
Chapter 4
4.12 Remote sensing in the microwave part of the spectrum relies on radiation

emitted by oxygen molecules at frequencies near 55 gHz. Calculate the
wavelength and wavenumber of this radiation.

From (4.2)

λ =
c∗eν =

3× 108 m s−1

55× 109 s−1 = 5450 µm

4.13 The spectrum of monochromatic intensity can be defined either in terms
of wavelength λ or wavenumber ν such that the area under the spectrum,
plotted as a linear function of λ or ν is proportional to intensity. Show
that Iν = λ2Iλ.

dI = Iλdλ = Iνdν

From (4.1)

ν =
1

λ

from which it follows that

dν = −dλ
λ2

Substituting for dλ in the first expression, cancelling the common factor
dν, and ignoring the minus sign, which is taken into account by reversing
the direction of the integration, we obtain

Iν = λ2Iλ

4.14 A body is emitting radiation with the following idealized spectrum of
monochromatic flux density

λ < 0.35 µm Fλ = 0
0.35 µm < λ < 0.50 µm Fλ = 1.0 W m−2µm−1

0.50 µm < λ < 0.70 µm Fλ = 0.5 W m−2µm−1

0.70 µm < λ < 1.00 µm Fλ = 0.2 W m−2µm−1

λ > 1.00 µm Fλ = 0

Calculate the flux density of the radiation.

F =

Z
Fλdλ =

NX
i−1

Fλi4λi

= 1.0× 0.15 + 0.5× 0.20 + 0.2× 0.3
= 0.15 + 0.10 + 0.06 = 0.31 W m−2

4.15 An opaque surface with the following absorption spectrum is subjected to
the radiation described in the previous exercise.
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λ < 0.70 µm Aλ = 0
λ > 0.70 µm Aλ = 1

How much of the radiation is absorbed? How much is reflected?

F (absorbed) =

Z
AλFλdλ =

NX
i−1

AλiFλi4λi

= 1.0× 1.0× 0.15 + 1.0× 0.5× 0.2
= 0.15 + 0.10 = 0.25 W m−2

F (reflected) =

Z
(1−Aλ)Fλdλ =

NX
i−1
(1−Aλi)Fλi4λi

= 1.0× 0.3× 0.2
= 0.06 W m−2

4.16 Calculate the ratios of the incident solar radiation at noon on north and
south facing 5◦ slopes (relative to the horizon) in seasons in which the
solar zenith angle is (a) 30◦ and (b) 60◦.

For the 30◦ solar zenith angle the ratio

r =
Fnorth facing slope
Fsouth facing slope

is

r =
I cos 35◦

I cos 25◦
= 0.84

and for the 60◦ zenith angle the ratio is

r =
I cos 65◦

I cos 55◦
= 0.74

4.17 Compute the daily insolation at the North Pole at the time of the summer
solstice when the earth-sun distance is 1.52 ×108 km. The tilt of the
earth’s axis is 23.5◦. Compare this value with the minimum value that
occurs in association with the Earth’s orbital cycles described in §2.5.3.
Answer : 46.4 MJ m−2 day−1 versus xxx MJ m−2 day−1.

At the time of the summer solstice the incident solar radiation is indepen-
dent of time of day and the solar zenoth angle is (90◦ − 23.5◦) = 66.5◦.
Hence the flux density is equal to

1368 W m−2 ×
µ
1.50× 108 km
1.52× 108 km

¶2
× cos 66.5◦ =
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4.18 Compute the daily insolation at the top of the atmosphere at the equator
at the time of the equinox (a) by integrating the flux density over a 24 hour
period and (b) by simple geometric considerations. Compare your result
with the value in the previous exercise and with Fig. 10.7. Answer:
38.0 MJ m−2 day.

4.19 What fraction of the flux of energy emitted by the sun does the earth
intercept? Answer 1.4 ×10−10.

4.20 Show that for small variations in the earth’s radiation balance
δTE
TE

=
1

4

δFE
FE

where TE is the planet’s equivalent blackbody temperature and FE is
the flux of radiation emitted from the top of its atmosphere. Use this
relationship to estimate the change in effective temperature that would
occur in response to (a) the seasonal variations in the sun-earth distance
due to the eccentricity of the earth’s orbit (presently ∼ 3%),(b) an increase
in the earth’s albedo from 0.30 to 0.31.

