
Chapter 3

3.19 Apparent molecular weight of mixture=
Total mass of mixture

Number of kilometers in mixture
1 kmol of CO2 = (12 + 32) = 44 kg
1 kmol of N2 = 28 kg

100 cm3 of mixture will contain 95 cm3 of CO2 and 5 cm
3 of N2

If V is volume occupied by 1 kmol of any gas:

Number of kmols of CO2 in 100 cm
3 of mixture =

95

V

and,

Number of kmol of N2 in 100 cm
3 of mixture =

5

V

∴ Apparent molecular wt of mixture (Ma) =

µ
95

V
× 44

¶
+

µ
5

V
× 28

¶
95

V
+
5

V
Ma = 43.2

Gas constant for 1 kg of mixture =
R∗

Ma
=
8.3143× 103

43.2

= 192.46 J deg−1 kg−1

3.20 If water vapor comprises 1% of the volume of the air (i.e., if it accounts for
1% of the molecules in air), what is the virtual temperature correction?

Answer Tv − T ' 1 K (or 1◦C)
Solution: The apparent molecular weight of air that contains 1% by vol-
ume (i.e., by number of molecules) of water vapor is, Mmoist = (Apparent
Molecular Weight of dry air)× (Fraction of Dry Air)+ (Molecular Weight
of Water Vapor)× (Fraction of Water Vapor)

= (28.97× 0.99) + (18× 0.01)
= 28.86

For moist air:
p = Rd ρmoist Tv

Also, for moist air we could write:

p = Rmoist ρmoist T

∴ Tv
T
=
Rmoist
Rd

=
Md

Mmoist
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(Since R’s are inversely proportional to molecular weights.)

∴ Tv
T

=
28.97
28.86

= 1.0038

∴ Tv = T = 0.0038 T

If we take T = 288 K

Tv − T = (0.0038) = 288 = 1.09◦C ' 1◦C

3.21 Archimedes buoyancy principle asserts that an object placed in a fluid
(liquid or gas) will be lighter by an amount equal to the weight of the
fluid it displaces. Provide a proof of this principle. [Hint: Consider the
vertical forces that act on a stationary element of fluid prior to the element
being displaced by an object.]

Consider an element of the fluid with mass m. The downward force on
this element is mg. Since the element of fluid is stationary (before it is
displaced) the net upward force acting on it due to the surrounding fluid
must be mg. If this element is displaced by an object, the surrounding
fluid will exert the same net upward force on the object as it did on the
element (namely, mg). Therefore, the object will be lighter a mass, that
is, by the mass of the fluid displaced.
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3.22

ρ(volume of balloon)g − ρ0(volume of balloon)g = (ρ − ρ0)(volume of
balloon)g.

For hydrostatic equilibrium of balloon

mgross = (ρ− ρ0)(volume of balloon) (1)

Also, p=RdρT and, since p = p0,

ρT=ρ0T0

or

ρ0 = ρ
T
T0

(2)

From (1) and (2)

mgross = ρ

µ
1− T

T0

¶
(volume of balloon) (3)

Now,

Density of air at 273 K and 1000 hPa = 1.275 kg m-3

and density varies at
p
T

∴ Density of air at 293 K and 900 hPa is

ρ = (1.275)
900

1000

273

293
kg m-3

= 1.069 kg m-3 (4)

From (3) and (4)

mgross = 1.069
µ
1− 293

T0

¶
(volume of balloon)
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or,

600 = 1.069

µ
1− 293

T0

¶
3000

∴ T0 =
293

1− 600

3000× 1.069
=

293

1− 0.1871

= 360.43 K

or,
T0= 87.43◦C

3.23

For no vertical acceleration of balloon

mgross = (ρ− ρ0) (volume of balloon)

Since mgross is same for the two balloons,

(ρ− ρ0) (volume of balloon) = constant

Therefore,

ρ (volume of helium balloon)− (density of helium) (volume of helium balloon)

= ρ (volume of hot air balloon)−
(density of hot air) (volume of hot air balloon) (1)

Also,
p = Runit

mass
ρT
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and,
p = p0

therefore,

ρ ∝ 1

Runit
mass

T
∝ (MW)helium

T
(2)

Also,
Thelium = Tambient = T

From (1) and (2)

(MW)air
T

(volume of helium balloon)− (MW)helium
T

(volume of helium balloon)

=
(MW)air
T

(volume of hot air balloon)− (MW)air
Thot
air

(volume of hot air balloon)

or,

(volume of balloon)
(MW)air − (MW)helium

T

= (volume of hot air balloon) (MW)air

Ã
1

T
− 1

Thot
air

!
or,

(volume of balloon)
(MW)air − (MW)helium

(MW)air

= (volume of hot air balloon)
µ
Thot air − T
Thot air

¶
Therefore,

(volume of helium balloon)
28.97− 2
28.97

= (volume of hot air balloon)
363− 273
363

∴ volume of hot air balloon = (volume of helium balloon)
µ
26.97

28.99

¶
363

100

= 1000

µ
26.97

28.99

¶
363

100

= 3377 m3

3.24 From (3.29)

p1 = p2 exp
(Z2 − Z1)

H

' p2

µ
1 +

(Z2 − Z1)

H

¶
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∴ p1 − p2 ' p2
(Z2 − Z1)

H
(1)

H = 29.3 Tv
Tv ' 253K at 500 hPa

∴ H = 7.413 km (2)

From (1) and (2)

∆pnear 500 hPa ' 500∆Z (in km)
7.413

∴ If ∆p = 1 hPa, ∆Z ' 14.8 ' 15 m .

3.25 The error is due to the virtual temperature (Tv) measurement recorded
by the radiosonde being assigned to the wrong pressure level. This will
lead to an error in the magnitude of Z1−Z2 (and therefore Z2, the height
of the 500 hPa level) calculated from (3.24).

On average, between sea level and 500 hPa each measurement of Tv will

be assigned
µ
1

2
× 5 hPa

¶
(11 m per hPa) = 27.5 m higher in altitude

than it really is. With an average lapse rate of 7◦C km−1, the tem-
perature between sea level and 500 hPa will be, on average,

¡
7◦C km-1

¢¡
27.5× 10−3 km¢ ' 0.2◦C too high. Hence from (3.29), the thickness be-
tween sea level and 500 hPa will be too high by about

¡
29.3 m deg−1

¢
(0.2 deg) ln

1000

500
= 4 m.

(Note: This uncertainty is relatively small.)

3.26 From (3.29)

Z2 − Z1 =
RdTv
go

ln
p1
p2

For layer outside the hurricane:

Z2 − Z1 =
(287) (270)

9.81
ln

µ
1010

200

¶
For center of hurricane:

(287) (270)

9.81
ln

µ
1010

200

¶
=
287 Tv
9.81

ln

µ
940

200

¶
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∴ Tv = 270

ln

µ
101

20

¶
ln

µ
94

20

¶
= 282.38◦K

∴ Average temperature difference between center

of the hurricane and its surroundings

= (282.38− 270) K
' 12 K = 12◦C

3.27 z = ? 500 hPa
Tv = 0

◦C 1000 hPa

¾
From the hypsometric equation:

For 1000− 500 hPa:

z (500 hPa)− z (1000 hPa) =
Rd

g
T v

µ
p1000
p500

¶
= 29.26× T v (ln 2)

∴ z (500 hPa)− z (1000 hPa) = 29.26× 273× 0.693
= 5536.8 m

For 1020− 1000 hPa layer:

z (1000 hPa)− z (1020 hPa) =
Rd

g
T v ln

µ
p1020
p1000

¶
= 29.26× 288× ln 1020

1000

= 29.26× 288× 0.02
= 167 m

(Note: We are not given T v between 1000 and 1020 hPa, however, because
the height difference between these two pressure levels is small, T v will not
differ greatly from the temperature at 1020 hPa, namely, 15◦C or 288 K.)

