
Chapter 9
9.8 Estimate the temperature variance for the velocity trace at the bottom of

Fig. 9.6.

SOLUTION If turbulent fluctuations are approximately normally dis-
tributed, then about 68% of the T 0 values are within plus/minus 1 standard
deviation of the mean (where the mean = 0 for T 0), and 95% are within
plus/minus 2 standard deviations (see Figure).

By eye, we can estimate the mean value (corresponding to T 0 = 0) in the
bottom trace of Fig 9.6. Given the 1◦C temperature scale near the top
center of the figure, by eye it appears that 95% of all the T 0 values are
within plus/minus 0.9◦C.

If 2·σT = 0.9 ◦C, then σT = 0.45 ◦C and σ2T = 0.2 ◦C2 = temperature
variance. However, this is not precise. By eye, you might have found 2·σT
= 0.8, which gives σ2T = 0.16 ◦C2. Thus, there is a range of acceptable
values for this answer.

9.9 Prove that the definition of covariance reduces to the definition of variance
for the covariance between any variable and itself.

SOLUTION cov (w, θ) = w0θ0 from Eq. (9.5). Let w = A and θ = A,
where A is any variable. Then cov (A,A) = A0A0 = A02 (identify this as
Eq. 9.3a).

But σ2u = [u02] from eqn. (9.4). Let u = A. Thus: σ2A = [A02] (eqn. 9.3b).
Equating equations 9.3a and b gives cov (A,A) = σ2A.

9.10 Given the following variances in m2 s−2.
Where: Location A Location B
When (UTC): 1000 1100 1000 1100
σ2u 0.50 0.50 0.70 0.50
σ2v 0.25 0.50 0.25 0.25
σ2w 0.70 0.50 0.70 0.25
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When, where, and for which variables is the turbulence: (a) stationary,
(b) isotropic, and (c) homogeneous?

SOLUTION a) Stationary: The variances that are not changing with
time are: σ2u at A, and σ2v at B.

b) Isotropic: The variances that are the same in all directions are: Loca-
tion A at 11 UTC.

c) Homogeneous: Variances that are the same at different locations are:

σ2v at 10 UTC, σ
2
w at 10 UTC, and σ2u at 11 UTC.

9.11 Given the following synchronized time series for T (◦C) and w(m s−1),
find: a) mean temperature, b) mean velocity, c) temperature variance, d)
velocity variance, e) kinematic heat flux

T 21 22 20 25 25 15 18 23 21 24 16 12 19 22
w 1 -2 0 -3 2 -2 -3 3 0 0 1 4 -2 -3

SOLUTION

T w T 0 w0 T 02 w02 w0T 0

(◦C) (m/s)
21 1 0.786 1.286 0.61735 1.65306 1.010204
22 -2 1.786 -1.714 3.18878 2.93878 -3.06122
20 0 -0.214 0.286 0.04592 0.08163 -0.06122
25 -3 4.786 -2.714 22.9031 7.36735 -12.9898
25 2 4.786 2.286 22.9031 5.22449 10.93878
15 -2 -5.214 -1.714 27.1888 2.93878 8.938776
18 -3 -2.214 02.714 4.90306 7.36735 6.010204
23 3 2.786 3.286 7.7602 10.7959 9.153061
21 0 0.786 0.286 0.61735 0.08163 0.22449
24 0 3.786 0.286 14.3316 0.08163 1.081633
16 1 -4.214 1.286 17.7602 1.65306 -5.41837
12 4 -8.214 4.286 67.4745 18.3673 035.2041
19 -2 -1.214 -1.714 1.47449 2.93878 2.081633
22 -3 1.786 -2.714 3.18878 7.36735 -4.84694

Avg = 20.21 -0.286 0.000 0.000 13.9 4.92 -1.582
(a) T (b) w (c) T 02 (d) w02 (e) w0T 0

9.16 Given the heat-flux profile of Fig. 9.22, extend the method of Fig. 9.8 to
estimate the sign of the triple correlation w0w0θ0 in the mid-mixed layer,
which is one of the unknowns in Eq. (9.11).
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SOLUTION Combining Figs. 9.8 and 9.22 gives

Both the up-moving and down-moving portions of a turbulent eddy con-
tribute to positive w0w0θ0. Thus the average of both up and down gives
w0w0θ0 = positive. This generic method can be used with many other
turbulent terms, but give a reasonable estimate only if no large eddies are
present.

