
Chapter 8
8.9 If ω = V/RT , the local angular velocity of the air moving along a cycloni-

cally curving trajectory, and Ω is the angular velocity of the Earth’s rota-
tion, show that the flow is locally geostrophic if ω << Ω and cyclostrophic
if ω >> Ω.

The relative magnitudes of the centripetal acceleration and the Coriolis
force are

V 2RT

fV
=

ω2RT

fωRT

= ω/f

If ω/f >> 1, the centripetal acceleration dominates and the flow is in
cyclostrophic balance and if ω/f << 1, the Coriolis force dominates and
the flow is in geostrophic balance.

8.10 Show that the cyclonic shear of the flow in Fig. 8.31 contributes to the
relative prominence of the warm frontal zone relative to the cold frontal
zone. [Hint: rotate the right hand panel of Fig. 7.4 clockwise by 90◦ and
apply it to the warm frontal zone.]

8.12 In Exercise 8.6 estimate the pressure deficit at the radius of maximum
wind speed.

δp =
ρv20
r20

Z r0

0

rdr

=
ρv20
2

Substituting v0 =100 m s−1, ρ = 1.25 kg m−3, then δp = 1.25 × 104 Pa
= 62.5 hPa.

8.13 Suppose that Dorothy’s house had a cross sectional area of 200 m2, a mean
height of 5 m and a mass (including Dorothy and her dog) of 5 metric tons
and that when the tornado passed overhead, the decrease in pressure with
height was just enough to gently lift the house off the ground. Estimate
the rate of decrease of pressure with height at ground level under the
tornado. Assume an ambient air density of 1 kg m−3.

If M is the mass of Dorothy’s house and its contents, then

−1
ρ

∂p

∂z
=

Mg

A

Substituting ρ = 1, g ' 10 m s−2, M = 5× 103, and A = 200 m2 yields

−∂p
∂z
= 25 Pa m−1 = 250 hPa km−1
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8.14 The vertical velocity in a downdraft 500 m above the Earth’s surface is
4 m s−1 and the radius of the downdraft is 3 km. Estimate the speed
of the outflow from the base of the downdraft, averaged over the lowest
kilometer. Neglect the vertical variation of density with height and use a
value of 1 kg m−3.

From the continuity equation, ignoring the variation of density with height
in this relatively thin layer

∂V

∂r
∼ ∂w

∂z
where r is the radius of the downdraft. Substituting values

∂V

∂r
∼ 4 m s−1

1 km

If V increases at this rate over a distance of 3 km, then V = 12 m s−1.

8.15 If x is the direction of movement of the gust front and u is the velocity
component in that direction, making use of (1.3) and (7.11) show that if
the Coriolis force and friction are neglected, ∂/∂y = 0, and the vertical
velocity is zero,

d

dx

µ
u2

2
+

p

ρ

¶
= 0

If Ue is the speed of the u component of the wind in the undisturbed
environmental air in advance of the gust front, Uf is the speed of the u
component at the gust front (i.e., at the peak of the pressure surge), and
δp is the amplitude of the pressure surge, show that

δp = ρ0 (Uf − Ue)
2

If δp =1 hPa, ρ = 1.25 kg m−3, and Ue = 5 m s−1, estimate the wind
speed at the gust front, ignoring the effect of friction.

From the horizontal equation (7.11) with the Coriolis force and friction
neglected

du

dt
= −1

ρ

∂p

∂x

Expanding the total derivative as in (1.3) and setting ∂/∂t = 0 yields

u
∂u

∂x
= −1

ρ

∂p

∂x

or, if ∂ρ/∂x << ∂p/∂x,

∂

∂x

µ
u2 − p

ρ0

¶
= 0

Integrating from the gust front forward in x into the indisturbed environ-
mental air, we obtain

δp = ρ0 (Uf − Ue)
2

Subsitituting values, we obtain
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8.16 As boundary layer air spirals inward into the eye of a tropical cyclone,
its temperature remains fixed at 27◦C while the water vapor mixing ratio
increases from 15 to 21 g kg−1and the pressure drops from 1012 to 940
hPa. Estimate the resulting increase in equivalent potential temperature
θe.

8.17 The lowest sea-level pressure ever observed in a tropical cyclone was 870
hPa in the center of Typhoon Tip in the western Pacific in 1979. Suppose
that the 200-hPa pressure surface in this storm was flat. Estimate the
ratio of the vertically (with respect to ln p) averaged virtual temperature
of the air in the eye of the storm to that in the large-scale environment,
and the corresponding temperature difference.

