x  0









 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The velocity field is in geostrophic balance as: 
 

,0 DL

x

D
x e

fL

g
h

f

g
v



 


  

where + and – are for x<0 and x>0, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
Several points are noteworthy here.  
 
 Deformation radius LD :  we have seen in sec1.5 that large scale motions with L  LD  

is affected by rotation. Here, we further see that LD  also determines the influence 
distance of an ageostrophic anomaly.  

 

z 

(x) 

o 

LD 

x 

Final solution after adjustment 

v 

v(x) 

LD x 

-go/foLD 
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 Adjustment time: From ( )   tt xxf c  2
0
2 0 , we see that 2ftt  gives the final 

steady state. Thus, when 
f

t
1

 1 day, the adjustment is completed and the final state is 

in geostrophic balance, independent of the spatial scale. Therefore, independent of spatial 
scales, geostrophic adjustment is very fast (within about a day). This is the fundamental 
reason why the observed flow are always in geostrophic balance. Simply put it, any 
imbalance from geostrophy will be adjusted quickly to a new balance within about a day 
or so.  
 
 Energetics:  Since  x  0 ,  APE exists  in the final state ! (different from the non-
rotating case). But, not all the lost APE are converted to KE. Indeed, the initial energy is: 
 

  
APEi 

1

2
g i

2dx
L

L

 
1

2
g 0

2dx
L

L

  g0
2 L

KEi  0







 

 
In the final state: 

  

APE 
1

2
g 

2 dx
L

L

 
1

2
g0

2[ (1 
L

0

 e
x

LD )2 dx  (1 e


x

L D )2 dx
0

L



 g0
2 (1 e


x

LD )2 dx
0

L



 g0
2 L  2LD(1 e

 L

L D ) 
LD

2
(1 e

 2 L

LD )








 

 
Let  L    (or L  LD), we have 
 

  APE  g0
2(L 

3

2
LD)  0 

Thus the change of APE is: 

  (APE)  APE  APEi 
3

2
g0

2 LD ,  ( L   ) 

Total loss of APE is finite even through the initial APE is infinite. In addition, the final 
state also has KE.  

  

KE 
H

2
V 2





 dx  H V 2

0



 dx  H (
g0

fLD

)2 e
 2x

L D

0



 dx

 g0
2 LD

2
e


2x

LD

0



 d(
2x

LD

) 
g0

2

2
LD 

1

3
(APE)

 

 
Thus, only 1/3 of the lost APE is converted to KE. Where does the rest of APE go? They 
are radiated away to x    (or dissipated elsewhere in a finite domain) by transient 
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inertial-gravity waves. This loss of initial energy by wave radiation is similar to the f=0 
case that has a finite initial disturbance (case 2).  
 
 Transients: The transients are the I-G waves, which have the dispersion relation:  
  2  f 2  c2K2  
The group velocity is: 

  2 2 2

k

c k  

 

  cg 

k


c2k




c2k

f 2  c2K2
 

We see that  
 
i) I-G waves radiate in (all the ) both directions ! 
 

ii)  cg 
min

0  for k  0 ; cg 
max

c  for k    

 
Thus, shortwaves disperse fast, long wave slow.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

t0 
t2 t1 

Cg 

x 

k 

0 



AOS611Chapter1,1/20/15,Z.Liu 

Copyright 2013, Zhengyu Liu 

36



AOS611Chapter1,1/20/15,Z.Liu 

Copyright 2013, Zhengyu Liu 

37

In summary, rotation produces the following effects:  
 
   releases less APE       (hold it to build geostrophic balance) 
   final state has (geostrophic) motion 
   fast adjustment         (t   1day) 
   spatial scale about  LD   (can be very small for the ocean)  
   final state depends on initial condition (usually varies for different I.C.)  
 
4. Applications 
 

 Coastal jet: Initial wind piles up water against the coast with downstream surface 
currents. Later (after a day or so), the geostrophic adjustment leaves an along 
shelf geostrophic current. 
 
 

wind onset

x

v



(t  0)

(t  0)

Land

 
 
 

 Atmospheric convection will eventually (after t 
1

f
) produces a cyclonic 

circulation. 
 
 







x

x

x

convect ion onset

p(t  0)

p(t  0)

p(t  0)

p(t  )

p(t  )

p(t  )
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Questions for Chapter 1 

 

Q1.1: If we only retain the curvature term in the u-equation of the shallow water system 

(1.1.15), is the total energy still conserved as shown in (1.2.4)? Suppose this term is small 

compared with other terms, should we still keep this term? Why? 

 

Q1.2: A more general way of solving the eigenvalue (dispersion relationship) is to  solve 

the free modes directly from the linear shallow water equations. Plug (u’,v’,η’)=( 

u0,v0,η0)e
i(kx+ly-ωt) directly into the f-plane shallow water equations 

  













0)(

0

0

vuH

gufv

gvfu

yxt

yt

xt






 

(a) Show that the eigenvalues are the same as in (1.5.1).  

(b) Find the eigenfunctions and find the potential vorticity for the initial-gravity wave 

modes 
H

fq
  .  

 

Q1.3. In a homogeneous fluid,   

a) For any two vectors A and B, prove the identity: 

   (AB) = AB+ (B )A -BA - (A)B .  

b) In a rotating frame, the momentum equation is: 

dt U  = -2U - p/  +  F .   

