
Chapter 10
10.6 Repeat Exercise 10.1 for the stratosphere.

The stratosphere absorbs 3 units of solar radiation, 2 units of outgoing
radiation emitted by the Earth’s surface, and 6 units of outgoing longwave
radiation emitted by the troposphere, for a total of 11 units. It emits a
total of 11 units: 6 upward and 5 downward. The upward emission is
greater than the downward emission because, on average, temperature
increases with height within the stratosphere. Unlike the troposphere, the
stratosphere is in radiative equilibrium; i.e., it emits as much radiation as
it absorbs.

10.7 Using data in Fig. 10.9 make a rough estimate of the rate of release of
sensible and latent heat during autumn and early winter, when the ocean
mixed later is cooling and deepening.

Consider the top-most 100-m layer cools from a vertically averaged tem-
perature of ∼18◦C in September to ∼15◦C in January, a drop of ∼3◦C in
∼100 days. Hence, the rate of energy loss through the surface is

F =
ρwcwHδT

δt

where... Substituting numerical values, we obtain

∼ 103 × 4218× 100× 3◦
100 days× 0.864× 105 s day−1

∼ 150 W m−2

10.8 If the time series of a climatic variable is perfectly sinusoidal with ampli-
tude A, prove that its root mean squared amplitude or standard deviation
is A
√
2.

The variance of a sine wave with amplitude A is

V ar =
1

2π

Z 2π

0

A cos2 φdφ

=
A

2π

Z 2π

0

1 + cos 2φ

2
dφ

=
A

2π
× π

= A/2

Hence, the root mean squared amplitude or standard deviation is A
√
2.

10.10 The standard deviation of monthly mean temperature at a certain station
averaged over the winter months December-March is 5.0◦ C. The standard
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deviation of winter seasonal mean temperature is 3.0◦C. What is the
standard deviation of monthly mean temperature about the respective
seasonal means for individual winters?

Monthly mean temperature may be expressed as

T = Tm + T 0w + T

Answer 4.0◦C

10.11 Prove that
x0y0 = xy − xy

[Hint: Make use of the fact that xy0 = x0y = 0.]

10.12 Suppose that the Earth warms by 3◦C during the 21st century and that
the entire ocean were to warm by the same amount. Assume that the
cryosphere remains unchanged. In the global energy balance in Fig. 10.1,
by how many W m−2 would the net incoming solar radiation have to
exceed the outgoing Earth radiation at the top of the atmosphere?

The net downward flux of energy from the ocean surface is

F =
mcwδT

δt

where m is the mass per unit area of the oceans... Substituting values
(using the value given in Table 2.2 for m) yields

F =

¡
2700× 103¢ kg× 4218 J kg−1 K−1 × 3 K

100× 365× 0.864× 105 s
= 10.8 W m−2

10.13 On the basis of the global energy balance in Fig. 10.1, estimate what the
surface temperature of the Earth would be in the absence of latent and
sensible heat fluxes. Assume that the fraction of the longwave radiation
emitted from the Earth’s surface that is absorbed by the atmosphere and
re-emitted back to the surface remains unchanged.

In the present climate the Earth emits 110 units of energy in the form of
longwave radiation and it receives 89 units of longwave radiation from the
atmosphere. Hence the net emission is 21 units. In the absence of latent
and sensible heat fluxes the net upward flux from the Earth’s surface would
need to be equal to the absorbed solar radiation, which is 50 units. If the
ratio of downward to upward emission remains the same as it is in today’s
climate, the total emission from the Earth’s surface would need to be equal
to 50×110/21 = 262 units, where each unit is equivalent to 3.45 W m−2.
Hence, the equivalent blackbody temperature would be

TE =

µ
262× 3.45
5.67× 10−8

¶1/4
= 355 K
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10.14 Using data in Fig. 10.2, estimate the poleward flux of energy by the
atmosphere and oceans across 38◦N, where the incoming and outgoing
radiation curves intersect.

The excess solar energy absorbed in the 0◦ − 38◦ latitude belt must be
transported poleward across 38◦N. The energy transported across 38◦N
must be equal to this net flux times the area of the Earth’s surface that
lies between the equator and 38◦N; that is,

Transport = F × 2πR2E

Z 38◦

0◦
cosφdφ

where F is the downward net radiation over the area of the northern
hemisphere equatorward of 38◦N and RE is the radius of the Earth. From
Fig. 10.2 it is evident that F ∼40 W m−2. The area equatorward of 38◦N
is

2πR2E

Z 38◦

0◦
cosφdφ = 2πR2E sin 38

◦

= 2π × ¡6.37× 106¢2 × 0.616
= 1.56× 1014

Hence, the estimated poleward transport is 6.24× 1015 W.
10.15 Compare the daily insolation upon the top of the atmosphere (a) at the

North Pole at the time of the summer solstice and (b) at the equator at
the time of the equinox. The solar declination angle (the astronomical
analog of geographic latitude; i.e., the latitude at which the sun is directly
overhead at noontime) at the time of the summer solstice is 23.45◦ and
the Earth-Sun distances are 1.52 and 1.50 × 108 km, respectively.
Answer (a) 46.4 versus 38.0 MJ m−2 day−1(see also Fig. 10.5)