9.17 Given: FH = 0.2 K m s−1, zi = 1 km, u∗ = 0.2 m s−1, T = 300 K, z0
= 0.01 m, find and explain the significance of the values of: a) Deardorff
velocity scale, b) Obukhov length, c) convective time scale, d) wind speed
at z =30 m.

SOLUTION

FH (K m/s)= 0.2 (a) w∗ (m/s) = 1.87 m s−1

zi (m) = 1000 (b) L (m) = -3.06 m
u∗ (m/s) = 0.2 (c) t∗ (min) = 8.9 min
T (K) = 300 (d) V at 30 m (m/s) = 4 m s−1

z0 (m) = 0.01

a) Use Eq. (9.13), and assume Tv = T :

w∗ =

"¡
9.8 m s−2

¢ · (1000 m) · ¡0.2 K·ms−2¢
300 K

#1/3
= 1.87 m s−1

which is a typical vertical velocity in a thermal.

b) Use Eq. (9.15):

L =
− ¡0.2 ms−1¢3 · (300 K)

(0.4) · (9.8 m s−2) · ¡0.2 K·m s−2
¢ = −3.06 m

Below height 3.06 m, mechanical production of turbulence exceeds
buoyant production.
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c) Use the first Eq. (9.16)

t∗ =
1000 m

1.87 m s−1
= 535 s = 8.9 min

This is the turnover time for a thermal circulation.

d) Use Eq. (9.22):

v =

µ
0.2 m s−1

0.4

¶
ln

µ
30 m
0.01 m

¶
= 4 m s−1

Wind speed increases logarithmically with height.

9.19 If the wind speed is 5 m s−1 at z = 10 m, and the air temperature is 20◦C
at z = 2 m, then: (a) What is the value of sensible heat flux at the surface
of unirrigated grassland if the skin temperature is 40◦C? (b) What is the
value of latent heat flux?
Use ρcp ≈ 1231(W m−2)Á(K m s−1) for dry air at sea level.

SOLUTION

V (m/s) = 5 (a) FHS (K m s−1) = 0.1
T (◦C) = 20 (b) FES (K m s−1) = 0.2
Ts (◦C) = 40 -or-
unirrigated grass 0.001 for CH (a) QH (W m−2) = 123.1
Bowen ratio = 0.5 (b) QE (W m−2) = 246.2
Method: Use bulk aerodynamic method for (a),
then use Bowen ratio for (b).
For dynamic fluxes, at sea level, ρ cp (W m−2)/(K m s−1) = 1231

a) Use eqn. (9.19a) with CH = 0.001 from Table 9.2 for unirrigated
grass.

FHs = (0.001)
¡
5 m s−1

¢
(40− 20◦C) = 0.1 K·m s−1

b) Rearrange the Bowen ratio definition: FEs = FHs/B, where B = 0.5
for grassland.

FEs = (0.1 K·m s−1)/0.5 = 0.2 K·m s−1

Alternately, these kinematic fluxes can be multiplied by ρ·cp = 1232
(W m−2)/(K·m s−1): a) QH = 123.1 W m−2 and b) QE = 246.2 W
m−2.

9.24 As a cold, continental air mass passes over the Gulf Stream on a winter
day, the temperature of the air in the ABL rises by 10 K over a distance
of 300 km. Within this interval the ABL average depth is 1 km and the
wind speed is 15 m s−1. No condensation is taking place within the PBL
and the radiative fluxes are negligible. Calculate the sensible heat flux
from the sea surface.
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SOLUTION Use Eq. (9.31) and expand the total derivative:

dθ

dt
=

∂θ

∂t
+ U

∂θ

∂x
=
(1 +A)FHs

zi

At steady state, ∂θ/∂t = 0, leaving:

U
∂θ

∂x
=
(1 +A)FHs

zi

Solving for FHs gives:

FHs

¡
15 m s−1

¢ · (10 K) · (1000 m)
(3× 105 m) · (1.2) = 0.417 K·m s−1

Multiply by ρ·cp = 1231(W m−2)/(K·m s−1) to give the flux in dynamic
units: QH = 513 W m−2.

