Chapter 6

6.9

Let

$$
\begin{aligned}
T & =\text { surface tension } \\
& =\text { force per unit length on wire }
\end{aligned}
$$

Then, work done in moving wire of length L through distance $x=(T L) x$

$$
\begin{aligned}
\frac{\text { Work done }}{\text { Increase in area of soap film }} & =\frac{(T L) x}{L x}=T \\
\therefore \text { Surface energy } & =\text { Surface tension } \\
\text { (Units: } \mathrm{J} \mathrm{~m}^{-2} & =\frac{\text { Force }}{\text { length }}=\frac{m \ell t^{-2}}{\ell}=m t^{-2} \\
\frac{m \ell t^{-2} \ell}{\ell^{2}} & =m t^{-2} \\
m t^{-2} & \left.=m t^{-2}\right)
\end{aligned}
$$

6.10 From eqn. (6.5)

$$
\begin{aligned}
\ln \frac{e}{e_{s}} & =\frac{2 \sigma}{n k T r} \\
\sigma & =0.76 \mathrm{~J} \mathrm{~m}^{-2} \\
n & =3.3 \times 10^{28} \mathrm{~m}^{-3} \\
k & =1.38 \times 10^{-23} \\
T & =273^{\circ} \mathrm{K} \\
r & =0.2 \times 10^{-6} \mathrm{~m} \\
\therefore \ln \frac{e}{e_{s}} & =\overline{\left(3.3 \times 10^{28}\right)\left(1.38 \times 10^{-23}\right)(273)\left(0.2 \times 10^{-6}\right)} \\
& =6.113 \times 10^{-3} \\
\therefore \frac{e}{e_{s}} & =1.00613
\end{aligned}
$$

\therefore Relative humidity $=100.6 \%$
6.11 See Fig. 6.3.
6.12 From eqn. (6.8)

$$
\frac{e^{\prime}}{e_{s}}=\left[\exp \frac{2 \sigma^{\prime}}{n^{\prime} k T r}\right]\left[1+\frac{i m M_{w}}{M_{s}\left(\frac{4}{3} \pi r^{3} \rho^{\prime}-m\right)}\right]^{-1}
$$

For a very weak solution $m \ll \frac{4}{3} \pi r^{3} \rho^{\prime}$. Also, since $\frac{2 \sigma^{\prime}}{n^{\prime} k T r} \ll 1$, we have

$$
\begin{aligned}
\frac{e^{\prime}}{e_{s}} & \bumpeq\left[1+\frac{2 \sigma^{\prime}}{n^{\prime} k T r}\right]\left[1-\frac{i m M_{w}}{\frac{4}{3} \pi M_{s} r^{3} \rho}\right] \\
& \bumpeq 1+\frac{2 \sigma^{\prime}}{n^{\prime} k T r}-\frac{i m M_{w}}{\frac{4}{3} M_{s} \pi r^{3} \rho^{\prime}}-\underbrace{[] \frac{1}{r_{4}}}_{\text {very small }} \\
& \frac{e^{\prime}}{e_{s}} \bumpeq 1+\frac{a}{r}-b
\end{aligned}
$$

where,

$$
a=\frac{2 \sigma^{\prime}}{n^{\prime} k T} \text { and } b=\frac{i m M_{w}}{\frac{4}{3} \pi M_{s} \rho^{\prime}}
$$

Second term represents the effect of the curvature of the drop in increasing e^{\prime}. Third term represents the effect of dissolved salt in decreasing e^{\prime} / e_{s}. Peak in the Köhler curve (i.e., in e^{\prime} / e_{s}) with r occurs when

$$
\frac{d}{d r}\left(\frac{e^{\prime}}{e_{s}}\right)=0
$$

that is, when

$$
0 \bumpeq-a-\frac{3 b}{r^{2}}
$$

or, when

$$
r^{2} \bumpeq \frac{3 b}{a}
$$

The magnitude of $\frac{e^{\prime}}{e_{s}}$ at its peak value is

$$
\begin{aligned}
\left(\frac{e^{\prime}}{e_{s}}\right)_{\max } & \bumpeq 1+a\left(\frac{a}{3 b}\right)^{1 / 2}-b\left(\frac{a}{3 b}\right)^{3 / 2} \\
& \bumpeq 1+\left(\frac{a^{3}}{3 b}\right)^{1 / 2}-\left(\frac{b^{2 / 3} a}{3 b}\right)^{3 / 2} \\
& \bumpeq 1+\left(\frac{a^{3}}{3 b}\right)^{1 / 2}-\left(\frac{a^{3}}{3^{3} b}\right)^{1 / 2} \\
& \bumpeq 1+\left(\frac{a^{3}}{3 b}\right)^{1 / 2}-\frac{1}{3}\left(\frac{a^{3}}{3 b}\right)^{1 / 2} \\
& \bumpeq 1+\frac{2}{3}\left(\frac{a^{3}}{3 b}\right)^{1 / 2} \\
& \bumpeq 1+\left(\frac{\mathbf{4 a}}{\mathbf{2 7 b}}\right)^{\mathbf{1 / 2}} \\
\left(\frac{e^{\prime}}{\boldsymbol{e}_{s}}\right)_{\max } & \bumpeq 1
\end{aligned}
$$

6.13

Volume (or mass in grams) of rainwater collected over $1 \mathrm{~cm}^{2}$ in 1 year $=$ $100 \mathrm{~cm}^{3}$ (or grams). If $N=$ number of cloud droplets $/ \mathrm{cm}^{3}$

$$
\begin{aligned}
N \text { (mass of a single cloud droplet) } & =L W C\left(\mathrm{in}_{\left.\mathrm{g} \mathrm{~cm}^{-3}\right)}\right. \\
& =0.3 \times 10^{-6} \\
\therefore \text { mass of a single cloud droplet (in grams) } & =\frac{0.3 \times 10^{-6}}{N}
\end{aligned}
$$

But, in 1 year 100 grams of rain is collected
\therefore Number of cloud droplets removed by rain per year

$$
\begin{aligned}
& =\frac{100}{\text { mass of single drop }}=\frac{100}{0.3 \times 10^{-6} / \mathrm{N}} \\
& =\frac{100 \mathrm{~N}}{0.3 \times 10^{-6}} \\
& =0.3 \times 10^{9} \mathrm{~N} \\
& \simeq 3 \times 10^{8} \mathrm{~N}
\end{aligned}
$$

Number of cloud droplets removed per second

$$
\begin{aligned}
& \simeq \frac{3 \times 10^{8} N}{3.65 \times 24 \times 60 \times 60} \\
& \simeq 9.5 \mathrm{~N}
\end{aligned}
$$

Number of CCN in column of atmosphere with $1 \mathrm{~cm}^{2}$ areal cross sectional and 5 km high

$$
=\left(1 \times 5 \times 10^{5}\right) N
$$

$$
\begin{aligned}
\therefore \text { Fraction of CCN removed/sec } & =\frac{9.5 \mathrm{~N}}{5 \times 10^{5} \mathrm{~N}} \\
& =1.9 \times 10^{-5} / \mathrm{sec} \\
\text { Fraction of CCN removed/day } & =\left(1.9 \times 10^{-5}\right)(24 \times 60 \times 60) \\
& =1.64
\end{aligned}
$$

