Coupled Modes of Variability

AOS660 Prof. McKinley December 3, 2013



Sea level height anomalies from TOPEX/Poseidon



TALLEY

# **Equatorial Pacific Currents**

- Coriolis Force goes to zero at equator
  - But does have effect within ~1degree of equator
- Flow is more directly forced by the winds
- Undercurrent
  - Water piling up in west, then flowing down pressure gradient
  - And/or stabilization by coriolis

# Equatorial divergence and current system



Open University, Ocean Circulation, Fig 5.1

# **Equatorial Undercurrent**



Open University, Ocean Circulation, Fig 5.2





(a) Surface temperature (°C) of the oceans in winter (January, February, March north of the equator; July, August, September south of the equator) based on averaged (climatological) *data from Levitus and Boyer (1994)*.

#### **FIGURE 4.1**

Copyright © 2011 Elsevier Inc. All rights reserved





El Niño (warm phase)



• Jacob Bjerknes (1969) ENSO:

"A change toward a steeper pressure slope at the base of the Walker Circulation is associated with an increase in the equatorial easterly winds and hence also with an increase in upwelling and a sharpening of the contrast of surface temperature between the eastern and western Pacific. This chain reaction shows that an intensifying Walker Circulation also provides for an increase in the east-west temperature contrast that is the cause of the Walker Circulation in the first place."

Bjerknes, 1969. M. Wea. Rev.







#### • The 1982-83 ENSO event

- Largest ENSO event on record (until 1997-98)
- Drought in Indonesia, floods in California and Peru.
  Globally, > 8 billion USD in damages
- The world is completely caught by surprise and it could have been predicted six months in advance, <u>if data was</u> <u>available real time.</u>
- The TAO program was launched in response
  - The TAO array is deployed to provide real-time monitoring of the Tropical Pacific (intro slide)
  - ENSO dynamics are identified, the first ENSO predictions begin (now, no ENSO event goes unpredicted...)





7 day average, centered 27 November 2013

#### We now monitor closely El Niño / Southern Oscillation http://www.cpc.ncep.noaa.gov/ products/precip/CWlink/MJO/

enso.shtml

http://www.cpc.noaa.gov/



- SOI is positive, but only weakly so
- Neutral



# Southern Oscillation Index $SOI = 10 \times \frac{SLP_{Tahiti} - SLP_{Darwin}}{\sigma_{difference}}$



negative = Weaker Walker Circ = El Niño positive = Stronger Walker Circ = La Niña



#### Standardized Southern Oscillation Index (SOI)







http://www.cpc.ncep.noaa.gov/products/ analysis\_monitoring/ocean/

# **Dynamics of ENSO**

### **ENSO Dynamics:** Tropical Pacific Mean State



http://www.pmel.noaa.gov/tao/elnino/nino\_normal.html

- Tropical Pacific normal conditions
  - Easterly trades cause thermocline to deepen in the west, shoal in the east
  - Winds also cause Ekman upwelling along the equator, bringing cooler subsurface water to the surface
  - Cooling from upwelling is most pronounced in the east, where the thermocline is close to the surface

### **ENSO Dynamics:** Tropical Pacific Mean State



http://www.pmel.noaa.gov



http://www.pmel.noaa.gov/tao/elnino/nino\_normal.html

- Tropical Pacific El Niño conditions
  - Relaxed trades force
    downwelling Kelvin signal along the thermocline
  - In the east, the surface warms as upwelling brings warmer water (from above the thermocline) to the surface
  - Warmer SSTs in the east cause further relaxation of the trades - a positive feedback





http://www.pmel.noaa.gov



Mar 3 2008





http://www.pmel.noaa.gov



http://www.pmel.noaa.gov/tao/elnino/nino\_normal.html

- Tropical Pacific El Niño conditions
  - At the same time, relaxed trades force *upwelling Rossby signals* which reflect off the western boundary as *upwelling Kelvin signals*
  - These upwelling Kelvin signals bring the thermocline back to the surface in the east, shutting off an El Niño event
  - Often times, the thermocline overshoots in the east, resulting in cool conditions after an El Niño event: La Niña conditions

### From an initial bell-shaped disturbance of the thermocline in Central Pacific, after 20 days



Satellite observations indicate Rossby waves propagate at 1/5 - 1/7 speed of Kelvin wave (Fu and Cazanave, 2001)



Wind Forces W-ward moving Rossby Waves



Mar 3 2008

![](_page_32_Figure_1.jpeg)