Now,

z (1000 hPa)− z (sea level) = (167− 50) m
= 117 m

Therefore,

Height of 500 hPa level above sea level = 5537 + 117 = 5654 m

= 5.654 m

(Note: Answer given in 1st Ed. of book is based on taking Rd/g = 29.3
instead of the more accurate value of 29.26 used above.)
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3.28 500 hPa
mass = m
5× 106 J

1000 hPa
Area = 1 m2

Difference in pressure between the two layers = 500 hPa
= 5× 104 Pa

Therefore,

mg = 5× 104

m =
5× 104
9.81

= 0.51× 104 kg

If ∆T is change in temperature of layer due to heating:¡
0.51× 104¢ cp∆T = 5× 106
∴ ∆T = 5× 106

(0.51× 104) (1004)
∴ ∆T = 0.976◦C = 0.98◦C
Also,

Z500 − Z100 =
RdTv
go

ln (p1 /p2 )

∆ (Z500 − Z100) =
Rd
go
ln

µ
1000

500

¶
∆Tv

=
287

9.81
(ln 2)(0.976)

∴ ∆ (Z500 − Z100) = 19.8 m = 20 m

3.29 From eqn. (3.29) in text:

Z2 − Z1 = ∆Z =
RdTv
go

ln
p1
p2

∴ ∂(∆Z)

∂Tv
=

Rd
go
ln

p1
p2

or,
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∂Tv =
∂(∆Z)
Rd
go
ln

p1
p2

=
180

287

9.81
ln
1000

500

=
180

20.279
= 8.9◦C

(Note: Since lapse rate does not change, change in surface temperature
is equal to change in mean value of Tv.)

3.30 Derive a relationship for the height of a given pressure surface (p) in
terms of the pressure p

0
and temperature T

0
at sea level assuming that

the temperature decreases uniformly with height at a rate Γ K km−1.

Answer z =
To
T

⎡⎢⎣1−µ p

po

¶RΓ
g

⎤⎥⎦
Solution: Let the height of the pressure surface be z; thenits temper-
ature T is given by

T = To − Γz (1)

combining the hydrostatic equation (3.17) with the ideal gas equation (3.2)
yields

dp

p
= − g

RT
dz (2)

From (1) and (2)
dp

p
= − g

R (To − Γz)dz

Integrating this equation beween pressure levels po and p and correspond-
ing heights 0 and z and neglecting the variation of g with z, we obtainZ p

po

dp

p
= − g

R

Z z

o

dz

(To − Γz)
or

ln
p

po
=

g

RΓ
ln

µ
To − Γz

To

¶
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Therefore,

z =
To
Γ

"
1−

µ
p

po

¶RΓ/g#
(3)

This equation forms the basis for the calibration of aircraft altimeters.
An altimeter is simply an aneroid barometer that measure ambient air
pressure p. However, the scale of the altimeter is expressed at the height
z of the aircraft, where z is related to p by (3) with values of To, po and
Γ appropriate to the U.S. Standard Atmosphere, namely, To = 288 K,
po = 1013.25 hPa, and Γ = 6.50 K km−1.

3.31 Consider a hiker who gets to 1 km without any change in pressure due to
synoptic conditions. Then, altimeter reads correct height of 1 km. Now,
if pressure falls by 8 hPa, the altimeter (which is calibrated assuming that
1 hPa decrease in pressure corresponds to 8 m increase in height) will read
1000 m + (8× 8) m = 1064 m.

3.32 Work done by a system in changing its volume from v1 to v2 is given by:

work =
Z v2

v1

pdv (1)

The gas equation for 2 kg of dry air can be written as

pv = (2Rd)T (2)

From (1) and (2):

Work done on a system = −
Z v2

v1

2RdT
v

dv

For an isothermal transformation:

Work done on a system = −2RdT ln
v2
v1

Since v2 =
v1
10

and T = 288 K,

Work done on a system = −2(287)288 ln 1
10

= 2(287)(288)(2.3026)

= 3.806× 105 J ' 3.8× 105 J

3.33 (a)

dq = du+ dw (1st Law for unit mass)

= du+ pdα

=

∙µ
∂u
∂T

¶
α

dT+
µ
∂u
∂α

¶
T
dα
¸
+ pdα
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dq = cvdT+ pdα (i)

for an ideal gas, since
µ
∂u
∂α

¶
T
= 0.

Also, pα = RT
∴ pdα+ αdp = R dT (ii)

From (i) and (ii) for an adiabatic transformation (dq = 0)

cv(pdα+ αdp) +Rpdα = 0

Also for an ideal gas:

R = cp − cv
∴ cv pdα+ cv αdp (cp − cv) pdα = 0

or
dp
p
+ γ

dα
α
= 0 where cp /cv = γ

Integrating,
ln p+ γ ln α = constant

Hence,
pαγ = constant

or, for volume v,
pvγ = constant

(b) For the isothermal transformation:

p1v1 = p2v2
∴ (1000)(7.5) = p2(2.5)

∴ p2 = 3000 hPa

For the adiabatic transformation(
p2v

γ
2 = p3v γ

3p2v2
T2

=
p3v3
T3

∴ T3 = T2

µ
v2
v3

¶γ−1
= 290

µ
2.5

7.5

¶γ−1
= 290

µ
2.5

7.5

¶0.4
∴ T3 = 186.8◦K or —86.2◦C
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From

p2v
γ
2 = p3v

γ
3

p3 = p2

µ
v2
v3

¶γ
= 3000

µ
2.5

7.5

¶γ
= 3000 (0.333)1.4

p3 = 643 hPa

3.34 If the balloon in Exercise 3.22 is filled with air at the ambient temperature
of 20◦C at ground level where the pressure is 1013 hPa, estimate how much
fuel will need to be burned to lift the balloon to its cruising altitude of
900 hPa. Assume that the balloon is perfectly insulated, and that the fuel
releases energy at a rate of 5×107 J kg−1.

Answer 5.23 kg

Solution:
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For the air in balloon at ground level:

pi = 1013 hPa

Ti = 20
◦C = 293 K

For the air in balloon at 900 hPa

pf = 900 hPa

Tf = 87.43◦C (from solution to Exercise 3.22)

= 360.43 K

Suppose the air in the balloon goes from its initial to its final state in
two steps:

(1) Heat is added at constant pressure at ground level until the temper-
ature reaches T 0f .

(2) Air in the balloon expands adiabatically as p drops from 1013 to 900
hPa, while T drops from T 0f to Tf .

