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Surface circulation schematic. This figure can also be found in the color insert.
Modified from Schmitz (1996b).

FIGURE 14.1

TALLEY Copyright © 2011 Elsevier Inc. All rights reserved



(a) 63

60°N

32
40°N [ 25
16
20°N

- 410
- 163

- 14.0

125

100

- 1-100

-150

60°S
-200

0°E 50°E 100°E 150°E 160°W 110°W 60°W 10°W 40°E

FIGURE 14.2

(a) Surface dynamic topography
(dyn cm), with 10 cm contour
intervals, and (b) surface velocity
streamlines, including both
geostrophic and Ekman
components; color is the mean
speed in cm/sec. This figure can
also be found in the color insert.
Source: From Maximenko et al.
(2009).
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FIGURE 14.3

Steric height (dyn cm) relative to 2000 dbar at (a) 200 dbar and (b) 1000 dbar, using mean temperature
and salinity from five years of float profiles (2004-2008). Source: From Roemmich and Gilson (2009).
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Fig 14.3 1000m relative to 2000m (ARGO)
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FIGURE 9.14a

20°

Steric height (10 m? s=2) at (a) 2500 dbar ...., adjusted to
estimate the absolute geostrophic circulation. Source: From
Reid (1994).
LLEY Copyright © 2011 Elsevier Inc. All rights reserved
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HEAT, MASS AND FRESHWATER
TRANSPORT
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FIGURE 14.5

TALLEY

Meridional overturning circulation transport
calculation: example for four layers. The
mass transports for each layer “i” through
the southern and northern boundaries of
each layer are Vg and V. The vertical
transport across each interface is W,. Arrow
directions are those for positive sign; the
actual transports can be of any magnitude
and sign. The sum of the four transports
(two horizontal and two vertical) into a given
closed layer must be 0 Sv. The small
amount of transport across the sea surface
due to evaporation and precipitation is not
depicted.
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20°N

Net transports (Sv) in isopycnal layers across
closed hydrographic sections (1 Sv = 1 x10% m3/
sec). (a) Three calculations from different
sources are superimposed, each using three
isopycnal layers (see header). Circles between
sections indicate upwelling (arrow head) and
downwelling (arrow tail) into and out of the layer
defined by the circle color. This figure can also
be found in the color insert. Source: From
Maltrud and McClean (2005), combining results
from their POP model run, Ganachaud and
Wunsch (2000), and Schmitz (1995). (b) Fourth

T e rorM & ,,;Fgfwu““ calculation based on velocities from Reid (1994,
: ———er 1997, 2003), with ribbons indicating flow
A direction and overturn locations schematically.
Source: From Talley (2008).
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FIGURE 14.8

Meridional overturning streamfunction
(Sv) from a high resolution general
circulation model for the (a) Atlantic, (b)
Pacific plus Indian, and (c) Indian north
of the ITF. The Southern Ocean is not
included. Source: From Maltrud and
McClean (2005).
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FIGURE 14.9a

Global meridional overturning
streamfunction (Sv) for (a) a
global coupled climate model
with high resolution in latitude.
Source: After Kuhlbrodt et al.
(2007). (b, c) For hydrographic
section data at several
latitudes, plotted as a function
of neutral density and
pressure; contour intervals are
2 Sv. The white contours are
typical winter mixed layer
densities; gray contours
indicate bathymetric features
(ocean ridge crests). Source:
After Lumpkin and Speer
(2007).
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An oceanographic section
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Modeled upwelling across the isopycnal 27.625 kg/m3, which represents upwelling from
the NADW layer. This figure can also be found in the color insert. Source: From

Kuhlbrodt et al. (2007); adapted from D66s and Coward (1997).

FIGURE 14.7
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Heat Transport in Ocean
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(From Trenberth and Caron (2001).)



Remember — we now know that the
intra-annual variability is significant
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Heat Transport based on same
hydrographic inverse model
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Freshwater Transport by Ocean is
Equatorward
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(From Schmitt (1994) and Stewart (1995).)

Must be equatorward in steady state to compensate for northward moisture
transport by the atmosphere



GLOBAL WATERMASS
DISTRIBUTIONS



Mode Water distributions, with typical potential densities and schematic subtropical
gyre, and ACC circulations. Source: After Hanawa and Talley (2001). Medium grays are
STMWs in each subtropical gyre. Light grays are eastern STMWs in each subtropical
gyre. Dark grays are SPMW (North Atlantic), Central Mode Water (North Pacific), and

SAMW (Southern Ocean).