Hence, all of CCN are removed in less than 1 day. (Note: From (\qquad

$$
\begin{aligned}
\text { Residence time } & \equiv \frac{\text { Amount of species }}{\text { Rate of removal of species }} \\
& =\frac{5 \times 10^{5} \mathrm{~N}}{9.5 \mathrm{~N}} \mathrm{sec} \\
& =0.52 \times 10^{5} \mathrm{sec} \\
& =14.5 \mathrm{hrs} \\
& =15 \mathrm{hrs}
\end{aligned}
$$

6.14

6.15

When drops are falling at terminal fall speed, the frictional drag per unit mass of air is
(a) $F_{d}=$ Downward force on drops/unit mass of air

$$
=\left(\frac{\text { mass of drops }}{\text { mass of air }}\right) \mathrm{g}
$$

Since, air density $=\rho=\frac{\text { mass of air }}{\text { volume of air }}$

$$
\begin{aligned}
F_{d} & =\frac{(\text { mass of drops })}{\text { (volume of air) }} \frac{g}{\rho} \\
& =\left[3 \times 10^{-3}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right)\right] \frac{g}{\rho}
\end{aligned}
$$

Also, for air

$$
\begin{aligned}
p & =R_{d} \rho T \\
\therefore F_{d} & =\left(3 \times 10^{-3}\right) g \frac{R_{d} T}{p} \\
& =\frac{\left(3 \times 10^{-3}\right)(9.81)(287)(273)}{500 \times 10^{2}} \\
& =\frac{3 \times 9.81 \times 287 \times 273}{5} \times 10^{-7} \\
& =461174 \times 10^{-7} \\
\boldsymbol{F}_{\boldsymbol{d}} & =\mathbf{0 . 0 4 6 1} \mathbf{N ~ \mathbf { k g } ^ { - 1 }}
\end{aligned}
$$

(b) Without drops being present

Downward force acting on a unit mass of air $=g$

When drops are present
Downward force acting on a unit mass of air $=(g+0.0461)$
$=(9.81+0.0461)$
$=9.8561 \mathrm{~N} \mathrm{~kg}^{-1}$

Pressure at ground $=p_{g}=-\int_{p_{g}}^{o} d p$

$$
\begin{align*}
\text { But } \frac{d p}{d z} & =-\rho g \\
\therefore p_{g} & =\int_{o}^{\infty} \rho g d z=g \int_{o}^{\infty} \rho d z \tag{1}
\end{align*}
$$

Now the pressure of $3 \mathrm{~g} / \mathrm{m}^{3}\left(=3 \times 10^{-3} \mathrm{~kg} / \mathrm{m}^{3}\right)$ of water in air, will have negligible effect on the density of air, which is $\sim 1.275 \mathrm{~kg} \mathrm{~m}^{-3}$ at surface. Therefore from (1) we can write

$$
p_{g} \propto g
$$

Similarly, at cloud height

$$
p \propto g
$$

Hence,

$$
\begin{align*}
\frac{p(\text { air alone }))}{p(\text { air }+ \text { cloud water })} & =\frac{g}{g+0.0461} \\
& =\frac{9.81}{9.8561} \tag{2}
\end{align*}
$$

Since

$$
p=R_{d} \rho T
$$

the air in question (i.e., air containing water vapor) has density

$$
\begin{equation*}
\rho=\frac{p(\text { air }+ \text { cloud water })}{R_{d} T} \tag{3}
\end{equation*}
$$

If the air had no cloud water, but is required to have density ρ given by (3), then

$$
\text { Density }=\frac{p \text { (air only) }}{R_{d} T_{v}}
$$

or,

$$
\frac{p(\text { air }+ \text { cloud water })}{R_{d} T}=\frac{p(\text { air alone })}{R_{d} T_{v}}
$$

where T_{v} is the virtual temperature require g the air alone is to have density ρ.

$$
\begin{equation*}
\therefore T_{v}=\frac{p(\text { air alone })}{p(\text { air }+ \text { cloud water })} T \tag{4}
\end{equation*}
$$

From (2) and (4)

$$
\begin{aligned}
T_{v} & =\frac{9.81}{9.8561} T \\
& =0.9953(273) \\
& =271.72 \mathrm{~K}
\end{aligned}
$$

Therefore, the (negative) virtual temeprature correction is 273 $271.72=\underline{\underline{1.28^{\circ} \mathrm{C}}}$.
6.16 (a) The cloud liquid water content (LWC) is given by

$$
\begin{equation*}
L W C=\frac{4}{3} \pi \rho_{\ell} \int_{o}^{\infty} r^{3} n(r) d r \tag{1}
\end{equation*}
$$

where $n(r)$ is the concentration of droplets or radius r, and

$$
\begin{equation*}
N=\int_{o}^{\infty} n(r) d r \tag{2}
\end{equation*}
$$

From (1) and (2)

$$
L W C=\frac{4}{3} \pi \rho_{\ell}(\bar{r})^{3} N
$$

where \bar{r} is the mean droplet radius $\simeq r_{e}$. Therefore

$$
\begin{equation*}
L W C=\frac{4}{3} \pi \rho_{\ell} r_{e}^{3} N \tag{3}
\end{equation*}
$$

(b) Also,

$$
\begin{equation*}
\tau_{c}=2 \pi h r_{e}^{2} N \tag{4}
\end{equation*}
$$

From (3) and (4)

$$
L W C=\frac{4}{3} \pi \rho_{\ell} r_{e}^{3} \frac{\tau_{c}}{2 \pi h r_{e}^{2}}
$$

or,

$$
\begin{equation*}
L W C=\frac{2}{3} \rho_{\ell} \frac{r_{e} \tau_{c}}{h} \tag{5}
\end{equation*}
$$

(c)

$$
\begin{equation*}
L W P=L W C\left(\mathrm{~kg} \mathrm{~m}^{-3}\right) h(m) \tag{6}
\end{equation*}
$$

From (5) and (6)

$$
L W P=\frac{2}{3} \rho_{\ell} r_{e} \tau_{c}
$$

6.17

Entrained air will be coooled to its wet-bulb temperature. From skew $T-\ln p$ chart: At 500 hPa and $T=253$, saturation mixing ratio $=1.6$ g / kg. Therefore,

$$
\begin{aligned}
& \text { Relative humidity }=\frac{\text { actual mixing ratio }}{\text { saturation mixing ratio }} 100 \\
& \therefore 20=\frac{\text { actual mixing ratio }}{1.6} 100 \\
& \therefore \text { Actual mixing ratio }=1.6 \times 0.2 \\
& =0.32 \mathrm{~g} / \mathrm{kg}
\end{aligned}
$$

\therefore Dew point of air before it is entrained into cloud $=-37^{\circ} \mathrm{C}$
Using Norman's rule, the wet-bulb temperature $=-23^{\circ} \mathrm{C}$ of the entrained air
-23
If air parcel is brought down along a saturated adiabat to 1000 hPa , its temperature is found to be $\underline{\underline{12^{\circ} \mathrm{C}}}$.
If final relative humidity is 50%, by trial and error from chart (by going down a saturated adiabat and then a dry adiabat) final temperature is $\xlongequal{19^{\circ} \mathrm{C}}$.
6.18 (a) From eqn. (6.18) in Chapter 6:

$$
\frac{d \theta^{\prime}}{\theta^{\prime}}=-\frac{L_{v}}{c_{p} T^{\prime}} d w_{s}-\left[\frac{T-T^{\prime}}{T^{\prime}}+\frac{L_{v}}{c_{p} T^{\prime}}\left(w_{s}-w\right)\right] \frac{d m}{m}
$$