For step (2):

pvγ = constant and
pv

T
= constant

∴ p1−γT γ = constant

∴ p1−γi

¡
T 0f
¢γ
= p1−γf (Tf )

γ

∴ T 0f =
µ
pf
pi

¶1− γ

γ
Tf

=

µ
pf
pi

¶1− 1.4
1.4

Tf

=

µ
pi
pf

¶0.286
(360.43)

=

µ
1013

900

¶0.286
(360.43)

= (1.034) (360.43) = 372.83 K

Heat required for heating of air = (mass of air) (cp) (∆T ) Joules

∴
µ
mass of fuel
needed in kg

¶¡
5× 7 J kg-1¢ = (mass of air) (cp)∆T
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Mass of air
in balloon
(in kg)

=

⎛⎝ volume of air
in balloon
at 900 hPa

⎞⎠⎛⎝ density of air
at 900 hPa
and 360.43 K

⎞⎠
=

¡
3000 m3

¢µ p

RdT

¶
=

¡
3000 m3

¢µ 900× 102
287× 360.43

¶
= 2610.12 kg

∴Mass of fuel needed (in kg) = (2610.12 kg)
¡
1004 J K-1 kg−1

¢ (372.83− 273 K)
5× 107 J kg−1

=
(2610.12) (1004) (99.83)

5× 107
= 52322110.5× 10−7 kg
= 5.23 kg

3.35

H2 −H1 = 3(Lf ) + 3

Z 373

273

cpw dT

= 3(3.34)× 105 + 3
Z 373

273

(4183.9 + 0.125 T dT )

=
¡
10.02× 105¢+ 3 ∙4183.9 T + 0.125 T 2

2

¸373
273

=
¡
10.02× 105¢+ 3"(4183.9× 313) +Ã0.125 (313)2

2

!

− (4183.9× 273)−
Ã
0.125 (273)2

2

!#
=

¡
10.02× 105¢+ 3 (168821)

=
¡
10.02× 105¢+ ¡5.06× 105¢

= 15.1× 106 J

3.36 We have to prove that for an adiabatic change

T1

µ
po
p1

¶R/cp
= T2

µ
po
p2

¶R/cp
That is, to prove

T1

p
R/cp
1

=
T2

p
R/cp
2

(1)
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We have for an adiabatic transformation(
p1v

γ
1 = p2v

γ
2

p1v1
T1

=
p2v2
T2

Hence,
v1
v2
=

p2
T2

T1
p1

∴ p1
p2
=

µ
T2p1
p2T1

¶γ
or µ

p1
p2

¶1−γ
=

µ
T2
T1

¶γ
or, µ

p1
p2

¶1− γ

γ
=

T2
T1

But,
1− γ

γ
=
1− cp /cv
cp /cv

=
cv − cp
cp

= −R

cp

Hence, µ
p1
p2

¶−R/cp
=

T2
T1

or
T1

p
R/cp
1

=
T2

p
R/cp
2

, which is

From (3.54)

θ = T

µ
po
p

¶R/cp
(2)

Hence, for T1 and p1,

θ1 = T1

µ
po
p1

¶R/cp
(3)

and for T2 and p2,

θ2 = T2

µ
po
p2

¶R/cp
(4)

From (1), (3) and (4),
θ1 = θ2
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3.37 Accurate answer (by calculation):
For an adiabatic transformation

pvγ = constant

But
pv

T
= constant

Therefore,

p

µ
T

p

¶γ
= constant

∴ p1−γT γ = constant (1)

p1 = 200 hPa

T1 = −60◦C = 273 K
p2 = 1000 hPa

T2 = θ

∴ From (1),

θ =

µ
200

1000

¶1− γ

γ
T1

=

µ
1

5

¶1− γ

γ
213 =

µ
1

5

¶1− cp/cv
cp/cv 213 =

µ
1

5

¶Rd/cp
213 (2)

From cp and cv values given in 1st Ed. of Wallace & Hobbs we get Rd/cp =
0.286, therefore

θ = (0.2)− 0.286(213)

= 337.46 K

= 64.5◦C

The T versus ln p chart uses cp/cv = 1.40449 or Rd/cp = 0.288. If this
value is used in (2), we get θ = 65.59' 66◦C (i.e., same as from T versus
ln p chart on the book web site)
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3.38 (a) Macroscopic kinetic energy of an air parcel with mass m is

Km =
1

2
m c2s =

1

2
m
h
(γRdT )

1/2
i2

=
1

2
m

cp
cv
(cp − cv)T

=
1

2
m cpT

µ
cp
cv
− 1
¶

=
1

2
H (γ − 1)

Km=
1

2
H (0.40) = 0.20 H

(b)

Km = 0.20 H

∴ dKm = 0.20 dH

= 0.20(m cp dT ) (1)

Also, Km =
1

2
m c2s

∴ dKm = m cs dcs (2)

From (1) and (2),

m cs dcs = 0.20 m cp dT

∴ dcs
cs

=
0.20 cp dT

c2s

∴ dcs
csdT

=
0.20 cp
c2s

=
0.20 cp
γRdT

dcs
csdT

=
0.20 cv
RdT

3.39

cpersonMperson∆T = mevapLevap

∴ mevap

Mperson
= cperson

∆T

Levap

=

¡
4.2× 103¢ 5
(2.5× 106)

= 0.0084

= 0.84%
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3.40 Twenty liters of air at 20◦C and a relative humidity of 60% are com-
pressed isothermally to a volume of 4 liters. Calculate the mass of water
condensed. The saturation vapor pressure of water at 20◦C is 23 hPa.
(Density of air at 0◦C and 1000 hPa is 1.28 kg m−3.)

Answer 0.14 g

Solution: We must find mass vapor in the air before and after the
compression.

Mass of water vapor in air initially

Initially, the partial pressure of the vapor

=
60

100
(SVP of water at 20◦C

=
60

100
× (23.371 hPa)

= 14.02 hPa

Since p = RρT

ρ ∝ p/T

Therefore, for air:

ρ20◦C=293 K and 14.02 hPa

ρ0◦C=273 K and 1000 hPa
=

14.02/293

1000/273

=
14.02

1000

273

293

Therefore,

ρ20◦C and 14.02 hPa =
14.02

1000

273

293
(1.2754) kg m−3

or,
ρ20◦C and 14.02 hPa = 0.01666 kg m

−3

Provided the water vapor and air are at the same temperature and pressure
(i.e., 14.02 hPa and 20◦C in this case).

Density of water vapor =
18.016

28.97
(density of air)

= 0.62 (density of air)

Therefore, the mass (in kg) of water vapor that occupies 20 liters under
these conditions is

(0.62)× (density of air at 20◦C and 14.02 hPa)×¡
volume of 20 liters in m3

¢
=
5

8
(0.01666)

¡
2,0000× 10−6¢

= 2.0825× 10−4 kg (1)
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Mass of water vapor in air after compression

To saturate air at 20◦C it would have to be compressed until the vapor
pressure is raised from 60% to 100% of the saturation value. From Boyle’s
Law, this means that it becomes saturated when its volume is reduced to
60% of initial value. This compression is exceeded when volume is reduced
from 20 to 4 liters. Therefore, after compression the air is saturated and
its partial pressure is equal to the saturation vapor pressure of water at
20◦C = 23.37 hPa.