From (4.12)
F = σT 4

Taking the log yields
lnF = 4 lnT

Taking the differential yields

δF

F
= 4

δT

T

and dividing both sides by 4 yields

δTE
TE

=
1

4

δFE
FE

(1)

(a) From the inverse square law

FE = const× d−2

where d is the earth-sun distance. Taking the log yields

lnFE = ln const− 2 ln d
Taking the differential yields

δFE
FE

= −2δd
d

(2)

Combining (1) and (2) yields

δTE
TE

= −1
2

δd

d
(1)

Substituting δd/d = 0.03 yields δTE/TE = −0.06. If TE = 255 K,
then δTE = 1.5 K.
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(b)
FE = const× (1−A)

where A is the eplanetary albedo. Taking the log yields

lnFE = ln const− ln(1−A)

Taking the differential yields

δFE
FE

=
δ(1−A)

(1−A)
(2)

Combining (1) and (2) yields

δTE
TE

=
1

4

δ(1−A)

(1−A)
(3)

Substituting δd/d = 0.01/0.70 yields δTE/TE = −0.00357. If TE =
255 K, then δTE = 0.91 K.

4.21 Show that the emission the flux density of incident solar radiation on any
planet in our solar system is 1366 W m−2× d−2, where d is the Planet-Sun
distance, expressed in astronomical units (A.U., multiples of the Earth-
Sun distance).

Method 1: The flux density is equal to the intensity of solar radiation
Is (the same for all planets) times the arc of solid angle δΩ subtended by
the sun, as viewed from the planet, i.e.,

F = IsδΩ

where

δΩ = 4π ×
µ
Rs

d

¶2
where Rs is the radius of the sun and d is the distance between the planet
and the sun. Hence,

F = (4πIsR
2
s)d
−2

where the factor in parentheses is the same for all planets. For Earth,

1368 = (....)d−2E (1)

and for any other planet
Fp = (....)d

−2
p (2)

Dividing (2) by (1) yields

Fp
1368

=

µ
dp
dE

¶−2
(3)
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Method 2: The final result above is an expression of the inverse square
law which follows directly from the fact that the flux of solar radiation
through all spheres concentric with the sun must be the same and hence
the product of the flux density of solar radiation times distance from the
sun must be the same for all planets.

4.28 If the Moon subtends the same arc of solid angle in the sky that the sun
does, and it is directly overhead, prove that the flux density of moonlight
on a horizontal surface on Earth is given by a(Rs/d)

2 where a is the
Moon’s albedo, Rs the radius of the Sun, and d is the Earth-Sun distance.
Estimate the flux density of moonlight under these conditions, assuming
a lunar albedo of 0.07.

Answer

4.29 Suppose that the Sun’s emission or the earth’s albedo were to change
abruptly by a small increment. Show that the radiative relaxation rate
for the atmosphere (i. e, the initial rate at which the earth’s equivalent
blackbody temperature would respond to the change, assuming that the
atmosphere is thermally isolated from the other components of the Earth
system), is given by

dT

dt
= −4σT

3δTE
cppsg−1

where δT is the initial departure of the equivalent blackbody temperature
from radiative equilibrium), σ is the Stefan-Boltzmann constant, TE is the
equivalent blackbody temperature in K, cp is the specific heat of air, ps is
the global-mean surface pressure and g is the gravitational acceleration.
The time δT (dT/dt)−1 required for the atmosphere to fully adjust to the
change in radiative forcing, if this initial time rate of change of temperature
were maintained until the new equilibrium was established is called the
radiative relaxation time. Estimate the radiative relaxation time for the
earth’s atmosphere.

Answer

4.30 A small, perfectly black, spherical satellite is in orbit around the Earth
at an altitude of 2000 km as depicted in Fig. 4.37. What angle does the
earth subtend when viewed from the satellite?