For no condensation $\left(d w_{s}=0\right)$ and no entrainment ($d m=0$), and (5.28) becomes $\frac{d \theta^{\prime}}{\theta}=0$ or $d \theta^{\prime}=0$. This is the dry air ascending adiabatically case.
(b) For condensation but no entrainment $(d m=0)$

$$
\frac{d \theta^{\prime}}{\theta^{\prime}}=-\frac{L_{v} d w_{s}}{c_{p} T^{\prime}}
$$

or

$$
c_{p} \frac{d \theta^{\prime}}{\theta^{\prime}}=\frac{d Q}{T^{\prime}}=d s
$$

which is equivalent to (3.98).
(c) For condensation and entrainment, the terms inside [] in (7.18) are both positive. Since, $-\frac{L_{v} d w_{s}}{c_{p} T^{\prime}}$ is positive, with entrainment $\frac{d \theta^{\prime}}{\theta^{\prime}}$ is less than without entrainment. That is, the rate of decrease of θ^{\prime} with increasing height is less with entrainment. The three situations can be depicted schematically as follows:

(i) Dry air ascending

(ii) Saturated air ascending (no entrainment)

(iii) Saturated air ascending with entrainment

See from (iii) that entrainment causes T to decrease faster with z than for Γ_{s}.
6.19 Let the radius of the termal at height z above the ground be r, then

$$
\begin{equation*}
r=\alpha z \tag{1}
\end{equation*}
$$

$\alpha=$ constant. The entrainment rate is

$$
\begin{equation*}
\frac{1}{m} \frac{d m}{d t}=\frac{1}{4 \pi r^{3} \rho} \frac{d}{d t}\left(\frac{4}{3} \pi r^{3} \rho\right)=\frac{3}{r} \frac{d r}{d t} \tag{2}
\end{equation*}
$$

From (1) and (2)

$$
\frac{1}{m} \frac{d m}{d t}=\frac{3 \alpha}{r} \frac{d z}{d t}
$$

6.20 (a) For ascent with no condensation $L W C=0$, therefore:

$$
\begin{equation*}
\frac{d S}{d t}=Q_{1} \frac{d z}{d t} \tag{1}
\end{equation*}
$$

since,

$$
S=\frac{e}{e_{s}}
$$

$$
\begin{equation*}
\frac{d S}{d t}=\left(e_{s} \frac{d e}{d t}-e \frac{d e_{s}}{d t}\right) / e_{s}^{2} \tag{2}
\end{equation*}
$$

We will first evaluate $\frac{d e}{d t}$

$$
e=\frac{w}{\varepsilon+w} p
$$

where, $w=$ mixing ratio, which is constant if there is no condensation.

$$
\therefore \frac{d e}{d t}=\frac{w}{\varepsilon+w} \frac{d p}{d t}
$$

or

$$
\begin{equation*}
\frac{d e}{d t}=\frac{w}{\varepsilon+w} \frac{d p}{d z} \frac{d z}{d t} \tag{3}
\end{equation*}
$$

But,

$$
\begin{equation*}
\frac{d p}{d z}=-g \rho \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
p=R_{d} \rho T \quad\left(T=T_{v}\right) \tag{5}
\end{equation*}
$$

From (3), (4), (5):

$$
\begin{equation*}
\frac{d e}{d t}=-\frac{e g}{R_{d} T} \frac{d z}{d t} \tag{6}
\end{equation*}
$$

We will now evaluate $\frac{d e_{s}}{d t}$
From the Clausius-Clapeyron eqn:

$$
\frac{d e_{s}}{d T}=\frac{L_{v}}{T\left(\alpha_{2}-\alpha_{1}\right)} \simeq \frac{L_{v}}{T\left(\alpha_{2}\right)}
$$

and,

$$
\begin{gathered}
e_{s}=R_{v} \frac{1}{\alpha_{2}} T \\
\therefore \frac{d e_{s}}{d T}=\frac{L_{v} e_{s}}{R_{v} T^{2}} \\
\therefore \frac{d e_{s}}{d t}=\frac{L_{v} e_{s}}{R_{v} T^{2}} \frac{d T}{d t}
\end{gathered}
$$

or,

$$
\frac{d e_{s}}{d t}=\frac{L_{v} e_{s}}{R_{v} T^{2}} \frac{d T}{d z} \frac{d z}{d t}
$$

But,

$$
\begin{align*}
&-\frac{d T}{d z}=+\frac{g}{c_{p}}= \begin{array}{l}
\text { Dry adiabatic lapse rate } \\
\text { (because there is no condensation) }
\end{array} \\
& \therefore \frac{d e_{s}}{d t}=-\frac{L_{v} e_{s}}{R_{v} T^{2}} \frac{g}{c_{p}} \frac{d z}{d t} \tag{7}
\end{align*}
$$

From (2), (6) and (7):

$$
\frac{d S}{d t}=\frac{1}{T} \frac{e}{e_{s}}\left(\frac{\varepsilon L_{v} g}{R_{d} c_{p} T}-\frac{g}{R_{d}}\right) \frac{d z}{d t}
$$

Since $\frac{e}{e_{s}} \simeq 1$

$$
\begin{equation*}
\frac{d S}{d t} \simeq \frac{1}{T}\left(\frac{\varepsilon L_{v} g}{R_{d} c_{p} T}-\frac{g}{R_{d}}\right) \frac{d z}{d t} \tag{8}
\end{equation*}
$$

Comparing (1) and (8):

$$
Q_{1}=\frac{g}{T R_{d}}\left(\frac{\varepsilon L_{v}}{c_{p} T}-1\right)
$$

(b) If we assume no vertical air motion $\left(\frac{d z}{d t} \simeq 0\right.$ and $p=$ constant $)$ while condensation occurs, then:

$$
\begin{equation*}
\frac{d S}{d t}=-Q_{2} \frac{d(L W C)}{d t} \tag{9}
\end{equation*}
$$

Equation (2) still holds, and we will now evaluate $\frac{d e}{d t}$ for this case.

$$
e=\frac{w}{\varepsilon+w} p
$$

w now varies, but p is constant. Therefore,

$$
\frac{d e}{d t}=\frac{\varepsilon}{(\varepsilon+w)^{2}} \frac{d w}{d t} p
$$

But,

$$
\begin{aligned}
\frac{d w}{d t} & =-\frac{d(L W C)}{d t} \\
\therefore \frac{d e}{d t} & =-\frac{\varepsilon}{(\varepsilon+w)^{2}} p \frac{d(L W C)}{d t}
\end{aligned}
$$

Since

$$
p=R_{d} \rho T \quad\left(T=T_{v}\right)
$$

and

$$
\begin{gather*}
\varepsilon \gg w \\
\frac{d e}{d t} \simeq-\frac{1}{\varepsilon} \rho R_{d} T \frac{d(L W C)}{d t} \tag{10}
\end{gather*}
$$

We now evaluate $\frac{d e_{s}}{d t}$ for this case. As before, from the ClausiusClapeyron eqn. and the gas eqn. for vater vapor, we get:

$$
\begin{align*}
\frac{d e_{s}}{d t} & \simeq \frac{L_{v} e_{s}}{R_{v} T^{2}} \frac{d T}{d t} \\
& =\frac{L_{v} e_{s}}{R_{v} T^{2}} \frac{d T}{d(L W C)} \frac{d(L W C)}{d t} \tag{11}
\end{align*}
$$