Proceeding as before,

For air:
ρ293 K and 23.371 hPa

ρ273 K and 1000 hPa
=
23.371/293

1000/273

Therefore,

ρ293 K and 23.371 hPa =
23.371

1000

273

293
(ρ273 K and 1000 hPa)

Hence, density of air at 293 K and 23.371 hPa is:

∴ ρ293 K and 23.371 hPa =
23.371

1000
× 273
293

× (1.2754) kg m−3

Therefore, mass of water vapor that occupies 4 liters when air is saturated
is µ

5

8
× ρ293 K and 23.371 hPa

¶
× ¡4,000× 10−6¢ kg

=

µ
5

8
× 23.371

1000
× 273
293

× 1.2754
¶
× ¡4,000× 10−6¢

= 6.943 × 10−5 kg

Therefore, mass of water condensed = (mass of water vapor in air initially)−
(mass of water vapor in air after compression)

=
¡
2.0825× 10−4¢− ¡6.943× 10−5¢ kg

= 0.139 grams = 0.14 grams

An alternative solution:

Relative humidity =
e

es
100

Therefore, for initial state:

60 =
e

23.37
100
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or,
e = 14.022 hPa = 1402.2 Pa

Let us now assume system is compressed isothermally and consider (fic-
tionally) a fixed mass of water vapor (i.e., no condensation), then for
vapor:

(1402.2)20 = p24

Therefore, p2 = 7011.0 Pa = 70.11 hPa

This exceeds the SVP at 20◦C, which is 23.37 hPa, by 46.74 hPa. There-
fore, water must condense to bring vapor pressure to saturation at 20◦C
(= 23.37 hPa). Mass fraction of water that condenses is

70.11− 23.37
70.11

= 0.67

But, mass of water vapor in air before condensation is (from first solution
given above)

= 2.0825× 10−4 kg
Therefore, mass of water condensed = 0.67× (2.0828× 10−4) kg

= 1.39× 10−4 kg
= 0.14 grams

3.41

Specific humidity (q) ≡ mv
mv +md

=
mv /md

1 +mv /md
=

r
1 + r

where r = mixing ratio ≡ mv /md
If q = 0.0196

0.0196(1 + r) = r

∴ r = 0.02 kg/kg = 20 g/kg

Also, Tv = T(1 + 0.61r)

= 303(1 + 0.61× 0.02)
= 306.697 K

∴ Tv = 33.7◦C

p = Rd ρmoistTv for moist air

p = 1014 hPa = 1014× 102 Pa
∴ 1.014× 105 = (298)(ρmoist)(306.7)
∴ ρmoist =

1.014× 105
287× 306.7 kg m

-3

ρmoist = 1.15 kg m−3
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3.42

e = (kilomol fraction of water vapor) p

=
mv/Mw
ma

Ma
+

mv

Mw

=
w

ε+ w

where,

ε ≡ Mw

Ma
=

Ra

Rw
=
287

461
= 0.623

w = 1.80× 10−3 kg kg−1
p = 975 hPa

∴ e =
1.80× 10−3

0.623 + 1.80× 10−3 975
e = 2.81 hPa

Tv ' T (1 + 0.61 w)

= 288
¡
1 + 0.61× 1.80× 10−3¢

= 288 (1.001)

= 288.3◦K
Tv = 15.3◦C

3.43

Referring to above diagram, the heat released due to moist air being cooled
from T to Tw is:

(T − Tw) (cp + wcpv)

Heat required to evaporate water is:

L (w0 − w)

∴ (T − Tw) (cp + wcpv) = L (w0 − w)
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∴ w =
Lw0 − (T − Tw) cp
cpv (T − Tw) + L

=

¡
2.25× 106¢× ¡8.7× 10−3¢− 6× 1004

1952× 6 + 2.25× 106
= 5.99× 10−3 kg/kg
= 5.99 g/kg = 6.0 g/kg

3.44

du =

µ
du

dT

¶
v

dT +

µ
du

dv

¶
T

dv

cv =

µ
dq

dT

¶
v

=

µ
du

dT

¶
v

∴ du = cvdT +

µ
du

dv

¶
T

dv. But for an ideal gas
µ
du

dv

¶
T

= 0, therefore,

du = cvdT . Therefore,

du = mcvdT

∴ (du)water
(du)air

=
[mcv (T2 − T1)]water
[mcv (T2 − T1)]air

=
4× 4218× (T2 − T1)

1000× 717× (T2 − T1)

= 0.0235

= 2.4%

3.45 See skew T − ln p chart on the book web site.
Note that the moist adiabats on the skew T − ln p chart diverge with
increasing height (or decreasing pressure). Hence, if the lapse rate follows
a moist adiabat, a 1 K rise in temperature at the Earth’s surface will
be accompanied by a temperature rise of greater than 1 K in the upper
troposphere.

To estimate how much larger the temperature rise in the upper tro-
posphere would be, one need only estimate the rate of spreading of the
moist adiabats. On the chart provided on the book web site the spacing
between successive moist adiabats (in terms of temperature at the 1000
hPa level) is 5 K. To estimate the rate of spreading, identify the moist
adiabat that passes through 25◦C at the 1000 hPa level and the moist
adiabats on either side of it. Follow these three contours up the the 250
hPa level and note the spacing between them (again in terms of tempera-
ture on a specific pressure level). The spacing is about 12.5 K. Hence, the
multiplication factor is around 12.5 K per 5 K, or 2.5 K per degree K at
the 1000-hPa-level.
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3.46 See on the book web site skew T − ln p chart.
(a)

Mixing ratio = ws at Td
= 5.1 g kg−1

RH =
ws at Td
ws at T

=
5.1

10.8
= 47%

Wet-bulb temperature: Found, using Norman’s Rule, to be: 9.3◦C.
Potential temperature: Since air parcel is at 1000 hPa:

θ = T = 15◦C = 288 K

Wet bulb potential temperature (θw): Since air parcel is at 1000 hPa

θw = Tw = 9.3◦C

(b) If the parcel rises to 900 hPa:

Mixing ratio remains the same as 5.1 g kg−1

Since parcel is below LCL:

Relative humidity is
ws at Td
ws at T

=
5.1

6.8
100

= 75%

Wet-bulb temperature is obtained by applying

Normand’s rule at 900 hPa to give 4.5◦C

Potential temperature remains unchanged at 288 K

Wet-bulb potential temperature is also conserved at 9.3◦C

(c) If the parcel rises to 800 hPa, it is now lifted above its LCL, therefore
air becomes saturated at LCL.

Mixing ratio is changed to 4.3◦C

Since air is saturated RH is 100%

Since air is saturated Tw = T = −1.1◦C
Potential temperature (θ) from chart is 290◦K (not conserved)

Wet-bulb potential temperature (θw) is conserved at 9.3◦C
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(d) LCL = 847 hPa

3.47 Solutions are found as follows:

(a) Locate the point (A) at p = 1000 hPa and T = 25◦C, and the point
(b) at p = 1000 hPa and Tw = 20

◦C.

