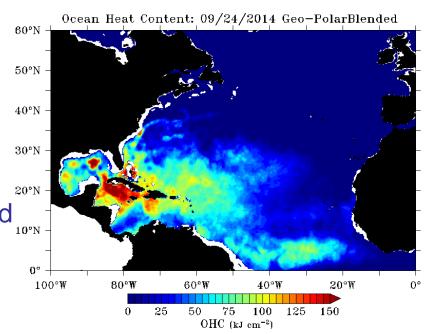


Poster Session I


Tuesday April 28, 2015

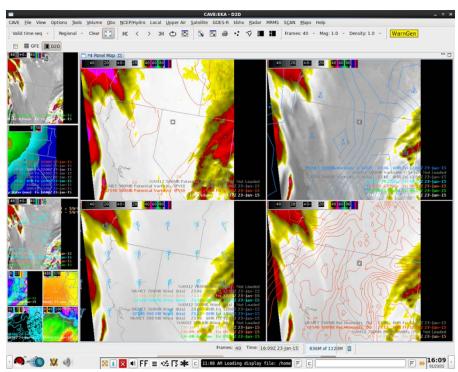
10:30 AM & 3:00 PM

NOAA Operational Oceanic Heat Content Product Suite David R. Donahue

NOAA/NESDIS/OSPO/SPSD Satellite Products Branch (SPB)
College Park, MD

- Satellite derived Ocean Heat Content is a measure of integrated vertical temperature from the sea surface to the depth of the 26°C isotherm.
- OHC is an important input to hurricane/typhoon forecast models.
- Uses GOES-POES blended SSTs and altimeter derived Sea Surface Height Anomalies.
- Currently operational over the North Atlantic and Pacific. Soon to be operational over the South Pacific.

Satellite derived Ocean Heat Content in the North Atlantic



Total Operational Weather Readiness – Satellites (TOWR-S) Project

Eric M. Guillot, Michael W. Johnson, Joseph K. Zajic, R. Bradley Pierce, and Brian S. Gockel

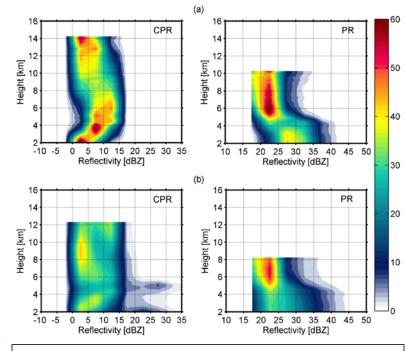
NWS Office of Observations/Integrity Applications Incorporated/NESDIS STAR

- TOWR-S is the NWS' User Readiness project for GOES-R and JPSS
 - Focus on AWIPS-II development
 - Approach begins with forecaster and works backward to the satellite
 - Use cases from NWS directives
 - Developed and tested representative AWIPS-II procedures using simulated GOES-R data

AWIPS-II CAVE displaying simulated GOES-R

imagery in real-time

Comparison of CloudSat and TRMM Reflectivities


Authors: Kapil Dev Sindhu and G.S. Bhat

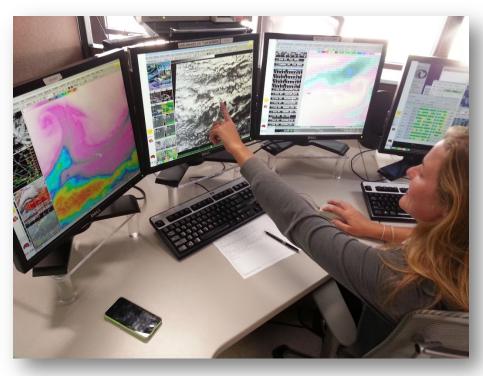
(Email id: kapil@caos.iisc.ernet.in)

Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore Bengaluru-560012, INDIA

- CloudSat-CPR (cloud profiling radar) and TRMM-PR (precipitation radar) are space-borne radars which measure cloud's characteristics.
- The convective clouds' towers are well captured by TRMM-PR while CloudSat-CPR can capture the spatial extent well while in convective region, the CPR signals get attenuated.
- Although their technical specifications shows overlap with in range 17-40 dBZ while it is not a case. Both radars' reflectivities show a little overlap (~ 2-5 dBZ).