9.25 (a) If drag at the ground represents a loss of momentum from the mean
wind, determine the sign of

¡
u0w0

¢
s
if the mean wind is from the west.

Justify your result.

(b) Do the same for a wind from the east, remembering that drag still
represents a momentum loss.

SOLUTION Assume wind = 0 a the ground, causing a wind shear just
above the ground.

a) Justification: Wind from the west means positive U . If this posi-
tive momentum is transported downward (negative w0), then u0w0 =
negative based on the procedure of Fig. 9.8.

b) East wind is negative U . Downward transport (negative w0) gives
negative times negative. Thus, u0w0 = positive.

9.26 Given the following temperature profile, determine and justify which layers
of the atmosphere are statically stable, neutral, and unstable.

SOLUTION Plot θ versus z, then lift a hypothetical air parcel from
each relative maximum in θ, and lower from each relative minimum, until
hitting the sounding (see arrows in the figure) to identify unstable layers.

Outside of the unstable regions, identify as “stable” those regions for
which ∂θ/∂z > 0, and identify as neutral regions where ∂θ/∂z ∼ 0.
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z (km) θ (◦C)
2 21
1.8 23
1.6 19
1.4 19
1.2 13
1 16
0.2 16
0 10

Unstable layers:
0.1 to 1.3 km
and
1.7 to 2.0 km

Stable layers:
0 to 0.1 km
and
1.3 to 1.4 km
and
1.6 to 1.7 km

Neutral layers
1.4 to 1.6 km

9.27 If the total accumulated heat flux from sunrise through sunset is 5100
K·m, then use the sounding in the previous exercise to estimate the depth
and temperature of the mixed layer just before sunset.

SOLUTION Find the mixed-layer conditions such that the area be-
tween the original sounding and the new mixed-layer potential tempera-
ture equals the accumulated heat available = 5100 K·m. See the figure
below, where the area was found by dividing the complex shape into sim-
ple rectangles and triangles with easy areas to calculate. Using trial and
error, the mixed-layer potential temperature was gradually increased until
the total area reached the desired value. The final values are < θ > =
19◦C, which intercepts the sounding at 1.4 km. However, because of the
neutral layer above 1.4 km, there is no resistance to thermals from the
ground to rise up to zi = 1.6 km.. Finally, recall that for temperature
differences: ∆T (◦C) = ∆T (K).
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9.28 Given a smoke stack half the height of a valley, (a) Describe the path of the
centerline of the smoke plume during day and night during fair weather.
(b) Describe the centerline path of the smoke on a strongly windy day.

SOLUTION Assume the stack is in the center of a valley. (a) Daytime:
initially a fanning plume with a subsiding centerline moves downstream
due to return circulation from anabatic winds. Later, after the top of the
mixed layer is higher than the stack, the plume will loop and quickly spread
within the valley mixed layer, some of which would be drawn up the ridge
slopes due to anabatic winds. At night, the plume would cone initially in
the residual layer and remain above the smokestack, but later in the night
it would fan as the centerline moves downstream in the mountain winds.
(b) If the wind had a component along the valley axis, then the smoke
would be channeled within the valley while rapidly coning due to intense
turbulence. For across-valley winds, either the smoke would recirculate in
a cavity, or would follow a mountain-wave trajectory over the downstream
ridge.

9.29 If you know the temperature and humidity jump across the top of the
mixed layer, and if you know only the surface heat flux (but not the
surface moisture flux), show how you can calculate the entrained heat and
moisture fluxes at the top of the mixed layer.

SOLUTION Use the Ball parameter, Eq. (9.30) in the text, and know-
ing the value of FHs, the entrained heat flux can be deterimined. Then,
use Eq. (9.29) and eqn. (9.32) in the text to get FEzi = −0.2FHs ∆q/∆θ.
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