Find the LCL of this air by locating the point (C) at which the θ line
through A intersects the θe (or θw) line through B. C is found to be
at 900 hPa.

Now take the ws line through C and extrapolate it to 1000 hPa (D).
Then, from Normand’s Rule, the temperature of D, namely 18◦C,
is the dewpoint of the air.

(b) and (c) By definition of θe this is the temperature that the air would obtain
if it were expanded until all of the moisture in it condensed and fell
out and the air were then compressed to 1000 hPa.

Run up the saturated adiabat through C until this saturated adiabat
runs parallel to a dry adiabat. Then, at this point, all of moisture
has condensed and fallen out. The θ value of this dry adiabat is,
by definition of θ, the temperature the dry air parcel would have if
compressed adiabatically to 1000 hPa. This θ value is about 62◦C.
(Note: By definition, this is the θe value of the air at A.)

(d) Wet-bulb potential temperature (θw) corresponding to the saturated
adiabats are given by the temperature (in ◦C) along the200 hPa line
in the skew T−ln p chart. The saturated adiabat that passes through
C, has a θw value of about 20◦C.

3.48 See skew T − ln p chart on the book web site.

Td = 14◦C
Temperature at 900 hPa ' 19.8◦C

3.49 (a) Show that when a parcel of dry air at temperature T 0 moves adia-
batically in ambient air with temperature T , the temperature lapse
rate following the parcel is given by

−dT
0

dz
=

T 0

T

g

cp

(b) Explain why the lapse rate of the air parcel in this case differs from
the dry adiabatic lapse rate (g/cp). [Hint: Start with eqn. (3.54) with
T = T 0. Take the natural logarithm of both sides of this equation
and then differentiate with respect to height z.]
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Solution: From (3.54) with T = T 0 we have for the air parcel

θ = T 0
µ
po
p

¶R∗/cp
∴ ln θ = lnT 0 +

R∗

cp
(ln po − ln p)

Differentiating,
1

θ

dθ

dz
=
1

T 0
dT 0

dz
− R∗

cp

1

p

dp

dz
(1)

But for the ambient air we have, from the hydrostatic equation,

dp

dz
= −gρ (2)

From (1) and (2):

1

θ

dθ

dz
=
1

T 0
dT 0

dz
− R∗

cp

1

p
(−gρ)

For an adiabatic process θ is conserved (i.e.,
dθ

dz
= 0). Therefore,

0 =
1

T 0
dT 0

dz
+

R∗gρ
pcp

or,
dT 0

dz
= −R

∗ρT 0g
pcp

(3)

But, for the ambient air,
p = R∗ρT (4)

From (3) and (4),
dT0

dz
= −T

0

T

g

cp

The dry adiabatic lapse rate
µ
Γd =

g

cp

¶
is determined under the assump-

tion that the air parcel develop no macroscopic kinetic energy (i.e., that
T 0 = T ), so

Γd = −dT
0

dz
=

g

cp
.

3.50 Derive an expression for the rate of change in temperature with height
(Γs) of a parcel of air undergoing a saturated adiabatic process. Assume

that ρLv

µ
∂ws

∂p

¶
T

is small compared to 1.
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Answer Γs l
Γd

1 +
Lv
cp

µ
∂ws

∂T

¶
p

Solution: Substituting (3.20) into (3.51) yields

dq = cpdT + g dz (1)

If the saturation ratio of the air with respect to water is ws, the quantity
of heat dq released into (or absorbed from) a unit mass of dry air due to
condensation (or evaporation) of liquid water is −Lv dws, when Lv is the
latent heat of condensation. Therefore,

−Lv dws = cp dT + g dz (2)

If we neglect the small amounts of water vapor associated with a unit mass
of dry air, which are also warmed or cooled) by the release (or absorption)
of the latent heat, then cp in (2) is the specific heat at constant pressure
of dry air. Dividing both sides of (2) by cp dz and rearranging terms, we
obtain

dT

dz
= −Lv

cp

dws

dz
− g

cp

= − Lv
cp dz

"µ
dws

dp

¶
T

dp+

µ
∂ws

∂T

¶
p

dT

#
− g

cp

∴ dT

dz

"
1 +

Lv
cp

µ
∂ws

∂T

¶
p

#
= − g

cp

∙
1 +

Lv
g

µ
∂ws

∂p

¶
T

dp

dz

¸
(3)

Or, using the hydrostatic equation on the last term on the right side of
(3)

Γs ≡ −dT
dz

=

g

cp

∙
1− ρLv

µ
∂ws

∂p

¶
T

¸
1 +

L

cp

µ
∂ws

∂T

¶
p

or

Γs ≡ −dT
dz

= Γd

∙
1− ρLv

µ
∂ws

∂p

¶
T

¸
"
1 +

Lv
cp

µ
∂ws

∂T

¶
p

# (4)

In Exercise (3.51) we show that

−ρLv
µ
∂ws

∂p

¶
T

' 0.12
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Therefore, from (4)

Γs ≡ −∂T
dz

' Γd

1 +
Lv
cp

µ
∂ws

∂T

¶
p

3.51 In deriving the expression for the saturated adiabatic lapse rate in the
previous exercise, it is assumed that ρLv (∂ws/∂p)T is small compared
to 1. Estimate the magnitude of ρLv (∂ws/∂p)T . Show that this last
expression is dimensionless. [Hint: Use the skew T − ln p chart on the
book web site to estimate the magnitude of (∂ws/∂p)T for a pressure
change of, say, 1000 to 950 hPa at 0◦C.]

Answer About −0.12

Solution: Estimation of magnitude of ρLv

µ
∂ws

∂p

¶
T

Take

ρ ' 1.275 kg m−3
Lv = 2.5× 106 J kg−1
Suppose pressure changes from 1000 to 950 hPa, so that dp =
−50 hPa = −5000 Pa. Then, from skew T − ln p chart we find
that:

dws ' (4− 3.75) = 0.25 g/kg
' 0.25× 10−3 kg/kg

Hence,

ρLv

µ
∂ws

∂p

¶
T

' ¡
1.275 kg m−3

¢ ¡
2.5× 106 J kg−1¢µ0.25× 10−3 kg kg−1−5000 Pa

¶
'—0.12

The units of ρLv

µ
∂ws

∂p

¶
T

are

¡
kg m−3

¢ ¡
J kg−1

¢ ¡
kg kg−1

¢µ 1

Pa

¶
=

µ
/kg /m /− /3

¶ µ
/kg /m /2 /s /− /2 /k /g /− /1

¶Ã
1

/k /g /m /− /1 /s /− /2

!

which is dimensionless.

3.52 In deriving the expression (3.71) for equivalent potential temperature it
was assumed that

Lv
cpT

dws w d

µ
Lvws

cpT

¶
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Justify this assumption. [Hint: Differentiate the right-hand side of the
above expression and, assuming Lv/cp is independent of temperature,
show that the above approximation holds provided

dT

T
¿ dws

ws

Verify this inequality by noting the relative changes in T and ws for small
incremental displacements along saturated adiabats on a skew T − ln p
chart.]