Full published article is accessible here: (www.ias.ac.in/jess/aug2013/947.pdf)

Contoured Frequency by Altitude Diagrams (CFADs) of CloudSat-CPR and TRMM-PR reflectivities



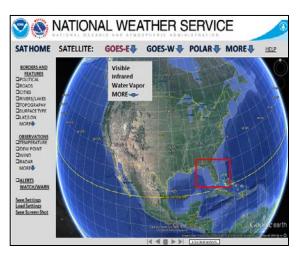
R2-Whoa

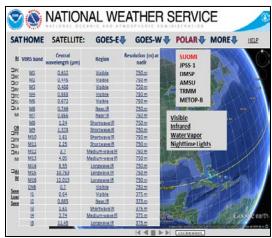
Challenges and solutions for executing best practices in transferring NOAA's research to NWS operations Jordan J. Gerth

CIMSS/Univ. of Wisconsin, Madison, WI

- Operational user requirements now guide many satellite science activities under established and formalized proving grounds, but are they achieving the desired result?
- Topics include:
 - Oversight and Strategic Direction
 - Operational Demonstrations
 - Research Proposals

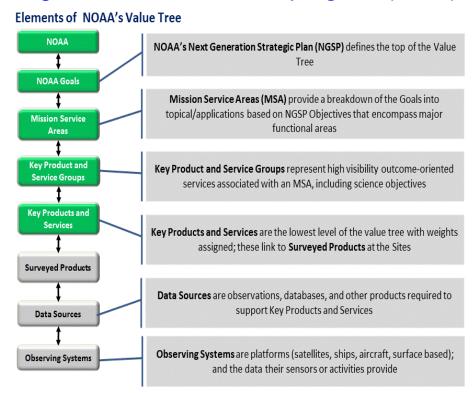
A meteorologist at the Honolulu forecast office uses VIIRS imagery while preparing an aviation forecast


Display and Access Ideas for Future Earth Satellite Imagery


Robert Gillespie, Bill Bergen, Sterling Weems, Stacey Williamson Carr Astronautics, Greenbelt, MD

The goal of this project is to present more accessible Satellite Imagery to decision-makers and the general public, funded under NOAA SBIR contract WC-133R-14-CN-0077.

- The Earth Observer product is a general Earth Image viewing system with powerful localization and visual analytic tools
- Provides near real-time display of Imagery and related data
- Can be customized for Earth Imaging use, including National Weather Service Satellite Imagery
- Scalable information display system
- Integrates with map or globe display
- Automatically ingests imagery and other Earth data
- Intuitive, easy to use interface
- Powerful localization and visual analytic tools
- Platform agnostic will run on any client/server
- Supports GIS capabilities/functionalities



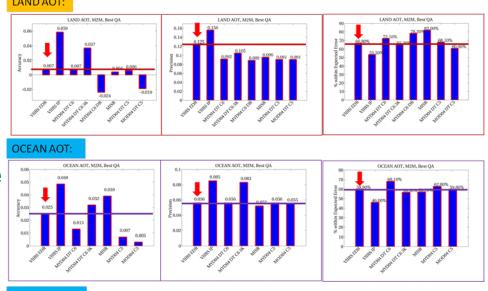
Assessment of GOES-R Product Potential Benefits using the NOAA Observing System Integrated Analysis II (NOSIA-II)

Louis Cantrell, David Helms, Robert Reining, and Aaron Pratt NOAA/NESDIS Technology, Planning and Integration for Observation program (TPIO)

- NOSIA-II Value Tree can translate incremental improvements in data sources for NOAA's key products and services into measurable benefits to each of NOAA's Mission Service Areas
- TPIO and GOES-R program offices working to measure improvements enabled by GOES-R

NOSIA-II Value Tree

Spatial and Temporal Characterization of the Difference between Satellite Aerosol Retrievals and AERONET

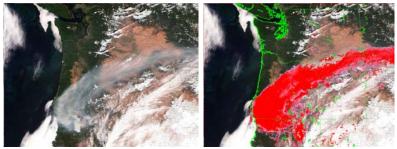

Jingfeng Huang (NOAA @ UMD ESSIC), Hongqing Liu, Istvan Laszlo, Shobha Kondragunta, Lorraine A. Remer, Ho-Chun Huang, Hai Zhang, Stephen Superczynski, Maksym Petrenko, Brent N Holben, Robert C Levy, Ralph A Kahn & Charles M Ichoku