The integration is most easily performed using a spherical coordinate sys-
tem centered on the satellite with the zenith pointed toward the center of
the Earth. In this coordinate system, the arc of solid angle corresponds
to

4ω = 2π

Z ψ

0

sin θdθ

= 2π(1− cosψ)
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where ψ is the angle between the zenith and the limb of the Earth (ie.,
a straight line passing through the satellite and tangent to the circle that
defines the Earth). It is readily verified that

ψ = sin−1
RE

d

where RE is the radius of the Earth and d is the distance between the
center of the satellite and the center of the Earth. Substituting values
yields

ψ = sin−1
6370

6370 + 2000
=

and 4ω − 2.21 sr.

Fig. 4.37 Geometric setting for Exercises 4.30-4.34.

4.31 If the Earth radiates as a black body at an equivalent blackbody temper-
ature TE = 255 K, calculate the radiative equilibrium temperature of the
satellite when it is in the Earth’s shadow.

Let dQ be the amount of heat imparted to the satellite by the flux density
dE received within the infinitesimal element of solid angle dω. Then,

dQ = πr2Idω

where r is the radius of the satellite and I is the intensity of the isotropic
blackbody radiation emitted by the Earth, which is given by

I =
σT 4E
π

Hence,
dQ = r2σT 4Edω

Integrating the above expression over the arc of solid angle subtended by
the Earth, as computed in the previous exercise, yields the total energy
absorbed by the satellite per unit time

Q = 2.21r2σT 4E
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For radiative equilibrium

Q = 2.21r2σT 4E = 4πr
2σT 4s

where Ts is the equivalent blackbody temperature of the satellite. Solving,
we obtain

Ts = TE

µ
2.21

4π

¶1/4
and substituting TE = 255 K yields Ts = 166 K.

4.32 Show that the approach in Exercise 4.5 in the text, when applied to the
previous exercise, yields a temperature of

Ts = TE

"
1

4

µ
6370

8370

¶2#1/4
= 158 K

Applying the inverse square law, the flux density of Earth’s radiation in
the orbit of the satellite is

F = σTE

µ
RE

d

¶2
(1)

where d is the distance between the center of the satellite and the center
of the Earth. In analogy with Exercise 4.5, with the Earth’s radiation
treated as parallel beam, the radiation balance of the satellite is

πr2FE = 4πr
2σT 4s (2)

Combining (1) and (2) yields

Ts = TE

"µ
1

4

¶µ
RE

d

¶2#1/4
(3)

This approach underestimates the temperature of the satellite because it
treats the radiation that impinges on the satellite as parallel beam. The
answer obtained in the previous exercise converges to this limiting value as
RE/d −→ ∞. In this limiting case, the angle ψ in Exercise 4.30 becomes
very small and converges to sin−1 (RE/d) = RE/d. Using the half angle
formula

sin (x/2) =

r
1− cosx

2

the arc of solid angle
4ω = 2π(1− cosψ)

subtended by the Earth in the "sky" of the satellite in Exercise 4.30 may
be written as

4ω = π sin2 2ψ

= π sin2 (2RE/d)

= 4π (RE/d)
2
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From here on, we can proceed as in Method 1 of Exercise 4.21, replacing
the (sun by the Earth) to show that the flux density of Earth radiation
reaching the orbit of the satellite is given by the inverse square law

FE = σT 4E (RE/d)
2

as assumed in Eq. (1). It follows that in this limiting case, the equivalent
blackbody temperature of the satellite is the same regardless of whether
it is computed using the equations in Exercise 4.5 or 4.30.

4.33 Calculate the radiative equilibrium temperature of the satellite immedi-
ately after it emerges from the earth’s shadow (i.e., when the satellite
is sunlit but the earth, as viewed from the satellite, is still entirely in
shadow).

Answer 289 K.

4.34 The satellite has a mass of 100 kg, a radius of 1 m and a specific heat
of 103 J kg−1 K−1 . Calculate the rate at which the satellite heats up
immediately after it (instantaneously) emerges from the earth’s shadow.

Answer 0.043 ◦C s−1.