Solution: Show that:

Lv
cpT

dws ' d

µ
Lvws

cpT

¶
(1)

Differentiate RHS assuming Lv/cp is a constant:

Lv
cp

∙
1

T
dws − ws

dT

T 2

¸
=

Lv
Tcp

∙
dws − ws

dT

T

¸
=

LvdT

Tcp

∙
dws

dT
− ws

T

¸
(2)

If
dT

T
¿ dws

ws
(which can be verified from skew T − ln p chart)

then,
dws

dT
À ws

T
(3)

∴ From (2) and (3):

R.H.s of (1) =
Lv
Tcp

dws = LHS of (1) QED

3.53 Solution: See skew T − ln p chart on the book web site.
Answer (a) AB, unstable; BC, neutral; CD, neutral; DE, stable; EF,

stable, FG, stable. (b) All layers are convectively unstable except CD,
which is convectively neutral.

3.54 Potential density D is defined as the density that dry air would attain if it
were transformed reversibly and adiabatically from its existing conditions
to a standard pressure p0 (usually 1000 hPa).

(a) If the density and pressure of a parcel of the air are ρ and p, respec-
tively, show that

D = ρ

µ
p0
p

¶cv/cp
where cp and cv are the specific heats of air at constant pressure and
constant volume, respectively.
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(b) Calculate the potential density of a quantity of air at a pressure of
600 hPa and a temperature of −15◦C.
Answer 1.17 kg m−3

(c) Show that
1

D

dD

dz
= − 1

T
(Γd − Γ)

where Γd is the dry adiabatic lapse rate, Γ the actual lapse rate of
the atmosphere, and T the temperature at height z. [Hint: Take the
natural logarithms of both sides of the expression given in (a) and
then differentiate with respect to height z.]

(d) Show that the criteria for stable, neutral, and unstable conditions
in the atmosphere are that the potential density decreases with in-
creasing height, is constant with height, and increases with increasing
height, respectively. [Hint: Use the expression given in (c).]

(e) Compare the criteria given in (d) with those for stable, neutral, and
unstable conditions for a liquid.

Solution:

(a) For a reversible, adiabatic transformation of an ideal gas

pV γ = constant

where, γ = cp/cv. For a unit mass of a gas, V = 1/ρ, where ρ is the
density of the gas. Therefore,µ

p

ργ

¶
= constant

Hence, if the initial pressure and density of a gas are p and ρ, and
the final pressure and density are po and D, and the gas undergoes
an adiabatic transformation,

p

ργ
=

po
Dγ

or,

D = ρ

µ
po
p

¶1/γ
= ρ

µ
po
p

¶cv/cp
(3.122)

(b) From the ideal gas equation for a unit mass of air

p = RdρT (3.123)

From (3.122) and (3.123)

D =
p

RdT

µ
po
p

¶cv/cp
(3.124)
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For p = 600 hPa = 6 × 104 Pa, T = (273− 15) K= 258 K, po =
1000 hPa= 105 Pa, Rd = 287 J deg−1 kg−1, cv = 717 J deg−1 kg−1

and cp = 10004 J deg−1 kg−1, we have from (3.124)

D =

¡
6× 104¢

(287) (258)

µ
105

6× 104
¶ 717
1004

D = 1.17 kg m−3

(c) Taking logarithms of (3.122), we have

lnD = ln ρ+
cv
cp
ln

µ
po
p

¶
Differentiating with respect to height z,

1

D

dD

dz
=
1

ρ

dρ

dz
− cv

cp

1

p

dp

dz
(3.125)

Also, for a unit mass of dry air considered as an ideal gas

p = RdρT

Therefore,
ln p = lnRd + ln ρ+ lnT

and, differentiating this last expression with respect to height z,

1

p

dp

dz
=
1

ρ

dρ

dz
+
1

T

dT

dz
(3.126)

From (3.125) and (3.126)

1

D

dD

dz
= − 1

T

dT

dz
+
1

p

dp

dz

µ
1− cv

cp

¶
= − 1

T

dT

dz
+

Rd

pcp

dp

dz
(3.127)

where we have used the relation cp − cv = Rd (see eqn. (3.45) in
text). From the hydrostatic equation and the ideal gas equation,

dp

dz
= −gρ = −g p

RdT
(3.128)

From (3.127) and (3.128),

1

D

dD

dz
= − 1

T

µ
g

cp
+

dT

dz

¶
(3.129)
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But, the dry adiabatic lapse rate Γd is given by (see eqn. (3.53) in
the text)

Γd =
g

cp
(3.130)

From (3.129) and (3.130)

1

D

dD

dz
= − 1

T
(Γd − Γ) (3.131)

where, Γ = −∂T
∂z

is the lapse rate in the atmosphere.

(d) From Section 3.6.1 in the text, we have

for a stable atmosphere: Γ < Γd
for an unstable atmosphere: Γ > Γd
for a neutral atmosphere: Γ = Γd

Hence, from (3.131),

for a stable atmosphere:
dD

dz
is negative

(i.e., D decreases with increasing height)

for an unstable atmosphere:
dD

dz
is positive

(i.e., D increases with increasing height)

for a neutral atmosphere:
dD

dz
= 0

(i.e., D is constant with height)

3.55 A necessary condition for the formation of a mirage is that the density
of the air increase with increasing height. Show that this condition is
realized if the decrease of atmospheric temperature with height exceeds
3.5 Γd, where Γd is the dry adiabatic lapse rate. [Hint: Take the natural
logarithm of both sides of the expression forD given in Exercise 3.54a, then
differentiate with respect to height z. Follow the same two steps for the gas
equation in the form p = ρRdT . Combine the two expressions so derived

with the hydrostatic equation to show that
1

ρ

dρ

dt
= − 1

T
(dT/dz + g/Rd).

Hence, proceed to the solution.]

Solution: From the solution to Exercise 3.54(a)

D = ρ

µ
p0
p

¶cv/cp
Therefore,

lnD = ln ρ+
cv
cp
ln

µ
p0
p

¶
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and, differentiating with respect to height z,

1

D

dD

dz
=
1

ρ

dρ

dz
− cv

cp

1

p

dp

dz
(3.132)

From the ideal gas equation for a unit mass of dry air,

p = RdρT

therefore,
ln p = lnRd + ln ρ+ lnT

and, differentiating with respect to height z,

1

p

dp

dz
=
1

ρ

dρ

dz
+
1

T

dT

dz
(3.133)

From (3.132) and (3.133),

1

D

dD

dz
= − 1

T

dT

dz
+

Rd

pcp

dp

dz
(3.134)

From the hydrostatic equation and the ideal gas equation,

dp

dz
= −gρ = − gp

RdT
(3.135)

From (3.133) and (3.135),

1

ρ

dρ

dz
= − 1

T

µ
dT

dz
+

g

Rd

¶
(3.136)

For a mirage to occur,
dρ

dz
must be positive. Therefore, from (3.136),

for a mirage to occur
dT

dz
+

g

Rd
< 0

or,

−dT
dz

>
g

Rd
=

cp
Rd

g

cp
=

cp
Rd
Γd (3.137)

where, in the last step, we have used eqn. (3.53) in the text, that is,
g

cp
= Γd. Substituting cp = 1004 J deg−1 kg−1 and Rd = 287 J deg−1

kg−1 into (3.137), we find that a necessary condition for a mirage to occur
is that

−dT
dz

> 3.5 Γd

That is, the temperature of the air must decrease with height at more
than 3.5 Γd = 3.5

¡
9.8◦C km−1

¢
= 34◦C km−1. Such a steep lapse rate

generally occurs only over strongly heated surfaces, such as deserts and
roads.
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3.56 Assuming the truth of the Second Law of Thermodynamics, prove the
following two statements (known as Carnot’s Theorems):

(a) No engine can be more efficient than a reversible engine working
between the same limits of temperature. [Hint: The efficiency of any
engine is given by eqn. (3.87); the distinction between a reversible
(R) and an irreversible (I) engine is that R can be driven backward
but I cannot. Consider a reversible and an irreversible engine working
between the same limits of temperature. Suppose initially that I is
more efficient than R and use I to drive R backwards. Show that
this leads to a violation of the Second Law of Thermodynamics, and
hence prove that I cannot be more efficient than R.]