10.16 Consider the response of the Earth’s equivalent blackbody temperature
TE to a volcanic eruption that increases the planetary albedo, resulting in
a radiative forcing at the top of the atmosphere of δF = − 2 W m−2. (a)
Calculate the equilibrium response. (b) Suppose that the atmosphere is
well mixed and thermally isolated from the other components of the Earth
system; that the increase in planetary albedo is instantaneous; and that
the albedo remains constant at the higher value after the eruption. Show
that TE drops toward its new equilibrium value exponentially, approaching
it with an e-folding time equal to the atmospheric radiative relaxation
time defined and estimated in Exercise 4.29. [Hint: Consider the energy
balance at the top of the atmosphere. Make use of the fact that δF/F <<
1 and δTE/TE << 1.]
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(a) Making use of the results of Exercise 4.21, the equivalent blackbody
temperature would be reduced by the factor

δTE
TE

=
1

4

δF

F

Substituting values, we obtain

δTE =
1

4
× 2

239
× 255 K

= 0.53 K

(b) Initially the atmosphere will cool at a rate

cp
ps
g

dT

dt
= δF = δ

¡
σT 4

¢
= 4σT 3δTE

where ps is the surface pressure. Solving for dT/dt, we obtain

dT

dt
= γδTE

where

γ =
4σT 3

cppsg−1

as in Exercise 4.29. Hence, the atmosphere will cool exponentially toward
the new equilibrium temperature TE + δTE . Substituting values T = 255
K, ps = 105 Pa, cp = 1004, g = 9.8, we obtain a value of γ = 3.67× 10−7
s−1, a radiative relaxation time 1/γ of 2.72 × 106 s (or 31.5 days), and
dT/dt = 1.95× 10−7 K s−1 or 0.0186 K day−1.

10.17 Rework Exercise 10.16, but assuming that the radiative flux at the top of
the atmosphere abruptly returns to its preeruption value exactly a year
after the eruption. Estimate the drop in TE during the year after the erup-
tion (a) assuming that the atmosphere is well mixed and thermally isolated
from the other components of the Earth system and (b) assuming that the
atmosphere remains in thermal equilibrium with a 50-m-deep ocean mixed
layer that covers the planet. (c) Under which of these scenarios does the
Earth system lose more energy during the year that the volcanic debris are
present in the atmosphere? (d) Which of these scenarios is more realistic,
and why?

In this case

γ =
4σT 3

ρwcwD

where ρw and cw are the density and specific heat of sea water, respectively
and D is the depth of the mixed layer. Substituting values ρw = 103,
cw = 4218, and D = 50 m, we obtain γ = 1.79 × 10−8, a radiative
relaxation time 1/γ of 5.59× 10−7s (or 1.8 year), and dT/dt = 9.5× 10−9
K s−1.
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(c) The Earth system loses more energy in the scenario in Exercise 10.17
because the Earth’s equivalent blackbody temperature takes about 20
times as long to equilibrate with the decreased albedo due to the volcanic
eruption.

(d) The scenario in this exercise is much more realistic.

10.18 Which of the following has the largest impact on the Earth’s equivalent
blackbody temperature? (a) The ~0.07% variation sun’s emission that is
observed to occur in association with the 11-year sunspot cycle. (b) The
flux of geothermal energy from the interior of the Earth (0.05 W m−2).
(c) The consumption of energy by human activities (1013 W).

Answer .

10.19 Two feedback processes capable of amplifying greenhouse warming by fac-
tors of 1.5 and 2.0, respectively, if each were acting in isolation, would be
capable of amplifying it by a factor of 6 if they were acting in concert.

For a single feedback acting in isolation

g =
1

1− f

Hence
f =

g − 1
g

Substituting values we obtain feedback factors of 0.333 and 0.500. When
forcings are combined, the feedback factors are additive, i.e.,

g =
1

1−P f

Hence, when the forcings are combined, the gain is

g =
1

1− 0.833 =
1

0.167
= 6

10.20 (a) Without using Eq. (10.9) show that for a case of a single auxiliary
variable y, the change in global mean surface air temperature Ts resulting
from an incremental climate forcing δF is given by

δTs = λ0δF
¡
1 + f + f2 + f3......

¢
(10.16)

where f is the feedback factor as defined in Eq. (10.7). (b) Show that
(10.9) follows directly from (10.16). (c) Give a verbal definition of feedback
factor based on this exercise.
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In the absence of feedbacks, Ts would rise by the increment (δTs)0 = λ0δF .
As a result of this temperature rise (δTs)0, the feedback would cause Ts to
rise by an additional increment (δTs)1 = f (δTs)0 = fλ0δF . As a result
of this secondary temperature rise (δTs)1, the feedback would cause Ts to
rise by an additional increment (δTs)2 = f (δTs)1 = f2λ0δF , and so on.
The total temperature rise is

δTs = (δTs)0 + (δTs)1 + (δTs)2 + ...

= λ0δF
¡
1 + f + f2 + f3......

¢
Summing over the series, we obtain

δTs =
λ0δF

1− f

which is equivalent to (10.9) in the text.

10.25 See General web page

Solutions to the remaining exercises in Chapter 10 will be provided as time
permits.
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