But,

$$
d(L W C)=-d w
$$

and

$$
d Q=L_{v} d(L W C)=-L_{v} d w
$$

also,

$$
d Q=c_{p} d T
$$

Hence,

$$
c_{p} d T=-L_{v} d w
$$

or

$$
\begin{equation*}
d T=-\frac{L_{v} d w}{c_{p}} \tag{12}
\end{equation*}
$$

From (11) and (12):

$$
\begin{equation*}
\frac{d e_{s}}{d t}=+\frac{L_{v}^{2} e_{s}}{R_{v} T^{2} c_{p}} \frac{d(L W C)}{d t} \tag{13}
\end{equation*}
$$

From (2), (10) and (13):

$$
\frac{d S}{d t}=\left(e_{s} \frac{d e}{d t}-e \frac{d e_{s}}{d t}\right) / e_{s}^{2}
$$

Therefore,

$$
\frac{d S}{d t}=-\frac{1}{\varepsilon e_{s}} \rho R_{d} T \frac{d(L W C)}{d t}-\frac{e}{e_{s}} \frac{L_{v}^{2}}{R_{v} T^{2} c_{p}} \frac{d(L W C)}{d t}
$$

Substitute

$$
\begin{gathered}
p=\rho R_{d} T \text { so that } T=p / R_{d} \rho \\
\therefore \frac{d S}{d t}=-\frac{1}{\varepsilon e_{s}} \rho R_{d} T \frac{d(L W C)}{d t}-\frac{e}{e_{s}} \frac{L_{v}^{2} R_{d} \rho}{R_{v} T c_{p} p} \frac{d(L W C)}{d t}
\end{gathered}
$$

Or, since $\frac{e}{e_{s}} \simeq 1$,

$$
\begin{equation*}
\frac{d S}{d t} \simeq-\rho\left[\frac{R_{d} T}{\varepsilon e_{s}}+\frac{\varepsilon L_{v}^{2}}{T p c_{p}}\right] \frac{d(L W C)}{d t} \tag{14}
\end{equation*}
$$

From (9) and (14):

$$
Q_{2}=\rho\left[\frac{R_{d} T}{\varepsilon e_{s}}+\frac{\varepsilon L_{v}^{2}}{p T c_{p}}\right]
$$

From (6.21)

$$
\begin{align*}
r_{1} \frac{d r_{1}}{d t} & =G_{\ell} S \\
\therefore r_{1}^{2} & =2 G_{\ell} S t \tag{3}
\end{align*}
$$

\therefore From (1), (2) and (3)

$$
\begin{gathered}
\frac{d h}{d t}=w-\frac{4 g \rho_{L} G_{\ell} S}{9 \eta} t \\
\therefore \int_{o}^{h} d h=\int_{o}^{t} d t-\frac{4 g \rho_{L} S G_{\ell}}{9 \eta} \int_{o}^{t} t d t \\
h=w t-\frac{4 g \rho_{L} S G_{\ell}}{9 \eta} \frac{t^{2}}{2} \\
p=w t-\frac{2 g \rho_{L} S G_{\ell} t^{2}}{9 \eta}
\end{gathered}
$$

6.22 Use the skew $T-\ln p$ chart as described in Exercise 3.10.

Entrainment reduces LWC below adiabatic value. Accumulation of LWC (e.g., when fall speed of drops $=$ updraft of air) could cause LWC to increase above adiabatic values in some regions of the cloud.
6.23

$$
\frac{d m}{d t}=\pi r^{2} V E_{e}(L W C)
$$

But,

$$
\begin{gathered}
m=\frac{4}{3} \pi r^{3} \rho_{2} \\
\therefore \rho_{L} \frac{4}{3} \pi^{3} r^{2} \frac{d r}{d t}=\pi r^{2} V E_{c}(L W C) \\
\therefore \frac{d r}{d t}=\frac{V E_{c}}{4 \rho_{L}}(L W C) \\
L W C=\frac{4}{3} \pi(0.001)^{3} \rho_{L} 100\left(\text { in g cm }^{-3}\right)
\end{gathered}
$$

where $\rho_{L}=$ density of liquid water in $\mathrm{g} \mathrm{cm}^{-3}=1$

$$
\therefore L W C=\frac{4}{3} \pi 10^{-7} \mathrm{~g} \mathrm{~cm}^{-3}
$$

Also, $E_{c}=1$ and $V=\left(6 \times 10^{3}\right) r$ where V is in $\mathrm{cm} \mathrm{s}^{-1}$ and r in cm .

$$
\therefore \frac{d r}{d t}=\frac{6 \times 10^{3} r \frac{4}{3} \pi 10^{-7} 0.8}{4}
$$

or

$$
\begin{gathered}
\therefore \frac{d r}{r}=1.6 \pi 10^{-4} t \\
\int_{0.01 \mathrm{~cm}}^{0.1 \mathrm{~cm}} \frac{d r}{r}=1.6 \pi 10^{-4} \int_{o}^{t} d t=1.6 \pi 10^{-4} t \\
\therefore \frac{\ln 0.1-\ln 0.01}{1.6 \pi d 10^{-4}}=t \\
t=4579 \mathrm{secs} \\
\underline{t=76.3 \mathrm{mins}}
\end{gathered}
$$

where V is in $\mathrm{cm} \mathrm{s}^{-1}$ and r in cm

$$
\therefore V=\left(6 \times 10^{3}\right) 10^{-4} r=0.6 r
$$

where V is in $\mathrm{cm} \mathrm{s}^{-1}$ and r in $\mu \mathrm{m}$. Let $x=$ distance of drop (in cm) below cloud base, then

$$
\begin{equation*}
\frac{d x}{d t}=V=0.6 r \tag{A}
\end{equation*}
$$

where r is in $\mu \mathrm{m}$.

$$
\therefore d x=0.6 r d t(x \text { in } \mathrm{cm} r \text { in } \mu \mathrm{m})
$$

From (6.21)

$$
\begin{gather*}
r \frac{d r}{d t}=G_{\ell} S=\left(7 \times 10^{2}\right) \underset{\uparrow}{\text { as a fraction }} \tag{B}\\
\therefore r d r=\left(7 \times 10^{2} S\right) \frac{d x(\mathrm{~cm})}{0.6 r}
\end{gather*}
$$

or

$$
\begin{gathered}
r^{2} d r=\frac{\left(7 \times 10^{2} S\right)}{0.6} d x \\
\therefore \int_{1000 \mu \mathrm{~m}}^{R(\mu \mathrm{~m})} r^{2} d r=\frac{700 S}{0.6} \int_{0 \mathrm{~cm}}^{5 \times 10^{5} \mathrm{~cm}} d x \\
{\left[\frac{\Gamma^{3}}{3}\right]_{1000}^{R(\mu \mathrm{~m})}=\frac{700 S}{0.6}\left(5 \times 10^{5}\right)}
\end{gathered}
$$