4.36 (a) Extend the proof in the previous exercise to the case in which ab-
sorptivity and emissivity are wavelength dependent. Let one of the walls
be black, as in the previous exercise and let the other wall also be black,
except within a very narrow wavelength range of width δλ, centered at
λ = λ1 where aλ1 < 1. [Hint: Since blackbody radiation is isotropic, it
follows the blackbody flux in the interval δλ is πB (λ1, T ) δλ. Using this
relationship, consider the energy balance as in the previous exercise and
proceed to show that αλ1 = ελ1.] (b) Indicate how this result could be
extended to prove that

ελ = αλ

(a) If δλ is of infinitesimal width, then in the region outside this band, the
proof in the previous exercise should still be valid. Within the band

H = αλ1πB (λ1, T ) δλ− ελ1πB (λ1, T ) δλ

= (αλ1 − ελ1)πB (λ1, T ) δλ

Based on the same line of reasoning as in the previous exercise, it follows
that αλ1 = ελ1. (b) This proof could be extended by proving that ελ2 =
αλ2 within a second narrow wavelength range centered at λ = λ2, and
then within a third at λ = λ3, and so on, to construct a spectrum in
which ελ and αλ vary continuously, but are equal within any arbitrarily
narrow wavelength range.
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4.37 Consider a closed spherical cavity in which the walls are opaque and all at
the same temperature. The surfaces on the top hemisphere are black and
the surfaces on the bottom hemisphere reflect all the incident radiation at
all angles. Prove that in all directions Iλ = Bλ.

Downward directed radiation is blackbody radiation for which Iλ = Bλ

by definition. Since the bottom hemisphere is a perfect reflector, along
each ray path, Iλ⇑ = Iλ⇓ and since the lower hemisphere is at the same
temperature as the upper hemisphere, Iλ⇑ = Iλ⇓ = Bλ.

4.38 (a) Consider the situation described in Exercise 4.35, except that both
plates are gray, one with absorptivity α1 and the other with absorptivity
α2. Prove that

F 01
α1
=

F 02
α2

where F 01 and F 02 are the flux densities of the radiation emitted from the
two plates. Make use of the fact that the two plates are in radiative
equilibrium at the same temperature but do not make use of Kirchhoff’s
Law. [Hint: Consider the total flux densities F1 from plate 1 to plate
2 and F2 from plate 2 to plate 1. The problem can be worked without
explicitly dealing with the multiple reflections between the plates.]

For each plate, the total radiation equals the emitted radiation plus the
reflected radiation. For plate 1

F1 = F 01 + F2(1− a1)

and for plate 2
F2 = F 02 + F1(1− a2)

If the plates are in radiative equilibrium, F1 = F2, so we can write

F 01 + F2(1− a1) = F 02 + F1(1− a2)

or, since F1 = F2,

F 01 + F1(1− a1) = F 02 + F2(1− a2)

or
F 01 − a1F1 = F 02 − a2F2

which may be written asµ
F 01
a1
− F1

¶
a1 =

µ
F 02
a2
− F2

¶
a2

Since F1 = F2, but a1 need not be equal to a2, this relationship can be
generally satisfied only if

F 01
α1
=

F 02
α2
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4.39 Consider the radiation balance of an atmosphere with a large number of
isothermal layers, each of which is transparent to solar radiation and ab-
sorbs the fraction α of the longwave radiation incident on it from above
or below. (a) Show that the flux density of the radiation emitted by the
top-most layer is αF/(2− α) where F is the flux density of the planetary
radiation emitted to space. By applying the Stefan-Boltzmann law (4.12)
to an infinitesimally thin topmost layer, show that the radiative equilib-
rium temperature at the top of the atmosphere, sometimes referred to as
the skin temperature, is given by

T ∗ =
µ
1

2

¶1/4
TE

(Were it not for the presence of stratospheric ozone, the temperature of
the 20-80 km layer in the earth’s atmosphere would be close to the skin
temperature.)

Consider the radiation balance for the topmost layer of the atmosphere.
Since this layer is isothermal and since its absorptivity a equals its emis-
sivity ε, it follows that it must emit flux density F1 in both the upward
and downward directions. Hence, it loses energy at a rate 2F1. The loss
due to emission is balanced by the absorption of upwelling radiation from
below. The upwelling radiation from below is (F + F1) and the fraction
of it that is absorbed in the topmost layer is a. Hence

2F1 = a(F + F1) (1)

Solving, we obtain

F1 =
αF

(2− α)
(2)

But from the Stefan Boltzmann law and Kirchhoff’s law

F1 = aσT 41 (3)

where T1 is the equivalent blackbody temperature of the topmost layer.
Combining Eqs. (2) and (3) yields

aσT 41 =
αF

(2− α)