- VIIRS Aerosol EDR achieves competitive performance to heritage sensors
 - Accuracy and precision meet the JPSS1 Specification Thresholds
 - Very competitive ocean AOT and AE retrieval performances
 - Good accuracy but relatively higher uncertainty for Land AOT

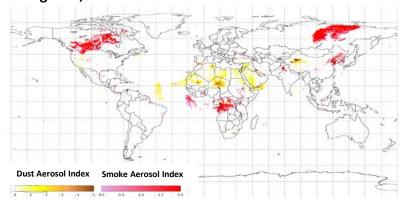
2 May 2012

28 Oct 2011

VIIRS EDR and IP vs. Aqua/Terra MODIS DT (C6&3K), DB (C6) and Terra MISR


Algorithm to Detect Dust and Smoke in Suomi-NPP VIIRS Imagery

Pubu Ciren (1) and Shobha Kondragunta (2)

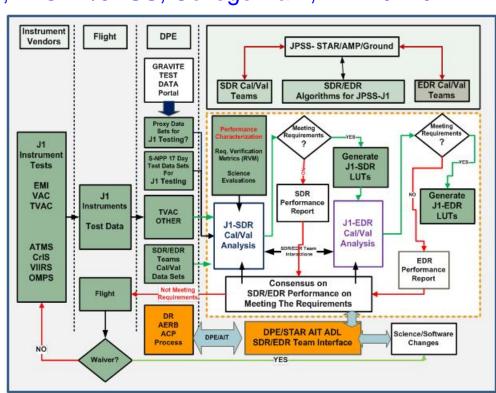

(1). I.M. Systems Group, Inc. (2). NOAA/NESDIS/STAR

National Oceanic and Atmospheric Administration

- An algorithm based on observations from deep-blue and shortwave-IR developed for MODIS has been adapted for VIIRS.
 - The developed algorithm is simple, fast, and easy to be implemented operationally.
 - Validations against AERONET observations and CALIOP VFM products indicated that accuracy and POCD for dust and smoke detection can be as high as 80% and 75%, respectively.

VIIRS RGB image (left) and the detected smoke (right) on August 3, 2014 over west coast of U.S.

Global VIIRS smoke/dust detection on July 16,2014

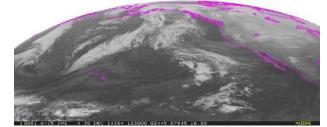

Poster # 1-17 Preparing for the Future of Environmental Satellites

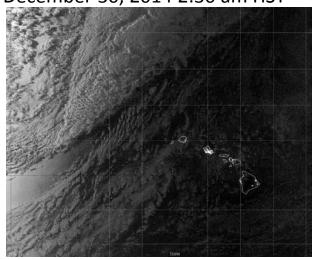
JPSS-1 Science Data Product Verification and Validation: Pre-Launch to Post-Launch Plans

Murty G. Divakarla¹, Lihang Zhou², Xingpin Liu¹, Walter Wolf², Eric Gottshall², Janna Feeley², Tom Atkins¹, Robert Steadley², and Ray Godin² IM Systems Group@NOAA/STAR; ²NOAA/JPSS, College Park, MD 20740

The JPSS STAR (JSTAR) science teams in association with DPES and AMP assure an unmitigated success for JPSS-1 science data product verification and validation

- The JSTAR science teams have the S-NPP experience and have all the expertise needed to develop, improve, and refine xDR science product algorithms to meet J1 science requirements.
- ✓ The JSTAR science teams and JPSSAIT/DPES team have all the
 infrastructure in place for routing
 J1/Uppers xDR algorithm(s) in
 compliance with the Algorithm Change
 Management Plan (ACMP).


Pathway for the J1 xDR Product Realization


Subtropical and Tropical Frontal Passages: A Hawai'i Perspective

Jordan J. Gerth and Eric K. Lau
University of Wisconsin SSEC and NOAA/NWS/Pacific Region

- Polar orbiting satellite data provide added value when used in conjunction with geostationary satellite data.
 - Often times, frontal passages across Hawai`i are very weak, especially over the eastern portion of the Hawaiian Island Chain.
 - Suomi NPP VIIRS Day Night band provide "night time" visible imagery and fills the gap of GOES-15 at night.