Using the identity derived from a) and the Stokes’ theorem to prove directly the Kelvin’s 

theorem: dt (+2An)  = 0.   (All vectors are three-dimensional vectors).  
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Exercises for Chapter 1 

 

E1.1. (Hydrostatic approximation in a rotating fluid) On a f-plane (in eqn. (1.1.13)), 

consider a strong rotation fluid in which the pressure gradient force is balanced mainly by 

the Coriolis force, fv  -xp/  (as opposed to by the inertial acceleration uxu  -xp/ as 

in the handout),  

a). Using scaling analysis, find the condition under which the hydrostatic approximation 

is valid in the primitive equation. 

b). Compare with the weak rotation system that was discussed in Sec. 1.1 (the equation 

after (1.1.5)), which system is easier to reach hydrostatic balance? 

 

E1.2. (Local plane equation) (a) What are the major approximations under which the 

shallow water equations on a sphere (1.1.11) (the Laplacian tidal equation) can be 

reduced to the Cartesian coordinate equations (1.1.13)? (b) What is the latitude region 

where you expect the Cartesian coordinate equation (1.1.13) to perform the poorest? (c) 

For a typical wind speed of 10 m/s and an ocean current of 1 cm/s, use scaling analysis to 

estimate the latitude region where the Cartesian coordinate equation may have serious 

problem. 

 

E1.3. (Surface pressure effect) In the presence of an atmospheric sea level pressure 

gradient, derive the oceanic equations as in (a) a shallow water model, (b) a 1.5-layer 

model. 
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E1.4. (2.5-layer model) A 2.5-layer fluid is a special 3-layer fluid in which there is no 

motion (no pressure gradient) in layer 3 (see the figure). In a shallow water system where 

the hydrostatic approximation is valid, show that 

 

 

 

 

 

 

a) the pressure in each layer can be represented as 

p1(x,y,z,t) = pa+g1(-z),  p2(x,y,z,t) = p1(z1)+g2(z1-z), p3(x,y,z,t) = p2(z2)+g2(z2-z) 

b) the condition of no-motion in layer 3 leads to the pressure gradients in layer 1 and 2 as 

p1= -g(2-1) z1 -g(3-2) z2 

p2= -g(3-2) z2 

c) the continuity equations for layer 1 and 2 can be derived from the incompressible  

equations xu1+y v1 +z w1 = 0 and  xu2+y v2 +z w2 = 0 as th1+x (u1 h1)+y (v1 h1) = 0 

and  th2+x (u2 h2)+y (v2 h2) = 0, respectively. 

d) finally, the 2.5-layer system is governed by 














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)vu(hhD

hghgfuvD

hghgfvuD
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yyt

xxt






         and         














02222

222

222

)vu(hhD

hgfuvD

hgfvuD

yxt

yt

xt






 

where h=h1+h2,  h1=-z1 -z1 and  h2= z1-z2  are layer thickness, and  

 g’1=(2-1)/0 (2-1)/1 ,   g’2=(3-2)/0 (3-2)/1 (3-2)/2  are interface reduced 

gravities. 

  

E1.5. (Vorticity of a solid body) For a solid rotating body, we have U = r, where 

=(x, y, z) is the angular velocity and r=(x, y, z) is the position vector. Prove that 

the vorticty is twice its angular veolocity, i.e.  = U = 2.     

 

 

h1 u1, v1, 1, p1 

u3= 0, v3=0, 3, p3=0 

u2, v2, 2, p2 

(x,y,t) 

z1(x,y,t) 

z2(x,y,t) 

h2 
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E1.6. (Divergence equation):  

a) Derive the divergence equation from the shallow water system (1.1.13a,b) as 

t (x u+y v) = (f+) - [u(f+)]•k -2[g+(u2+v2)/2]+ F 

b) Linearize the divergence equation above and the vorticity equation (1.4.1), assuming 

the mean state is at rest. 

c) Discuss the differences between the linearized divergence equation and vorticity 

equation. (For simplicity, you can even assume no rotation!) 

 

E1.7. (Adjustment process of non-rotating fluid)  A linear non-rotating fluid satisfies the 

equations: tu = -gx, t + H xu = 0. For an initial disturbance of the form u = 0, 

=o(x), study the solutions for 2 initial conditions below.   

Case 1: The initial condition is 

 

 









0

0
)(

*

*

x

x
xo 


  

 

 

 

 

a)  Prove that the evolution solution is .0),(
*

*















Ctx

CtxCt

xCt

tx




  

and draw the schematic figures of the evolution at different stages. 

b)  What is the final equilibrium state? 

c)  Discuss the physics. 
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d)  What is the ratio of the kinetic energy to available potential energy at each location at 

different time? (optional) 

 

Case 2:  The initial condition is 









1||

1||0
)( * x

x
xo 

  

   

 

 

 

a) Prove the solution is 

(i) for 0 < Ct < 1  

 

 

 

 

ii) for Ct >= 1 
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Repeat b) c) d) the same as in case 1 

{Hint: for a general initial condition (x, t=0)= 0(x), and   t (x, t=0)= 1(x),  the 

general solution of a wave equation tt - c2 xx = 0  is: 
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E1.8: (Energy and PV of waves). The linear perturbation equation on a f-plane is: 

 tu -  fv = -gx, tv + fu = -gy, t + H (xu + yv ) = 0.  

This set of equations contain two sets of modes: the inertial-gravity wave and the 

geostrophic mode (see Sec.1.5).  

a) Find the ratio of the kinetic energy and available potential energy (averaged over one 

wave length) for an inertial-gravity wave. What are the energy ratios at the long and short 

wave limits? What happens for non-rotating fluid? 

b) Find the energy ratio for the geostrophic mode. What are the energy ratios at the long 

and short wave limits? 

c) Compare and discuss the energy ratios of the two modes. 

d) What is the PV anomaly due to the geostrophic mode? What is the ratio of the PV 

anomaly induced by the relative vorticity and stretching? 

(e) What is the PV anomaly due to inertial-gravity modes? 

(For small disturbance, the linear PV is 
H

fq
  ) 

 

 

 