In the limit, as a→ 0,

σT 41 =
F

2
=

σT 4E
2

Solving, we obtain
T1 = (0.5)

1/4TE

For the Earth;s atmosphere, TE = 255 K and T1, the so-called skin tem-
perature, is 214 K, which is quite comparable to the mean temperature of
the lower stratosphere.
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4.40 Consider an idealized aerosol consisting of spherical particles of radius r
with a refractive index of 1.5. Using Fig. 4.13, estimate the smallest radius
for which the particles would impart a bluish cast to transmitted white
light, as in the rarely observed "blue moon".

To impart a bluish (as opposed to a reddish) cast to transmitted light, the
particles would need to exhibit a range of sizes for which the scattering
efficiency Kλ decreases with increasing values of the size parameter, the
reverse of the situation for Rayleigh scattering. It is evident from Fig.
4.13, that the smallest range of values of x for which dKλ/dx < 0 occurs
around

x =
2πr

λ
∼ 5

For visible light with λ ∼ 0.5 µm

2πr ∼ 5× 0.5 µm = 2.5 µm

r ∼ 0.4 µm

4.41 Consider an idealized cloud consisting of spherical droplets with a uniform
radius of 20 µm and concentrations of 1 cm−3. How long a path through
such a cloud would be required to deplete a beam of visible radiation by a
factor of e due to scattering alone? (Assume that none of the scattered
radiation is subsequently scattered back into the path of the beam.)

From Eq. (4.16),
dIλ = −IλKλNσds

The size parameter x = 2πr/λ = 2π × 20 µm ÷ 0.5 µm > 50. Hence, if
absorption is assumed to be negligible, Fig. 4.13 yields a value of Kλ = 2.
The number density N = 1 cm−3 = 106 m−3 and the cross-sectional
area σ = π × ¡20× 10−6¢2 = 1.2 × 10−9. Hence, the volume scattering
coefficient KλNσ = 2.4 × 10−3 m−1. The incident radiation is depleted
by a factor of e over a path in which the optical depth τλ =

R
KλNσds

is equal to unity. If we assume that conditions are uniform along the ray
path, the path length is given by

s = (KλNσ)
−1
=
¡
2.4× 10−3 m−1¢−1 ∼ 400 m

4.43 Consider radiation with wavelength λ and zero zenith angle passing through
a gas with an volume absorption coefficient kλ of 0.01 m2 kg−1. What frac-
tion of the beam is absorbed in passing through a layer containing 1 kg
m−2 of the gas? What mass of gas would the layer have to contain on
order to absorb half the incident radiation?

The absorptivity of the layer is given by

A = 1− e−
R
kλu
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where u is the density-weighted path length. For a layer containing 1 kg
m−2 of gas, the optical depth kλu = 0.01. Since ex ∼= 1 + x for x << 1,
it follows that

A ∼= 1− (1− 0.01) = 0.01 or 1%
For a layer thick enough to absorb exactly half the incident radiation,

Tλ = e−τλ = 0.5

Taking the natural logarithm yields

τλ = ln 0.5 = 0.694

Hence,
kλu = 0.694

and the mass per unit area along the path is

u =
0.694

kλ
= 69.4 kg

4.45 For incident parallel beam solar radiation in an atmosphere in which kλ is
independent of height, (a) show that optical depth is linearly proportional
to pressure. (b) Show that the absorption per unit mass (and consequently
the heating rate) is strongest, not at the level of unit optical depth but
near the top of the atmosphere, where the incident radiation is virtually
undepleted.

(a) If kλ and r are assumed to be independent of height, optical depth is
given by

τλ = rkλ sec θ

Z ∞
z

ρdz

=
rkλ sec θ

g

Z ∞
z

ρgdz

=

µ
rkλ sec θ

g

¶
p

(b) The absorption per unit pass is equal to −dIλ/ρ where ρ is the air
density. In a hydrostatic atmosphere, the mass per unit height in a column.
From Eq. (4.16)

dIλ = Iλρrkλ sec θdz

from which it follows that

dIλ
ρ
= −Iλrkλ sec θdp/g

Provided that r, the density of the absorbing constitruent and kλ are
not changing with height, it follows that the absorption per unit mass is
strongest at the top of the atmosphere, where the monochromatic intensity
of the incident radiation is undepleted.
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4.46 Consider a hypothetical planetary atmosphere comprised entirely of the
gas in Exercise 4.43. The atmospheric pressure at the surface of the planet
is 1000 hPa, the lapse-rate is isothermal, the scale height is 10 km and the
gravitational acceleration is 10 m s−2. Estimate the height and pressure
of the level of unit normal optical depth.