GOES-15 Imager 10.7 μm IR window December 30, 2014 2:30 am HST

Suomi NPP VIIRS Day Night Band December 30, 2014 2:18 am HST

Facilitating JPSS-1 Algorithm Development using EPL Review Process

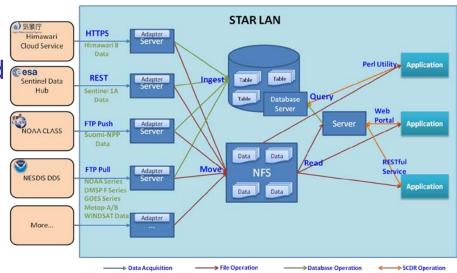
V. J. Mikles¹, K. Sprietzer¹, B. Das¹, W. Wolf², and the STAR Algorithm Integration Team ¹IMSG, ²NOAA/NESDIS/STAR

- Enterprise Lifecycle Review Process
 - Follows JPSS and SPSRB standards
 - Ensures consistency in design, documentation, and delivery
 - Identifies and involves stakeholders at all stages
 - Algorithm Development
 - Configuration Management in Clearcase ensures common baseline for all developers
 - AIT-developed Chain Run tool facilitates efficient and consistent tests of interdependent algorithms

Poster # 1-22

Quality Assurance

- AIT documentation is centrally located and managed
- AIT tracks and traces product requirements
- SASQUATCH and RiskQUATCH tools allow us to communicate requirements and risks in a controlled fashion


STAR Central Data Repository (SCDR): An Integrated and Effective Framework for Satellite Data Acquisition and Dissemination

Weiguo Han¹, Joseph Brust²

¹UCAR VSP at NOAA/NESDIS/STAR, ²NOAA/NESDIS/STAR

College Park, MD

- SCDR provides a stable, reliable, and continually available near real-time satellite data source for calibration, validation, simulation, production, and monitoring activities
 - Retrieve and ingest large amount of near real-time satellite and ancillary data from various providers
 - Offer multiple easy and consistent interfaces to obtain satellite data of interest in a timely manner
 - Save time and cost on data collecting, storing, and searching, and reduce data latency and data duplication

System Architecture

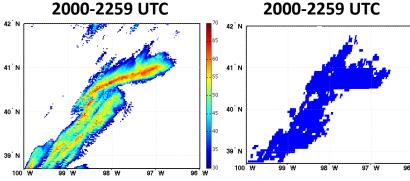
Advancement of Satellite-Imager Based Overshooting Top Decision Support Products

Kristopher Bedka

NASA Langley Research Center

- A 2nd generation probabilistic overshooting cloud top (OT) detection product has been developed, with improvements based on GOES-R Proving Ground feedback
 - Detection algorithm uses enhanced visible & IR pattern recognition and additional NWP fields
 - Algorithm trained and validated using a database of 2000+ global MODIS OT events
 - Probabilistic framework eliminates fixed detection thresholds which improves detection capability
 - Can be applied to any satellite imager, enabling both weather and global climate applications
- An improved method for OT height assignment has also been developed using CloudSat, MODIS, and GEO imager observations

With OT Texture Detection


GOES-14 IR and Severe Wx Reports

GOES-14 0.82 Micron Visible Imagery 2014-05-11 22:01:00Z Overshooting Top Detection Using Visible Texture Analysis Severe Weather Report 2014-05-11 22:01:00Z

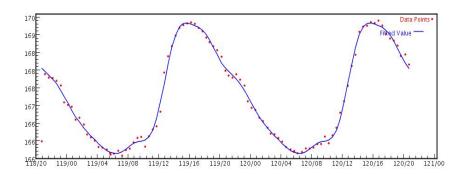
GOES-14 Visible

Reflectivity at 4 km > 30 dBZ GOES-14 OT Detection 2000-2259 UTC 2000-2259 UTC

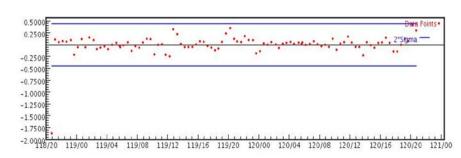
Poster # 1-26

Adaptive Trending and Limit Monitoring Algorithm

Zhenping Li¹, Dave Pogorzala², Ken Mitchell¹, J. Paul Douglas¹,


- 1. ASRC Technical Services, Lanham, MD.
- 2. Integrity Applications Incorporated, Chantilly, VA
- The radiometric calibration data $d(t_i)$ with a diurnal behavior can be expressed as a Fourier expansion function:

$$f(t) = a_0 + \sum_{n=1}^{m} \left(a_n \cos \frac{2n\pi t}{24} + b_n \sin \frac{2n\pi t}{24} \right)$$