(b) All reversible engines working between the same limits of temperature
have the same efficiency. [Hint: Proof is similar to that for part (a).]

Solution:

(a)

To prove that no engine can be more efficient than a reversible engine
working between the same limits of temperature consider a reversible
(R) and irreversible (I) engine working between θ1 and θ2. Assume
I is more efficient than R. Then, if R takes heat Q1 from source and
yields heat Q2 to sink. Therefore, if I takes Q1 from source it must
yield heat Q2 − q (q positive) to sink. Now let us use I to drive R
backward. This will require I to do work Q1−Q2 on R. But, in one
cycle, I develops work Q1 − (Q2 − q) = (Q1 −Q2) + q. Hence, even
when I is drawing R backwards, mechanical work q is still available.
But, in one cycle of the combined system, heat Q2 − (Q2 − q) = q is
taken from colder body. This violates 2nd Law.

(b) Take two reversible engines operating between θ1 and θ2, and as-
sume one engine is more efficient than the other. Then follow same
procedure as in (a) above to show this would violate 2nd Law.
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3.57 Lord Kelvin introduced the concept of available energy, which he defined
as the maximum amount of heat that can be converted into work by using
the coldest available body in a system as the sink for an ideal heat engine.
By considering an ideal heat engine, that uses the coldest available body
as a sink, show that the available energy of the universe is tending to zero
and that

loss of available energy = T0 (increase in entropy)

where T0 is the temperature of the coldest available body.

Solution: For an ideal reversible engine

Q1 −Q2
Q1

=
T1 − T2

T1

Work done in 1 cycle= Q1 −Q2 =
T1 − T2

T1
Q1.

If engine operates with sink at To (= T2):

Available energy =
T1 − T0

T1
Q1

Let Q pass from T1 to T2 (T1 > T2) by, say, conduction or radiation. Then,

Loss of available energy =

µ
T1 − T0

T1

¶
Q−

µ
T2 − T0

T2

¶
Q

= QTo

µ
T1 − T2
T1T2

¶
Since T1 > T2, there is a loss of available energy for natural processes

Loss of available energy = To

µ
Q

T2
− Q
T1

¶
= To (increase in entropy)

3.58

η ≡ Q1 −Q2
Q1

=
T1 − T2

T1
T1 = 373 K, T2 = 273 K

∴ η =
100

373

Work done in 1 cycle = Q1 −Q2 = Q1η

= 20× 100
373

= 5.36 J

Work done in 10 cycles = 53.6 J
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Heat rejected to sink in 1 cycle = Q2

= Q1 (1− η)

Heat reflected to sink in 10 cycles = 10Q1 (1− η)

= (10) (20)

µ
1− 100

373

¶
= 146.4 J

3.59
Q1 −Q2

Q2
=

T1 − T2
T2

=
17

273

(Note this is not the same as efficiency η of engine ≡ Q1 −Q2
Q1

) For every

Q2 joules taken from water, Q1−Q2 joules (= Q2 17/273) of work has to
be done by the motor that drive the refrigerator.

Heat required to freeze 20 kg of water = 20× Lm

= 20× ¡3.34× 105¢ J
= 6.68× 106 J

Hence, work done by motor to freeze 20 kg of water=
¡
6.68× 106¢ 17

273
J

= 4.16× 105 J. Since 1 watt = 1 J s−1 a 1 kW motor does 1000 J of work
per second.

∴ Time needed to do 4.16× 105 J of work is 4.16× 10
5

1000
secs = 416 secs

= 6.93 mins

3.60 A Carnot engine operating in reverse (i.e., as an air conditioner) is used
to cool a house. The indoor temperature of the house is maintained at Ti
and the outdoor temperature is To (To > Ti). Because the walls of the
house are not perfectly insulating, heat is transferred into the house at a
constant rate given by µ

dq

dt

¶
leakage

= K(To − Ti)

where K (> 0) is a constant.

(a) Derive an expression for the power (i.e., energy used per second)
required to drive the Carnot engine in reverse in terms of To, Ti and
K.

(b) During the afternoon, the outdoor temperature increases from 27 to
30◦C. What percentage increase in power is required to drive the
Carnot engine in reverse to maintain the interior temperature of the
house at 21◦C?
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Answer (a) K(To − Ti)
2/Ti; (b) 125%

Solution:

Figure 3.27

(a) See Figure 3.27. Let Q1 and Q2 be the heats that a Carnot engine
running in reverse (i.e., serving as an air conditioner) takes in and
rejects, respectively, in one cycle to keep a house at a temperature
Ti that is below the outside temperature of To.

If Ti is to remain constant,µ
dq

dt

¶
pumped out
of house by
air conditioner

=

µ
dq

dt

¶
heat leakage
into house

Hence,
Q1
∆t

= K (To − Ti) (3.138)

where, ∆t is the time period for one cycle of the air conditioner. The
power (i.e., work per unit time) needed to drive the air conditioner
is

P =
Work done to drive air conditioner per cycle

∆t

=
Q2 −Q1
∆t

(3.139)

Since the air conditioner is ideal

Q2
Q1

=
To
Ti

or
Q2 −Q1

Q1
=

To − Ti
Ti

Therefore,

Q2 −Q1 = Q1

µ
To − Ti

Ti

¶
(3.140)
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From (3.139) and (3.140)

P =
Q1
∆t

µ
To − Ti

Ti

¶
(3.141)

From (3.138) and (3.141)

P = K (To − Ti)
2ÁTi (3.142)

(b) For outside temperatures of To1 and To2, the powers P2 and P1,
respectively, needed to drive the air conditioner to maintain the house
at temperature Ti are, from (3.142) in (a) above,

P2
P1

=
K (To2 − Ti)

2ÁTi

K (To1 − Ti)
2ÁTi

=
(To2 − Ti)

2

(To1 − Ti)
2

For Ti = 294 K, T01 = 300 K and To2 = 303 K,

P2
P1
=
92

62
= 2.25

Therefore, the increase in power needed to keep the house at 21◦C
or 294 K is 125%.