FIGURE 14.12
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Low- and high-salinity intermediate waters. AAIW (dark green), NPIW (light green), LSW (dark
blue), MW (orange in Atlantic), RSW (orange in Indian). Light blue in Pacific: overlap of AAIW
and NPIW. Light blue in Indian: overlap of AAIW and RSW. Cross-hatching: mixing sites that
are particularly significant for the water mass. Red dots indicate the primary formation site of
each water mass; fainter dots mark the straits connecting the Mediterranean and Red Seas to
the open ocean. The approximate potential density of formation is listed. This figure can also
be found in the color insert. Source: After Talley (2008).
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Weddell Sea Bottom Water Ross Sea Bottom Water

Deep and bottom waters. (a) Distribution of waters that are denser than s, = 45.92 kg/m3. This is
approximately the shallowest isopycnal along which the Nordic Seas dense waters are physically
separated from the Antarctic’ s dense waters. At lower densities, both sources are active, but the waters
are intermingled. Large dots indicate the primary formation site of each water mass; fainter dots mark the
straits connecting the Nordic Seas to the open ocean. The approximate potential density of formation is
listed. Source: After Talley (1999). (b) Potential temperature (°C), and (c) salinity at the ocean bottom, for

depths greater than 3500 m. Source: After Mantyla and Reid (1983).
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Thermohaline, simplified, 1980’s

Atlantic

“Broecker conveyor belt” (NADW) .

Simplified global NADW cell, which retains sinking only somewhere adjacent to
the northern North Atlantic and upwelling only in the Indian and Pacific Oceans.
See text for usefulness of, and also issues with, this popularization of the global
circulation, which does not include any Southern Ocean processes. Source: After
Broecker (1987).
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Thermohaline, still simplified, 2000’s

Simplified global overturning circulation

Global overturning circulation schematics. (a) The NADW and AABW global cells and the NPIW cell. (b)
Overturn from a Southern Ocean perspective. Source: After Gordon (1991), Schmitz (1996b), and Lumpkin
and Speer (2007). (c) Two-dimensional schematic of the interconnected NADW, ID

W, PDW, and AABW cells. The schematics do not accurately depict locations of sinking or the broad
geographic scale of upwelling. Colors: surface water (purple), intermediate and Southern Ocean mode water
(red), PDW/IDW/UCDW (orange), NADW (green), AABW (blue). See Figure S14.1 on the textbook Web site
for a complete set of diagrams. This figure can also be found in the color insert. Source: From Talley (2011).

TALLEY FIGURE 14.11a
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FIGURE 14.11bc

Global overturning circulation schematics. (a) The
NADW and AABW global cells and the NPIW cell.
(b) Overturn from a Southern Ocean perspective.
Source: After Gordon (1991), Schmitz (1996b), and
Lumpkin and Speer (2007). (c) Two-dimensional
schematic of the interconnected NADW, IDW,
PDW, and AABW cells. The schematics do not
accurately depict locations of sinking or the broad
geographic scale of upwelling. Colors: surface
water (purple), intermediate and Southern Ocean
mode water (red), PDW/IDW/UCDW (orange),
NADW (green), AABW (blue). See Figure S14.1 on
the textbook Web site for a complete set of
diagrams. This figure can also be found in the
color insert. Source: From Talley (2011).
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Surface-height anomalies at 24
degrees latitude in each ocean,
from a satellite altimeter. This
figure can also be found in the
color insert. Source: From Fu
and Chelton (2001).
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(a) Frequency and (b) wavenumber spectra of SSH in the eastern subtropical North Pacific,
using 15 years of satellite altimetry observations. The dashed line in (a) is the annual
frequency. In the wavenumber panel, solid is westward propagating, and dashed is eastward
propagating energy. Source: From Wunsch (2009).
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FIGURE 14.20
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Nonlinearity Parameter

Tracks of coherent cyclonic and
anticyclonic eddies with lifetimes
of more than 4 weeks, based on
altimetric SSH, color coded by a
“nonlinearity parameter,” which
is the ratio of velocity within the
eddy compared with the eddy
propagation speed. White areas
indicate no eddies or trajectories
within 10 degrees latitude of the
equator. This figure can also be
found in the color insert. Source:
From Chelton et al. (2007).
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