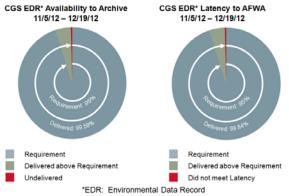

• The coefficients (a_n, b_n) can be obtained through an iterative weighted least square fit to minimize:

$$\chi^{2} = \sum_{i=1}^{N} (f(t_{i}) - w_{i}d(t_{i}))^{2}$$

- The function f(t) provides the trending of the radiometric calibration parameters.
- The outliers can be easily identified that would otherwise remain unidentified by a simple mean and standard deviation-based trending approach.
- Implemented for trending the GOES-R ABI radiometric parameters

The trending for GOES13 channel 4 detector 1 bias term

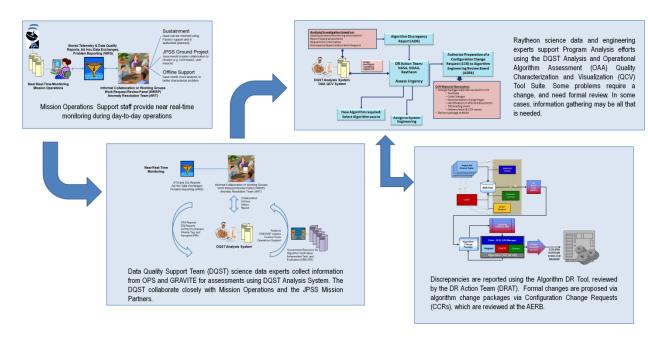
The difference $f(t_i) - d(t_i)$ the blue line represents 2σ deviation



Assured Weather Satellite Information Delivery Kerry Grant, Shawn Miller, Shawn Cochran

Raytheon Intelligence, Information and Services Aurora, Colorado

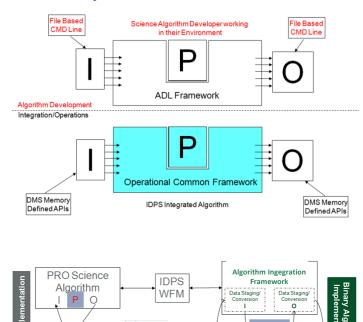
- The CGS plays a key role in facilitating the movement and value-added enhancement of data from satellite-based sensor data to delivery to the consumers
 - Architecture advances implemented for JPSS-1 increase data availability and reduce latency for end user
 - Improvements directly benefit user applications, such as the Global Forecast Models, Cloud Cover Analysis, and various unique missions, such as Forest Fire management and Post-Event Power Outage Assessments



Maintaining JPSS Product Quality Kerry Grant, Wael Ibrahim, Paula Smit, Kurt Brueske

Raytheon Intelligence, Information and Services Aurora, Colorado and Omaha, Nebraska

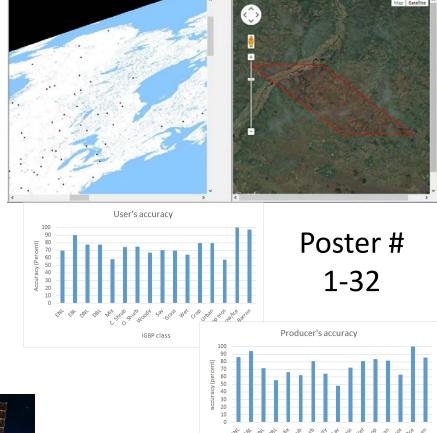
- Detecting, identifying, and resolving quality issues in a timely fashion is essential for operational systems
 - Tools, techniques, and processes are in place to detect changes in product quality, identify root causes, and rapidly implement changes to the operational system to bring suspect products back into specification


Process to detect and analyze quality issues and initiate changes

Rapid Algorithm Integration in JPSS CGS Kerry Grant, Shawn Miller, Michael Jamilkowski

Raytheon Intelligence, Information and Services Aurora, Colorado and Greenbelt, Maryland