TAO Project Office/PMEL/NOAA

![](_page_33_Figure_1.jpeg)

Mar 4 2008

# Negative SST' in August 1998

![](_page_34_Figure_1.jpeg)

# **ENSO Impacts**

### El Niño Impacts: DJF

#### WARM EPISODE RELATIONSHIPS DECEMBER - FEBRUARY

![](_page_36_Figure_2.jpeg)

http://www.cpc.ncep.noaa.gov/

### La Niña Impacts: DJF

COLD EPISODE RELATIONSHIPS DECEMBER - FEBRUARY

![](_page_37_Figure_2.jpeg)

![](_page_38_Figure_0.jpeg)

# **ENSO Impacts: Mid-latitudes**

![](_page_39_Figure_1.jpeg)

- Changes in the location of convection lead to changes in upper level divergence in the tropics
- Upper level divergent flow provides forcing for poleward-propagating Rossby waves: "teleconnections"
- Interactions with mean state and storm tracks alter the teleconnections

### El Nino Impacts: Mid-latitudes

![](_page_40_Figure_1.jpeg)

http://www.cdc.noaa.gov

### El Nino Impacts: Mid-latitudes

![](_page_41_Figure_1.jpeg)

![](_page_41_Figure_2.jpeg)

# La Niña Impacts: Mid-latitudes

#### Climatology

#### La Niña Composite

NCEP/NCAR Reanalysis 500mb Zonal Wind (m/s) Climatology 1968-1996 NCEP/NCAR Reanalysis 500mb Zonal Wind (m/s) Composite Anomaly 1968–1996 alima

![](_page_42_Figure_5.jpeg)

### La Niña Impacts: Mid-latitudes

**DJF 2008** 

#### La Niña Composite

NCEP/NCAR Reanalysis

500mb Zonal Wind (m/s) Composite Anomaly 1968-1996 clima

NCEP/NCAR Reanalysis 500mb Zonal Wind (m/s) Composite Anomaly 1968–1996 clima

![](_page_43_Figure_4.jpeg)

# ENSO Current Status and Seasonal Impacts

![](_page_45_Figure_0.jpeg)

![](_page_46_Figure_1.jpeg)

TAO Project Office/PMEL/NOAA

Apr 18 2011

#### Fall-Winter 2010: La Nina

![](_page_47_Figure_1.jpeg)

#### Fall-Winter 2010-11: La Nina Fall-Winter 2011-12: La Nina

![](_page_48_Figure_1.jpeg)

Fall-Winter 2010-11: La Nina Fall-Winter 2011-12: La Nina Fall 2012: Neutral

![](_page_49_Figure_1.jpeg)

Five-Day Mean Ending on December 2 2013

Fall-Winter 2010-11: La Nina Fall-Winter 2011-12: La Nina Fall 2012: Neutral Fall 2013: Neutral

# Animations

NOAA CPC http://www.cpc.ncep.noaa.gov/products/ precip/CWlink/MJO/enso.shtml

NOAA PMEL http://www.pmel.noaa.gov/tao/ jsdisplay/ani.html

OLR ANOMS Pentad Centered on 13 APR 2011

OLR Anomaly

April 2011 La Nina (top) vs. Nov 2013 Neutral (bottom)

![](_page_51_Figure_3.jpeg)

# **Seasonal Prediction**

• State of the art for climate prediction =

statistical variability from ENSO + soil moisture + warming trend

• NOAA Climate Prediction Center (CPC)

http://www.cpc.ncep.noaa.gov/products/forecasts/month\_to\_season\_outlooks.shtml

# Seasonal Prediction, JFM 2014

![](_page_53_Figure_1.jpeg)

http://www.cpc.ncep.noaa.gov

### **ENSO Summary**

- ENSO dynamics involve a positive feedback (by which the event amplifies) and a delayed negative feedback (which eventually "shuts off" an ENSO event)
- ENSO impacts the global climate
- Monitoring in the Equatorial Pacific (TOGA/TOA) is now operational. This is a significant component in modern seasonal climate prediction.

# **Other Coupled Modes**

# North Atlantic Oscillation

![](_page_56_Figure_1.jpeg)

![](_page_56_Picture_2.jpeg)

![](_page_56_Picture_3.jpeg)

# Atlantic Multidecadal Oscillation

![](_page_57_Figure_1.jpeg)

- -

### **Pacific Decadal Oscillation**

![](_page_58_Figure_1.jpeg)

![](_page_59_Figure_0.jpeg)