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 Wave basics, a review
— Dispersion relationship
— Dispersive vs. Non-dispersive

 Examples

— Shallow and Deep water Waves

» Surface
e |Internal
e Tsunami

— Planetary Waves

« Kelvin
* Rossby
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What is a wave?

» Waves transfer energy without transfer
of mass

* To exist, waves require
— Inertia — set up by an initial disturbance
— Restoring force



Particles have orbital trajectory
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The Open University, Waves and Tides, 2001.
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Wave dimensions

¢ Space
— Wavelength (L)
— Wavenumber (e.g. k = 27/L)
— Amplitude (A)

« Time
— Period (T) (s)
— Wave frequency f (1/s) or Angular Frequency o (rad/s)

* Velocity
— Phase speed (c), Group velocity (cy) (m/s)



Dispersion relation

» Relates frequency to wave number

— Though often given as speed to wave
number relationship

* Fundamental property of the wave form!
— Tells how the restoring force acts



Deriving the shallow water
dispersion relationship

Write down the equation of motion, shallow water
— Ignore rotation, friction

— Pressure gradient in terns of surface height

Apply the perturbation method to consider small
variations around the mean state

Develop a second order DE for the surface height
(use continuity)

Assume surface height has a wave-like solution (e.g.
h’ — Aeik(X-Ct) )
Plug into the 2nd order DE and solve



Shallow water gravity wave
speed, surface, no mean flow

0,=1000 kg/m?
0,=1 kg/m’
0’ = p;—P, =999 kg/m?

0’ /Py~ 1



A. DEEP-WATER WAVE  '
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Dispersive vs. Non-dispersive

» |f the wave speed depends on the wave
frequency (or wave length), then the
wave speed changes depending on the
wave form

* If no such dependence, all waves of this
type (no matter their size), propagate at
the same speed



Which of these waves Is
dispersive?

A. DEEP-WATER WAVE
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Motion of fault block




A Tsunami is essentially a
shallow water wave

How fast does it propagate?



Internal waves

/ Surface waves

Low density water

Internal waves

High density water




Internal mixing due to waves
and wave breaking

Brazil Basin

Water depth (m)
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Polzin et al. 1997



From the sea to the shore



Capillary
waves

Gravity—waves
Steepness: H/L=1/7




Swell
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In the surf zone




Energy transformation as wave
approaches shore

The Open University, Waves and Tides, 2001.
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increasing beach slope, wavelength and period

decreasing wave height and steepness

patches of foam foam and bubbles

shallow beach slope

shallow to intermediate beach slope

intermediate to steep beach slope

steep beach slope



Planetary Waves



Kelvin wave: A kind of surface
shallow water

141

gravity wave

coastal boundary

direction of travel

horizontal pressure gradient force

Figure 5,13 (a) Schematic diagram of a surface Kelvin
Wavo In the Northem Hemisphere, In the case of a
Kelvin wave in the thermocline, the thermocline would
Adopt the shape shown, while the sea-surface would

0N & similar shape in ‘mirror image’, although to a
Muich lesser extent,

Diagram to show the horizontal balance of forces in
olvin wave, and the Rossby radius, L (which is
B8ed In the text).

An equatorlal ‘double’ Kelvin wave (here shown
A flrfaco wave); the wave travels from west to



Coastal Kelvin Waves




Coastal Kelvin Waves

Correlation of 1982-1983 sea level anomalies
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Equatorial Kelvin Waves

o Satellite altimetry from TOPEX/Poseidon

e Scenes are 10 days apart




Five—Day 20°C Isotherm Depth 2°5 to Z°N Average
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TOGA-TAO Array

e Equatorial array of buoys

e U.S., Japan & French partnership

e http://www.pmel.noaa.gov/tao/

TAO/TRITON Array
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Equatorial Kelvin Waves

EQ. Subsurface Temperature Anomalies (deg C
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? potential vorticity LJLD{’- = constant

In moving north,
parcel gains negative
(clockwise) relative vorticity, &

Rossby wave r

planetary vorticity, f, increasing
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Surface-height anomalies at 24
degrees latitude in each ocean,
from a satellite altimeter. This
figure can also be found in the
color insert. Source: From Fu
and Chelton (2001).
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Figure 14.19 (a) Westward phase speeds (cm/sec) in
the Pacific Ocean, calculated from the visually most-
dominant SSH anomalies from satellite altimetry. The
underlying curves are the fastest first-mode baroclinic
Rossby waves speeds at each latitude. (b) The ratio of
observed and theoretical phase speeds, showing that
the observed phase speeds are generally faster than
theorized. Source: From Chelton and Schlax (1996).
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Waves critical to ENSO

« Panel 1: Internal equatorial Kelvin wave approaches
(on 20C isotherm)

 Panel 2: Coastal Kelvin wave forms
» Panel 3: Reflected Rossby wave and coastal Kelvin

| 1 |
145° W 125° 106°

T
’14)%%%%%‘% 7

Jal

I | |
ST 145°W 125° 108°

=10

= o5 o
\ i
145° W 125° 105° AW

(a) . (b)

A5 W
i

126°