At the level of unit normal optical depth

τλ = kλ

Z ∞
z

ρdz = 1

Hence,
kλ
g

Z ∞
z

ρgdz =
kλp

g
= 1

It follows that
p =

g

kλ
=

10

0.01
= 103 Pa

From the hypsometric equation

z = H ln

µ
p0
p

¶
= 10 ln 100

= 46 km

4.47 (a) What percentage of the incident monochromatic intensity with wave-
length λ and zero zenith angle is absorbed in passing through the layer
of the atmosphere extending from an optical depth τλ = 0.2 to τλ = 4.0?
(b) What percentage of the outgoing monochromatic intensity to space
with wavelength λ and zero zenith angle is emitted from the layer of the
atmosphere extending from an optical depth τλ = 0.2 to τλ = 4.0? (c)
In an isothermal atmosphere, through how many scale heights would the
layer in (a) and (b) extend?

(a) The fraction of the incident radiation that is absorbed in the layer
extending from an optical depth τλ = 0.2 to τλ = 4.0 is given by

e−0.2 − e−4.0 = 0.818− 0.018 = 0.800

or 80%.

(b) Of the outgoing monochromatic intensity to space with wavelength λ
and zero zenith angle, the fraction e−0.2 is emitted from the top of the
layer without absorption, and the fraction e−4.0 is emitted from the layer
below without absorption. Hence, the fraction emitted from the layer is
as given in (a).
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(c) At the top of the layer

τλ = kλ

Z ∞
z

ρdz = 0.2

Hence,
kλ
g

Z ∞
z

ρgdz =
kλpT
g

= 0.2

and
pT = 0.2

g

kp

Similarly, at the bottom of the layer,

pB = 4.0
g

kp

The depth of the layer is

4z = H ln

µ
pB
pT

¶
= H ln

µ
4.0

0.2

¶
= 3.00H

4.48 For the atmosphere in Exercise 4.46, estimate the levels and pressures of
unit (slant path) optical depth for downward parallel beam radiation with
zenith angles of 30◦ and 60◦.

At the level of unit optical depth

τλ = kλ sec θ

Z ∞
z

ρdz = 1

Hence,
p =

g

kλ sec θ
= 0.866 and 0.500× 103 Pa

From the hypsometric equation

z = H ln

µ
p0
p

¶
= 10 ln 115 and 10 ln 200

= 47.4 and 53.0 km

4.49 Prove that the optical thickness of a layer is equal to minus the natural
logarithm of the transmissivity of the layer.
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By definition
Tλ = e−τλ

Taking the natural log of both sides yields

τλ = − lnTλ

4.50 Prove that the fraction of the flux density of overhead solar radiation
that is backscattered to space in its first encounter with a particle in the
atmosphere is given by

b =
1− g

2

where g is the asymmetry factor defined in (4.35). [Hint: The intensity
of the scattered radiation must be integrated over zenith angle.]

4.52 Prove that the ratio of the flux absorptivity to the intensity absorptivity at
zero zenith angle approaches a limiting value of 2 as the optical thickness
of a layer approaches zero.

The flux transmissivity, as defined in (4.45) is given by

T f
ν = 2

Z 1

0

e−τν/µµdµ

where µ = cos θ. In the limit as x → 0, ex ∼= 1 + x. Hence, as the optical
thickness approaches zero,

T f
ν = 2

Z 1

0

µ
1− τν

µ

¶
µdµ

= 2

Z 1

0

µdµ− 2
Z 1

0

τνdµ

= 1− 2τν
The corresponding flux absorptivity is given by

αfν = 1− T f
ν = 2τν

and the intensity absorptivity is given by

αν = 1− Tν

= 1− eτν

∼= τν

Hence,
αfν = 2αν
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4.54 A thin, isothermal layer of air in thermal equilibrium at temperature T0 is
perturbed about that equilibrium value (e.g., by absorption of a burst of
ultraviolet radiation emitted by the sun during a short lived solar flare) by
the temperature increment δT. Using the cooling to space approximation
(4.56) show that