Let Ti be the vertically-averaged virtual temperature inside the storm and
To the vertically-averaged virtual temperature outside. Assume that the
sea-level pressure outside the cyclone is close to the globally-averaged sea-
level pressure of 1013 hPa. Based on the hypsometric equation (3.29), we
can write

(Rd/g0)× Ti × ln
µ
870

200

¶
= (Rd/g0)× To × ln

µ
1013

200

¶
From which

Ti
To
=
ln (1013/200)

ln (870/200)
=
1.622

1.470
= 1.103 (1)

To estimate Ti − To we need to assume a reference vertically-averaged
(sea level to 200-hPa) virtual temperature. From the U.S. Standard At-
mosphere plotted on the skew-T ln p chart, the 200-hPa level corresponds
to ∼12 km. Hence, throm the hypsometric equation (3.29)

12× 103 = (Rd/g0)To ln
1013

200

Substituting Rd = 287 and g0 = 9.8 and solving, we obtain To = 252 K.
From (1)

Ti − To = (1.103− 1.000)To
= 0.103To

= 26 K

8.18 Just outside the eyewall of an intense tropical cyclone, at a radius of 10
km, the azimuthal wind speed is 60 m s−1. Estimate the radial pressure
gradient. Assume an air density of 1.1 kg m−3.

Assume that the azimuthal wind component u is in cyclostrophic balance.

∂p

∂r
= ρ

u2

r
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Substituting values we obtain

∂p

∂r
= 1.1× 602

10 km
= 396 Pa km−1

8.19 If the azimuthal wind speed in the previous exercise decreases with height
from 50 m s−1 at the 500-hPa level to zero at the 250-hPa level, estimate
the mean radial gradient of virtual temperature within this layer.

On the 500-hPa surface

∂Φ

∂r
= g

∂Z

∂r
=

502

10 km
∂Z

∂r
= 25.5 m km−1

On the 250 hPa surface ∂Z/∂r = 0. Hence, for the 500-250-hPa layer,
∂/∂r (δZ) = 25.5 m km−1 or .0255. From the hypsometric equation (3.29)

∂

∂r

Rd

g0
Tv ln

500

250
= 25.5 m km−1

Substituting Rd/g0 = 29.3 and ln (500/250) = 0.693 yields

∂Tv
∂r

=
25.5

29.3× 0.693
= 1.256◦C km−1

8.20 Consider an axially symmetric tropical cyclone that forms at a latitude of
15◦ in a large-scale environment in which the air is initially at rest. From
how far out would the low-level inflow have to come in order to develop
an azimuthal wind speed of 40 m s−1 at a radius of 20 km in the absence
of frictional drag?

In the absence of frictional drag, angular momentum is conserved in an
inertial coordinate system. For a circular ring of air concentric with the
cyclone the angular momentum due to the Earth’s rotation is equal to the
Ω times the square of the radius times the sine of the latitude angle and
the angular momentum associated with the relative motion of the air is
equal to the tangential wind speed u times the radius. Hence

r1 (u1 +Ωr1 sinφ) = r2 (u2 +Ωr2 sinφ)

and if radius R is sufficiently large that the relative wiund speed is negli-
gible

ΩR2 sinφ = r (u+Ωr sinφ)

4



Substituting values Ω sin (15◦) = 1.87 × 10−5 s−1, r = 20 × 103 m, and
u = 40 m s−1 yields

R2 =

¡
20 × 103 m¢ £40 m s−1 + 1.87× 10−5 s−1 ¡20× 103 m¢¤

1.87× 10−5 s−1

=
800 + 7.48)× 103 m2 s−1

1.87× 10−5 s−1
= 4.32× 1010 m2

Hence, R = 208 km.

8.21 In the eye of an intense tropical cyclone the sea-level pressure is 60 hPa
lower than in the large-scale environment. Estimate the elevation of sea
level due to the hydrostatic adjustment to the low pressure.

A pressure perturbation δp relative to mean sea level is accompanied by
a hydrostatic sea level displacement δz; i.e.,

δp = −ρwgδz

where ρw is the density of sea water. Hence,

δz =
−δp
ρwg

Substituting values yields

δz =
−6000 Pa
103 × 9.8

= 61 cm
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