If $R H=60 \%$ the supersaturation is (as a fraction)

$$
\begin{aligned}
& \frac{e-e_{s}}{e_{s}}=\frac{e}{e_{s}}-1= \underset{\text { (as a fraction) }}{R H}-1=0.6-1=-0.4 \\
& \therefore S=-0.4 \\
& \therefore\left[\frac{r^{3}}{3}\right]_{1000}^{R(\mu \mathrm{~m})}=\frac{700(-0.4)}{0.6}\left(5 \times 10^{5}\right) \\
& \frac{R^{3}}{3}-\frac{1000^{3}}{3}=\frac{-7(0.4)(5) 10^{7}}{0.6} \\
&=-23.33 \times 10^{7} \\
& R^{3}=10^{9}-3\left(23.33 \times 10^{7}\right) \\
&=1-^{9}-0.7 \times 10^{9} \\
&=0.3 \times 10^{9} \\
& \therefore R=3 \sqrt{0.3} \times 10^{3} \\
&=0.6694 \times 10^{3} \mu \mathrm{~m} \\
& \therefore \begin{array}{c}
\text { Radius } \\
\text { at cloud } \\
\text { base }
\end{array}=0.67 \mathrm{~mm}
\end{aligned}
$$

Time taken: And from (B) above

$$
\begin{aligned}
& d t=\frac{r d r}{700 S_{T}} \\
& \therefore \int_{1000 \mu \mathrm{~m}}^{r} r d r=700 S \int_{o}^{d t} \text { where } T=\text { time (in secs) for drop to reach ground } \\
& {\left[\frac{r^{2}}{2}\right]_{1000}^{r} }=700 S T \\
& \frac{r^{2}}{2}-\frac{1000^{2}}{2}=700 S T \\
& \therefore r^{2}=1000^{2}+2(700) S T
\end{aligned}
$$

But from (A) above

$$
\frac{d x}{d t}=0.6 r
$$

Hence

$$
\begin{aligned}
\frac{d x}{d t} & =0.6\left(10^{6}+1400 S t\right)^{1 / 2} \\
\therefore \int_{o}^{5 \times 10^{5} \mathrm{~cm}} d x & =0.6 \int_{o}^{T}\left(10^{6}+1400 S t\right)^{1 / 2} d t \\
5 \times 10^{5} & =0.6\left[\frac{2}{3}\left(10^{6}+1400 S t\right)^{3 / 2} \frac{1}{1400 S}\right]_{o}^{T} \\
& =0.6\left[\frac{2}{4200 S}\left(10^{6}+1400 S T\right)^{3 / 2}-\frac{2 \times 10^{9}}{4200 S}\right]
\end{aligned}
$$

But $S=-0.4$

$$
\begin{aligned}
& \therefore 5 \times 10^{5}=\frac{1.2}{4200(-0.4)}\left(10^{6}=560 T\right)^{3 / 2}-\frac{1.2 \times 10^{9}}{4200(-0.4)} \\
& {\left[\frac{5 \times 10^{5} \times 4200(-0.4)}{1.2}+10^{9}\right]^{2 / 3}=10^{6}=560 T} \\
& \therefore T=\frac{10^{6}}{560}-\frac{\left(-7 \times 10^{8}+10^{9}\right)^{2 / 3}}{560} \\
& =\frac{10^{6}}{560}-\left(-0.7 \times 10^{9}+10^{9}\right)^{2 / 3} / 560 \\
& = \\
& =1785.7-\left(0.3 \times 10^{9}\right)^{2 / 3} / 560 \\
& = \\
& \\
& \quad \begin{array}{l}
1785.714-(0.3)^{2 / 3} 10^{6} / 560 \\
\\
\quad=1785.714-(0.6694)^{2} \frac{10^{6}}{560} \\
\\
\quad=985.54 \mathrm{secs} \\
T=16.4 \mathrm{mins}
\end{array}
\end{aligned}
$$

6.25 (a)

$$
\text { Let } \begin{aligned}
N & =\text { total number of drops } \\
N_{t} & =\text { number of drops frozen at time } t
\end{aligned}
$$

Then

$$
P(V, t)=\frac{N_{t}}{N}
$$

Number of drops that nucleat between time o and $t+d t$ is

$$
N_{t+d t}=N_{t}+\left(N-N_{t}\right) V J_{L S} d t
$$

Dividing both sides by N

$$
P(V, t+d t)=P(V, t)+\left[1-P(V, t) V J_{L S} d t\right]
$$

Since

$$
P(V, t+d t)=P(V, t)+\frac{d}{d t}[P(V, t)] d t
$$

it follows that

$$
\frac{d}{d t} P(V, t)=[1-P(V, t)] V J_{L S}
$$

Hence,

$$
\begin{aligned}
& \int_{o}^{P(V, t)} \frac{d P(V, t)}{1-P(V, t)}=\int_{o}^{t} V J_{L S} d t \\
& \therefore \ln [1-P(V, t)]=-\int_{o}^{t} V J_{L S} d t
\end{aligned}
$$

But $\beta=\frac{d T}{d t}$

$$
\therefore \ln [1-P(V, t)]=-\frac{V}{\beta} \int_{o}^{T_{t}} J_{L S} d T
$$

where T_{t} is temperature at time t.
(b) From the equation following (6.34) in Exercise (6.4):

$$
\begin{gathered}
-n=\ln (1-P) \\
\therefore-\ln (1-P)=\frac{4}{3} \pi\left(\frac{D}{2}\right)^{3} 10^{3} \exp a\left(T_{1}-T\right)
\end{gathered}
$$

Since from (a) above

$$
\begin{aligned}
-\ln (1-P) & \propto \frac{V}{\beta} \\
\frac{V}{\beta} & \propto \exp a\left(T_{1}-T\right)
\end{aligned}
$$

$\therefore V$ and β have inverse effect on the medium freezing temperature T.

Let

$$
\begin{align*}
& N=\text { total number of crystals in cloud } \\
& m=\text { mass of each crystal (in grams) } \\
& \text { Total mass of crystals }=m N \text { grams } \\
& \begin{array}{c}
\text { Total mass of liquid water } \\
\text { (in gm) }
\end{array}=2 \times \underbrace{(10 \times 3) \times 10^{9}} \\
& \\
& \therefore m N=2 \times 30 \times 10^{9}=6 \times 10^{10} \text { grams of cloud } \\
& \text { in } m^{3} \tag{A}
\end{align*}
$$

But, since there are 1 /liter of ice crystals in the cloud

$$
\begin{gathered}
N=\underbrace{(10 \times 3) \times 10^{9}}_{\begin{array}{c}
\text { volume of cloud } \\
\text { in } m^{3}
\end{array}} \underbrace{\left(1 \times 10^{3}\right)}_{\begin{array}{c}
\text { number of } \\
\text { crystals per } m^{3}
\end{array}} \\
\underline{\mathbf{N}=\mathbf{3} \times \mathbf{1 0}^{\mathbf{1 3}}}
\end{gathered}
$$

From (A)

$$
\begin{aligned}
m=\text { Mass of each ice crystal } & =\frac{\text { Total mass of crystals }}{N} \\
& =\frac{6 \times 10^{10}}{3 \times 10^{13}} \\
& =2 \times 10^{-3} \text { grams } \\
\boldsymbol{m} & =\mathbf{2} \mathbf{~ m g}
\end{aligned}
$$

If h is rainfall (in cm) produced by the ice crystals

A cm ${ }^{2}$
Raingauge

$$
\begin{aligned}
& (A h)(\text { density of water })=m N \text { grams } \\
& \mathrm{cm}^{3} \quad \mathrm{~g} \mathrm{~cm}^{-3}
\end{aligned}
$$

Since

$$
\begin{aligned}
A & =10 \times 10^{10} \mathrm{~cm}^{2} \\
\text { density of water } & =1 \mathrm{~g} \mathrm{~cm}^{-3} \\
10^{11} h & =m N=6 \times 10^{10} \\
\therefore h & =\underline{\mathbf{0 . 6} \mathbf{~ c m}=\mathbf{6 ~ m m}}
\end{aligned}
$$