δ

µ
dT

dt

¶
ν

= −ανδT (4.65)

where

αν =
πkλr

cp

e−τν/µ

µ

µ
dBν

dT

¶
T0

(4.66)

This formulation, in which cooling to space acts to bring the temperature
back toward radiative equilibrium is known as Newtonian cooling or radia-
tive relaxation. It is widely used in parameterizing the effects of longwave
radiative transfer in the middle atmosphere.

The cooling to space approximation [Eq. 4.59)] isµ
dT

dt

¶
ν

= − π

cp
kνrBν(z)

e−τν/µ

µ

If the layer is in radiative equilibrium at temperature T0, then there must
be a heat source that exactly balances (dT/dt)ν . Let us assume that this
heat source remains fixed, while the temperature of the layer increases
from T0 to T0+δT. The only term in (4.59) that changes in response to the
warming of the layer is Bν which changes by the increment (dBν/dT )T0δT
in accordance with Planck’s law. Hence, the imbalance in the heating rate
is given by

δ

µ
dT

dt

¶
ν

= −πkνr
cp

e−τν/µ

µ

µ
dBν

dT

¶
T0

δT

which is equivalent to Eqs. (4.65) and (4.66).

4.55 Prove that weighting function wi used in remote sensing, as defined in
(4.59) can also be expressed as the vertical derivative of the transmissivity
of the overlying layer.

By definition
Ti = e−τi

where

τ i =

Z ∞
z

kiρrdz

Differentiating with respect to z, we obtain

dTi
dz

= e−τidτ i

= e−τikiρrdz
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Hence, the weighting function in Eq. (4.59) can be expressed as

wi =
dTi
dz

4.56 The annual mean surface air temperature ranges from roughly 23◦C in
the tropics to −25◦C in the polar cap regions. On the basis of the Stefan-
Boltzmann law, estimate the ratio of the flux density of the emitted long-
wave radiation in the tropics to that in the polar cap region.

From the Stefan Boltzmann law,

Ftropics
Fpolar

=
σT 4tropics
σT 4polar

=

µ
273 + 27

273− 23
¶4

=

µ
300

250

¶4
= 2.07

4.57 Consider the simplified model of the short wave energy balance shown
in Fig. 4.38. The model atmosphere consists of an upper layer with
transmissivity T1, a partial cloud cloud layer with fractional coverage fc
and reflectivity in both directions Rc, and a lower layer with transmissivity
T2. The planet’s surface has an average reflectivity Rs. Assume that no
absorption takes place within the cloud layer and no scattering takes place
except in the cloud layer.

Fig. 4.38 Geometric setting for Exercise 4.57.

(a) Show that the total short wave radiation reaching the surface of the
planet divided by the solar radiation incident on the top of the atmosphere
is given by

Fs =
[(1− fc) + fc (1−Rc)]T1T2

1− T 22 fcRcRs
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The fraction of the incident radiation reaching the surface of the planet,
taking into account the radiation reflected upward from the surface and
downward again from the cloud layer is

Fs = {[(1− fc) + fc (1−Rc)]T1T2}[1+T 22 fcRcRs+
¡
T 22 fcRcRs

¢2
+
¡
T 22 fcRcRs

¢3
+.....]

Summing over the series, we obtain

Fs =
[(1− fc) + fc (1−Rc)]T1T2

1− T 22 fcRcRs

(b) Show that the planetary albedo is given by

A = fcRcT
2
1 + FsRs [(1− fc) + fc (1−Rc)]

The fraction of ther incident radiation that is reflected off the cloud tops
is fcRcT

2
1 and the fraction refected off the surface of the planet is

(c) For the following values of model parameters calculate the planetary
albedo: fc = 0.5, Rc = 0.5, T1 = 0.95, T2 = 0.90, Rs = 0.125.

Answer 0.278

(d) Use the model to estimate the albedo of a cloud free and cloud covered
earth.

Answers 0.09 and 0.48
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