3.61 Increase in entropy in warming ice from 263 to 273 K:

= micecice

Z 273

263

dT

T

= micecice ln
273

263

= (0.002) (2106) ln
273

263
= 4.212 (0.0373)

= 0.1572 J deg−1

Increase in entropy on melting ice at 273 K

=
(0.002)

¡
3.34× 105¢
273

J deg−1

= 2.447 J deg−1

Increase in entropy on heating water from 273 K to 373 K

= (0.002) (4218) ln
373

273

= 2.633 J deg−1
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Increase in entropy on changing water to steam at 373 K:

=
(0.002)

¡
2.25× 106¢
373

= 12.06 J deg−1

Total increase in entropy = (0.1572 + 2.447 + 2.633 + 12.06)

= 17.297 J deg−1

= 17.3 J deg−1

3.62 In general,

S2 − S1 =

Z 2

1

dQ

T

For an ideal gas:

S2 − S1 =

Z 2

1

cvdT

T
+

Z 2

1

pdv

T

= cv ln
T2
T1
+

Z 2

1

R∗
dv

v

= cv ln
T2
T1
+R∗ ln

v2
v1

Since,

p1v1
T1

=
p2v2
T2

S2 − S1 = cv ln
T2
T1
+R∗ ln

µ
p1T2
p2T1

¶
= cv ln

T2
T1
+R∗ ln

p1
p2
+R∗ ln

T2
T1

Since,

R∗ = cp − cv

∴ S2 − S1 = cp ln
T2
T1
+R∗ ln

p1
p2

For a diatomic gas cp/cv = γ = 1.4. Also,

cp = cv +R∗ =
cp
γ
+R∗
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or

cp =
γR∗

γ − 1
= (1.4× 8.3145) /0.4 J deg−1 mol−1
= 29.10 J deg−1 mol−1

∴ S2 − S1 = 29.10 ln

µ
373

286

¶
+ 8.3145 ln

µ
1

2

¶
= (29.10) (0.2656) + 8.3145 (−0.6931)
= 7.729− 5.763
= 1.966 J deg−1

= 2.0 J deg−1

3.63 Show that the expression numbered (3.118) in the solution to Exercise
3.50 above can be written as

Γs = Γd
(1 + wsLv/RdT )

(1 + wsL2v/cpRvT 2)

Solution: Comparing expression (3.118) in Exercise 3.50 with the ex-
pression given in the statement of this exercise, we see that we have to

prove (a) −ρLv
µ
dws

dp

¶
T

=
wsLv
RdT

, and (b)
Lv
cp

µ
dws

dT

¶
p

=
wsL

2
v

cpRvT 2

(a) To show:

−ρLv
µ
dws

dp

¶
T

=
wsLv
RdT

From eqn. (3.63)

ws ' 0.622es
p

(3.143)

Also,
p = Rd ρ T (3.144)

From (3.143) and (3.144),µ
dws

dp

¶
T

=

∙
dws

d (Rd ρ T )

¸
T

or, since T is constant,µ
dws

dp

¶
T

=
1

RdT

dws

dp
(3.145)

But,
ws =

ρsv
ρ
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Therefore,
dws

dρ
= ρsv

d

dρ

¡
ρ−1

¢
= −ρsv

ρ2
(3.146)

From (3.145) and (3.146),µ
dws

dp

¶
T

= − 1

RdT

ρsv
ρ2

(3.147)

From (3.146) and (3.147),µ
dws

dp

¶
T

= − ws

RdTρ
(3.148)

Therefore,

−ρLv
µ
dws

dp

¶
T

=Lv
ws

RdT
QED

(b) To show:
Lv
cp

µ
dws

dT

¶
p

=
wsL

2
v

cpRvT 2

From (3.143) in (a) above:µ
dws

dT

¶
p

=
d

dT

∙µ
0.622

es
p

¶¸
p

=
0.622

p

des
dT

(3.149)

Using the Clausius-Clapeyron eqn. (3.93) and the ideal gas equation
for saturated water vapor,

des
dT

=
Lv
Tα2

=
Lv

T
RvT

es

=
Lves
T 2Rv

(3.150)

From (3.149) and (3.150)µ
dws

dT

¶
p

=
0.622

p

Lves
T 2Rv

and using (3.143)

=
wsLv
T 2Rv

Therefore,
Lv
cp

µ
dws

dT

¶
p

=
wsL

2
v

cpRvT 2
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3.64 From (3.99)
∆TB
∆patmos

=
TB (α2 − α1)

Lv

with

dpatmos = (1013− 600) hPa
= −413 hPa
= −4.13× 104 hPa

TB = 373 ◦C at 1013 hPa
Lv = 2.25× 106 J deg−1

∴ dTB =
− (373) (1.66− 0.001) ¡4.13× 104¢

2.25× 106
= 11.30 deg

Hence, new boiling point = 88.7◦C

3.65 The change ∆TM in the melting point of ice due to a change in pressure
∆p is, by analogy with (3.99),

∆TM =
TM (αw − αi)

LM
∆p

where αw and αi are the specific volumes of water and ice, respectively,
and LM is the latent heat of melting of ice. Substituting TM = 273 K,
(αw − αi) = (1.0010− 1.0908) 10−3 m3 kg−1 = −0.0898× 10−3 m3 kg−1,
LM = 3.34× 105 J kg−3, and ∆p = 1 atm = 1.013× 105 Pa we obtain

∆TM = −273×
¡
0.0898× 10−3¢
3.34× 105

¡
1.013× 105¢ ◦C

∴∆TM = —0.0074◦C

Therefore, an increase in pressure of 1 atm decreases the melting point of
ice by 0.0074 ◦C. (Ice is unusual in this respect; the specific volumes of the
liquid forms of most materials is greater than the specific volumes of the
solid forms. Consequently, the melting point of most materials increases
with increasing pressure.)

3.66 By differentiating the enthalpy function, defined by eqn. (3.47), show thatµ
∂p

∂T

¶
s

=

µ
∂s

∂α

¶
p

where s is entropy. Show that this relation is equivalent to the Clausius-
Clapeyron equation.

[Hint: dh =

µ
∂h

∂s

¶
p

ds+

µ
∂h

∂p

¶
s

dp
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and, since h is a function of state,

∂

∂p

µ
∂h

∂s

¶
p

=
∂

∂s

µ
∂h

∂p

¶
s

]

Solution: From (3.47)

h = u+ pα

∴ dh = du+ pdα+ αdp

= (dq − pdα) + pdα+ αdp

dh = TdS + αdp (1)

Therefore

h = h (s, p)

∴ dh =

µ
∂h

∂s

¶
p

ds+

µ
∂h

∂p

¶
s

dp (2)

From (1) and (2), µ
∂h

∂s

¶
p

= T and
µ
∂h

∂p

¶
s

= α (3)

But,
∂

∂p

µ
∂h

∂s

¶
p

≡ ∂

∂s

µ
∂h

∂p

¶
s

(4)

From (3) and (4), µ
∂T

∂p

¶
s

=

µ
∂α

ds

¶
p

or, µ
∂p

∂T

¶
s

=

µ
∂s

dα

¶
p

(5)

Since ds =
dQ

T
=

Lv
T
for a phase change from liquid to vapor at T, and if

the vapor is saturated, so that p = es, and dα = α2 − α1 (5) becomesµ
∂es
∂T

¶
s

=
Lv

T (α2−α1)
which is the Clausius-Clapeyron equation.
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