6.27

From (6.36)

$$
\frac{d M}{d t}=\frac{C}{\varepsilon_{o}}\left(G_{i} S_{i}\right)
$$

In SI units for a cylindrical disk of radius r

$$
\begin{aligned}
C & =8 r \varepsilon_{o} \\
\therefore \frac{d M}{d t} & =8 r\left(G_{i} S_{i}\right)
\end{aligned}
$$

Also,

$$
\begin{gathered}
M=\pi r^{2} h \rho_{I} \\
\therefore \frac{d}{d t}\left(\pi r^{2} h \rho_{I}\right)=8 r G_{i} S_{i}
\end{gathered}
$$

Since h and ρ_{I} are constant

$$
\pi h \rho_{I} 2 r \frac{d r}{d t}=8 r G_{i} S_{i}
$$

or

$$
\frac{d r}{d t}=\frac{4 G_{i} S_{i}}{\pi h \rho_{I}}
$$

At $-5^{\circ} \mathrm{C}$ we see from Fig. 6.32, that

$$
G_{i} S_{i} \simeq 2 \times 10^{-9} \mathrm{~kg} \mathrm{~s}^{-1} \mathrm{~m}^{-1}
$$

Since

$$
\begin{aligned}
h & =10 \mu \mathrm{~m}=10^{-5} \mathrm{~m} \\
\rho_{I} & =0.917 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3} \\
t & =30 \times 60=1800 \mathrm{sec} \\
\therefore \int_{o}^{r} d r & =\frac{4\left(2 \times 10^{-9}\right)}{\pi\left(10^{-5}\right)(0.917)} \int_{o}^{t} d t \\
\therefore r & =\frac{8 \times 10^{-9}}{\pi 10^{-5}(0.917)\left(10^{3}\right)} t \\
& =\frac{8 \times 10^{-4}}{\pi(0.917)} 1800 \\
& =4997 \times 10^{-7} \mathrm{~m} \\
& =0.0005 \mathrm{~m} \\
r & =\mathbf{0 . 5 ~ m m}
\end{aligned}
$$

Mass of the ice crystal $=\pi r^{2} h \rho_{I}$

$$
\begin{aligned}
& =\pi\left(0.5 \times 10^{-3}\right)^{2}\left(10 \times 10^{-6}\right)\left(0.917 \times 10^{3}\right) \\
& =0.72 \times 10^{-9} \mathrm{~kg} \\
& =\underline{7.2 \mu \mathrm{~g}}
\end{aligned}
$$

6.28

$$
\begin{aligned}
\frac{d M}{d t} & =\pi r^{2} E w v \\
& =\pi r^{2} E w 2.4\left(M 10^{6}\right)^{0.24}
\end{aligned}
$$

where M is in kg .

$$
\begin{aligned}
& \therefore \int_{0.01 \mathrm{mg}}^{0.05 \mathrm{mg}} \frac{d M}{M^{0.24}}=\int_{o}^{t} \pi r^{2} E w 2.4\left(10^{1.44}\right) d t \\
& {\left[\frac{M^{0.76}}{0.76}\right]_{10^{-8} \mathrm{~kg}}^{5 \times 10^{-8} \mathrm{~kg}} }=\pi r^{2} E w 2.4\left(10^{1.44}\right) t \\
& {\left[M^{0.76}\right]_{10^{-8} \mathrm{~kg}}^{5 \times 10^{-8} \mathrm{~kg}} }=0.76 \pi r^{2} E w 2.4\left(10^{1.44}\right) t \\
&\left(5 \times 10^{-8}\right)^{0.76}-\left(10^{-8}\right)^{0.76}=0.76 \pi \underbrace{\left(0.5 \times 10^{-3}\right)^{2}}_{r \text { in }} 0.1 \underbrace{(0.4}_{\left.w \mathrm{in}^{\left(0.5 \times 10^{-3}\right.}\right)} \underbrace{}_{\mathrm{meters}^{\mathrm{kg} \mathrm{~m}^{-3}}} \\
&\left.2.826 \times 10^{-6}-8.31 \times 10^{-7}\right) t \\
& 28.26 \times 10^{-7}-8.31 \times 10^{-7}=0.43 \times 10^{-9} 10^{1.44} t \\
& \frac{19.95 \times 10^{-7}}{11.84 \times 10^{-9}}=\frac{\boldsymbol{t}=\mathbf{2 . 8} \mathbf{~ m i n s}}{} \\
& \therefore t=1.68 \times 10^{2} \mathrm{secs}
\end{aligned}
$$

6.29

$$
\begin{align*}
\frac{d M}{d t} & =\pi r_{1}^{2}\left(V_{1}-V_{2}\right) E(I W C) \tag{A}\\
M & =\frac{4}{3} \pi r_{1}^{3} \rho_{\mathrm{ice}} \\
& \therefore \frac{d M}{d t}=\frac{4}{3} \pi r_{1}^{2} \rho_{i c e} \frac{d r_{1}}{d t} \tag{B}
\end{align*}
$$

From (A) and (B)

$$
\begin{aligned}
4 \pi r_{1}^{2} \rho_{\mathrm{ice}} \frac{d r_{1}}{d t} & =\pi r_{1}^{2}\left(V_{1}-V_{2}\right) E(I W C) \\
\therefore \frac{d r_{1}}{d t} & =\frac{\left(V_{1}-V_{2}\right) E(I W C)}{4 \rho_{\mathrm{ice}}} \\
\int_{0.5 \mathrm{~mm}=0.5 \times 10^{-3} \mathrm{~m}}^{0.5 \mathrm{~cm}=0.5 \times 10^{-2} \mathrm{~m}} d r_{1} & =\frac{\left(V_{1}-V_{2}\right) E(I W C)}{4 \rho_{\text {ice }}} \int_{o}^{t} d t \\
0.5 \times 10^{-2}-0.5 \times 10^{-3} & =\frac{1(1)\left(10^{-3}\right)}{4 \times(100)} t \\
\therefore t & =\left(4.5 \times 10^{-3}\right) \frac{4(100)}{10^{-3}} \\
& =1800 \mathrm{secs} \\
t & =\mathbf{3 0} \mathbf{~ m i n s}
\end{aligned}
$$

6.30 Sufficient heat must be provided to evaporate fog droplets and to make the temperature of the air sufficiently to accommodate the additional water vapor.

$$
\begin{aligned}
\text { Heat to evaporate fog droplets } & =\left(0.3 \times 10^{-3}\right)\left(2.477 \times 10^{6}\right) \\
& =743 \mathrm{~J}
\end{aligned}
$$

Original saturated vapor pressure $=12.27 \mathrm{hPa}$. Corresponding density of water vapor ρ is given by

$$
\begin{aligned}
12.27 \times 100 & =461 \times 282 \times \rho \\
\therefore \rho & =9.4 \times 10^{-3} \mathrm{~kg} \mathrm{~m}^{-3}
\end{aligned}
$$

Assitional amount of water vapor in air after evaporation of fog droplets

$$
=\left(0.3 \times 10^{-3} \mathrm{~kg}\right) \mathrm{m}^{-3}
$$

Total amount of water vapor after evaporation

$$
\begin{aligned}
& =(0.3+9.4) 10^{-3} \mathrm{~kg} \mathrm{~m}^{-3} \\
& =9.7 \times 10^{-3} \mathrm{~kg} \mathrm{~m}^{-3}
\end{aligned}
$$

This density of vapor must correspond to the new saturated vapor pressure p at the required temperature T, therefore

$$
p=461\left(9.7 \times 10^{-3}\right) T
$$

or

$$
p / T=461 \times 9.7 \times 10^{-3}
$$

or, if p is in hPa

$$
\begin{aligned}
\frac{p 100}{T} & =461 \times 9.7 \times 10^{-3} \\
& =0.045
\end{aligned}
$$

or

$$
\frac{p(\mathrm{hPa})}{T\left({ }^{\circ} \mathrm{K}\right)}=4.5 \times 10^{-4}
$$

Inspect heat to find p / T with this value. Find,

$$
T=283.66^{\circ} \mathrm{K}=10.66^{\circ} \mathrm{C}
$$

Hence,

$$
\text { Heat required to raise } 1 \mathrm{~m}^{-3} \text { of air by } 0.66^{\circ} \mathrm{C}
$$

is

$$
\text { (mass of air) (specific heat of air) } \Delta T
$$

$$
\begin{aligned}
& =(1 \times \underbrace{1.275 \times \frac{273}{283}}_{\rho_{\mathrm{air}} \times \frac{T_{2}}{T_{1}}})\left(1004 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~kg}^{-1}\right) 0.66 \\
& =815 \mathrm{~J} \\
& \therefore \text { Total heat needed }=(743+815) \mathrm{J} / \mathrm{m}^{3} \\
& \quad=\underline{\mathbf{1 5 5 8} \mathbf{J}}
\end{aligned}
$$

6.31

$$
\begin{aligned}
\text { Number of drops } & =\frac{40 \times 10^{-3}\left(\mathrm{~m}^{m}\right)}{\text { Initial volume of each drop }} \\
& =\frac{40 \times 10^{-3}}{\frac{4}{3} \pi\left(0.25 \times 10^{-3}\right)^{3}} \\
& =6.1 \times 10^{8}
\end{aligned}
$$

Final volume of water in drops $=\frac{4}{3} \pi\left(2.5 \times 10^{-3}\right)^{3}\left(6.1 \times 10^{8}\right)$

$$
=39.9 \mathrm{~m}^{3}
$$

$$
\begin{aligned}
\text { Rainfall } & =\frac{39.9}{10 \times 10^{6}} m \\
& =\underline{\mathbf{4} \times \mathbf{1 0}^{-\mathbf{3}} \mathbf{~ m m}}
\end{aligned}
$$

6.32 Increase in mass of drops in Exercise 6.31

$$
=\frac{(2.5)^{3}}{(0.25)^{3}}=\underline{10^{3}}
$$

Increase in mass of drops in this exercise

$$
\begin{aligned}
& =\frac{(2.5)^{3}}{\left(20 \times 10^{-3}\right)^{3}} \\
& =\underline{\mathbf{1 . 9 5} \times 10^{6}}=\underline{\mathbf{2} \times \mathbf{1 0}^{6}}
\end{aligned}
$$

6.33

$$
\begin{aligned}
R_{S} & =R_{N} \sqrt[3]{\left(\frac{N_{N}}{N_{S}}\right)}=5 \sqrt[3]{\left(\frac{10}{10^{4}}\right)} \mathrm{mm} \\
& =\underline{\mathbf{0 . 5} \mathbf{~ m m}}
\end{aligned}
$$

6.34

$$
\text { Heat released by freezing }=w_{\ell} 10^{-3} L_{f}
$$

$\begin{aligned} & \text { Heat released due to condensation } \\ & \text { of excess water onto ice }\end{aligned}=\left(w_{s}-w_{i}\right) 10^{-3} L_{d}$

$$
\therefore c \Delta T=w_{\ell} 10^{-3} L_{f}+\left(w_{s}-w_{i}\right) 10^{-3} L_{d}
$$

6.35

$$
\begin{aligned}
c \Delta T & =w_{\ell} 10^{-3} L_{f} \\
(1004) \Delta T & =\left(2 \times 10^{-3}\right)\left(3.34 \times 10^{5}\right) \\
\Delta T & =\frac{2 \times 10^{2} \times 3.34}{1004} \\
& =\mathbf{0 . 7 ^ { \circ } \mathbf { C }}
\end{aligned}
$$

6.36

Incremental rise in cloudy air $=\frac{\begin{array}{c}\text { Increase in temperate due to } \\ \text { freezing of cloud water }\end{array}}{\text { Difference in lapse rates }}$

Heat released by glaciation

$$
\text { per } \mathrm{m}^{3} \text { of air }
$$

$$
=\left(0.001 \mathrm{~kg} \mathrm{~m}^{-3}\right)\left(3.34 \times 10^{5} \mathrm{~J} \mathrm{~kg}^{-1}\right)
$$

$$
=3.34 \times 10^{2} \mathrm{~J} \mathrm{~m}^{-3}
$$

If $\rho_{500 \mathrm{hPa}}$ is density of air (in $\mathrm{kg} \mathrm{m}^{-3}$) at 500 hPa and $-20^{\circ} \mathrm{C}, 1 \mathrm{~m}^{3}$ of air at 500 hPa has mass $\rho_{500 \mathrm{hPa}} \mathrm{kg}$.

$$
\begin{equation*}
\therefore \text { Heat released per } \mathrm{kg} \text { of cloudy air }=\frac{3.34 \times 10^{2}}{\rho_{500 \mathrm{hPa}}} \mathrm{~J} \mathrm{~kg}^{-1} \tag{2}
\end{equation*}
$$

Since $\rho \propto p / T$

$$
\begin{align*}
\frac{\rho_{500 \mathrm{hPa} \text { and } 253 \mathrm{~K}}}{\rho_{1000 \mathrm{hPa} \text { and } 273 \mathrm{~K}}} & =\frac{500 / 253}{1000 / 273}=\frac{1}{2} \frac{273}{253} \\
\therefore \rho_{500 \mathrm{hPa} \text { and } 253 \mathrm{~K}} & =0.54 \rho_{1000 \mathrm{hPa} \text { and } 273 \mathrm{~K}} \\
& =0.54(1.275) \mathrm{kg} \mathrm{~m}^{-3} \\
& =0.688 \mathrm{~kg} \mathrm{~m}^{-3} \tag{3}
\end{align*}
$$

From (2) and (3),

$$
\begin{aligned}
\text { Heat released per kg of cloudy air } & =\frac{3.34 \times 10^{2}}{0.688} \\
& =485 \mathrm{~J}
\end{aligned}
$$

If temperature rise of cloudy air due to glaciation is $\Delta T^{\circ} \mathrm{C}$

$$
\begin{align*}
(1 \mathrm{~kg})(\Delta T)\left(c_{p} \mathrm{~J} \mathrm{~kg}^{-1}{ }^{\circ} \mathrm{C}^{-1}\right) & =485 \mathrm{~J} \\
\therefore \Delta T & ={\frac{485}{1004}{ }^{\circ} \mathrm{C}=\mathbf{0 . 4 8 ^ { \circ } \mathbf { C }}}^{\therefore \Delta} \underline{ } \tag{4}
\end{align*}
$$

From (1) and (4)

$$
\begin{aligned}
\text { Incremental rise in cloudy air } & =\frac{0.48^{\circ} \mathrm{C}}{1^{\circ} \mathrm{C} \mathrm{~km}^{-1}} \\
& =0.48 \mathrm{~km} \\
& =480 \mathrm{~m}
\end{aligned}
$$

6.37

From the law of refraction

$$
\begin{equation*}
\frac{\sin i}{\sin r}=\frac{V_{1}}{V_{2}} \tag{1}
\end{equation*}
$$

Or, in general,

$$
\begin{equation*}
\frac{\sin \phi}{V}=\text { constant (along any path of a sound wave) } \tag{2}
\end{equation*}
$$

But,

$$
\begin{align*}
\tan \Phi & =\left|\frac{d x}{d z}\right|=-\frac{d x}{d z} \\
\therefore \frac{\sin \Phi}{\cos \Phi} & =\frac{\sin \Phi}{\left(1-\sin ^{2} \Phi\right)^{1 / 2}} \tag{3}
\end{align*}
$$

From (2) at point P in the diagram below:

From (2) at point P in above diagram

$$
\frac{\sin 90^{\circ}}{V_{o}}=\mathrm{constant}
$$

or,

$$
\begin{equation*}
\frac{1}{V_{o}}=\text { constant } \tag{4}
\end{equation*}
$$

where, V_{o} is velocity of sound just above ground level. Hence, in general, from (2)

$$
\frac{\sin \Phi}{V}=\frac{1}{V_{o}}
$$

But $V \propto \sqrt{T}$, therefore,

$$
\begin{equation*}
\sin \Phi=\frac{V}{V_{o}}=\sqrt{\frac{T}{T_{o}}} \tag{5}
\end{equation*}
$$

From (3) and (5)

$$
-\frac{d x}{d z}=\frac{\sqrt{\left(T / T_{o}\right)}}{\sqrt{\left(1-\frac{T}{T_{o}}\right)}}=\sqrt{\frac{T}{T_{o}-T}}
$$

But,

$$
\begin{aligned}
T & =T_{o}-\Gamma z \\
\therefore T_{o}-T & =\Gamma z
\end{aligned}
$$

and,

$$
d x=-\sqrt{\left(\frac{T}{\Gamma z}\right)} d z
$$

6.38 From Exercise 3.37:

$$
\begin{aligned}
d x & =-\left(\frac{T_{o}-\Gamma z}{\Gamma z}\right)^{1 / 2} d z \\
& =-\left(\frac{T_{o}}{\Gamma z}-1\right)^{1 / 2} d z \\
& =-\left(\frac{T_{o}}{\Gamma z}\right)^{1 / 2}\left(1-\frac{\Gamma z}{T_{o}}\right)^{1 / 2} d z \\
& =-\left(\frac{T_{o}}{\Gamma z}\right)^{1 / 2}\left(1-\frac{1}{2} \frac{\Gamma z}{T_{o}}+\begin{array}{c}
\text { higher powered } \\
\text { terms in } z
\end{array}\right) d z \\
d z & \simeq-\left(\frac{T_{o}}{\Gamma z}\right)^{1 / 2}\left(1-\frac{1}{2} \frac{\Gamma z}{T_{o}}\right) d z
\end{aligned}
$$

Integrating

$$
\begin{aligned}
& \int_{o}^{D} d x=-\sqrt{\frac{T_{o}}{\Gamma}} \int_{H}^{o}\left(\frac{1}{\sqrt{z}}-\frac{1}{2} \frac{\Gamma z}{T_{o}}\right) d z \\
&=-\left(\frac{T_{o}}{\Gamma}\right)^{1 / 2} \int_{H}^{o}\left(\frac{1}{\sqrt{z}}-\frac{1}{2} \frac{\Gamma z}{T_{o}}\right) d z \\
&=-\left(\frac{T_{o}}{\Gamma}\right)^{1 / 2}\left[2 z^{1 / 2}-\frac{\Gamma}{2 T_{o}} \frac{2}{3} z^{3 / 2}\right]_{H}^{o} \\
&=-\left(\frac{T_{o}}{\Gamma}\right)^{1 / 2}\left[2 z^{1 / 2}-\frac{\Gamma}{3 T_{o}} z^{3 / 2}\right]_{H}^{o} \\
&=-\left(\frac{T_{o}}{\Gamma}\right)^{1 / 2}[-2 H^{1 / 2}+\underbrace{\frac{1}{3} \frac{\Gamma}{T_{o}} H^{3 / 2}}_{\text {small }}] \\
& \text { term } \\
& \boldsymbol{D}=\mathbf{2}\left(\frac{\boldsymbol{T}_{\boldsymbol{o}} \boldsymbol{H}}{\boldsymbol{\Gamma}}\right)^{\mathbf{1 / 2}}
\end{aligned}
$$

with $\Gamma=7.5^{\circ} \mathrm{km}^{-1}$ and $T_{o}=300 \mathrm{~K}, H=4 \mathrm{~km}$

$$
D=2\left(\frac{300 \times 4000}{7.5 \times 10^{-3}}\right)^{1 / 2}=2\left(1.26 \times 10^{4}\right)
$$

$$
D=25.3 \mathrm{~km}
$$

$$
\begin{aligned}
\text { Velocity } & =\frac{\text { Distance }}{\text { Time }} \\
\therefore \text { Distance } & =(\text { velocity })(\text { time }) \\
& =\left(0.34 \mathrm{~km} \mathrm{~s}^{-1}\right)(10) \\
& =\underline{\mathbf{3 . 4} \mathbf{~ k m}} \\
\text { Minimum length of flash } & =(8 \mathrm{secs})\left(0.34 \mathrm{~km} \mathrm{sec}^{-1}\right) \\
& =\underline{\mathbf{2 . 7 2} \mathbf{~ k m}}
\end{aligned}
$$

This represents true length of flash only if lightning stroke is aligned along site of observer.

6.40 Solution:

(a) The oxidation number of hydrogen in most of its compounds is +1 and the oxidation number of oxygen in most of its compounds is -2 . Hence, if x represents the oxidation number of sulfur in $\mathrm{HSO}_{3}^{-}(\mathrm{aq})$, and since the net charge on $\mathrm{HSO}_{3}^{-}(\mathrm{aq})$ is -1 ,

$$
+1+x+3(-2)=-1
$$

therefore,

$$
x=4
$$

That is, the oxidation number of sulfur in $\mathrm{HSO}_{3}^{-}(\mathrm{aq})$ is 4 . For this reason, sulfur in $\mathrm{HSO}_{3}^{-}(\mathrm{aq})$ is often referred to as "sulfur four" or S(IV).

Similarly, if y is the oxidation number of sulfur in $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$, since there is no net charge on $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$,

$$
2(+1)+y+4(-2)=0
$$

therefore,

$$
y=6
$$

Hence, the sulfur in $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ has an oxidation number of 6 ("sulfur six" or $\mathrm{S}(\mathrm{VI})$). Therefore, when $\mathrm{H}_{2} \mathrm{SO}_{3}^{-}(\mathrm{aq})$ is converted to $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$, the oxidation number of sulfur increases from 4 to 6 .
(b) By following similar steps the reader can show that the oxidation number of sulfur in both $\mathrm{SO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(\mathrm{aq})$ and in $\mathrm{SO}_{3}^{2-}(\mathrm{aq})$ is 4. Therefore, when these species are converted to $\mathrm{H}_{2} \mathrm{SO}_{4}$ their oxidation numbers also increase by 2 .