- Raytheon has developed tools, processes, and techniques to significantly shorten the time and effort required to implement algorithm changes into operations
 - The Algorithm Development Library allows scientists to easily work in their home environments then drop production code directly into IDPS
 - The Algorithm Integration Framework facilitates integration of binary or non-ADL source directly into IDPS


DMS

Validation of JPSS S-NPP VIIRS Surface Type EDR

Rui Zhang¹, Chengquan Huang¹, Xiwu Zhan²

- 1. Department of Geographical Sciences, University of Maryland, College Park, MD 20742
- 2. NOAA/NESDIS Center for Satellite Applications and Research (STAR), College Park, MD 20740
- A new validation has been conducted on JPSS S-NPP Surface type EDR
 - An integrated validation interactive tool has been developed for the validation.
 - Approximate 5000 pixels were validated based on stratified random sampling.
 - 73.92% of overall classification accuracy has been obtained, which exceeds 70% requirement.

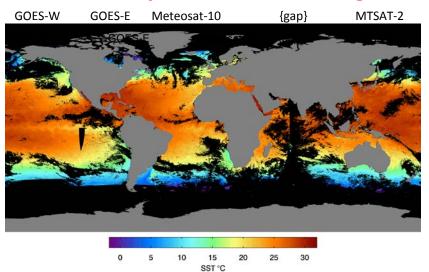
Validation tool, user's and producer's accuracy

Research to Operations of New and Enhanced NESDIS Satellite Products

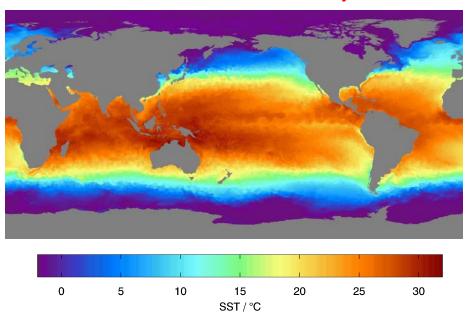
Stacy Bunin¹, Tom Schott², Bonnie Reed³

¹ Noblis, Falls Church, VA

² NOAA/NESDIS/OSGS, Suitland, MD


³ Science and Technology Corporation, Columbia, MD

National Oceanic and Atmospheric Administration


- Atmospheric, oceanic, and land surface satellite product development efforts transitioning to operations include
 - Continuity products for replacement satellites
 - New and enhanced capabilities from existing satellite systems
 - New products from new satellite systems

NOAA's Operational Sea Surface Temperature Products and Applications Eileen Maturi-NOAA/NESDIS/STAR/SOCD-College Park, Maryland

Geostationary SST Product Coverage

5km Blended SST Analysis

APPLICATIONS

Oceanic Heat Content Products Ocean Forecast Products Coral Reef Watch Products CoastWatch Products

Marine Fisheries Products

Improving Noah LSM Performance using Near Real Time Surface Albedo and GVF

Jifu Yin, Xiwu Zhan, Christopher R. Hain, Li Fang, Jicheng Liu (NOAA/NESDIS/STAR, College Park, 20740 MD USA)

Experiment Details:

- •OLP—static GVF and Al;
- •DA01—weekly GVF and static Al
- •DA02—static GVF and monthly Al
- •DA03—weekly GVF and monthly Al

Major Results:

With respect to *in-situ* (179 SCAN sites and 7 SURFRAD sites) measurements, the improvements of assimilating the near real time (NRT) GVF and Al data on Noah LSM performance could be up to:

- ❖11.04% for root-zone SM
- ❖3.2% for root-zone ST
- ❖9% for net radiations

for time period longer than one week. And the drought monitoring capacity of the Noah LSM is significantly enhanced using NRT GVF and Al.

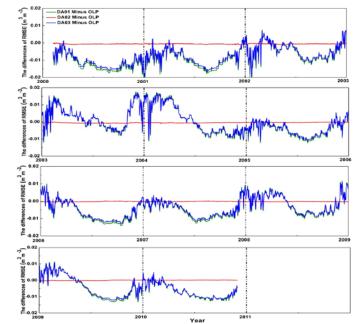


Figure 1. Time series of daily differences in 60-100 cm soil moisture (SM) RMSE between OLP case and each of three DA cases. The positive (negative) values indicate DA cases increase (decrease) RMSE in comparison with OLP case.

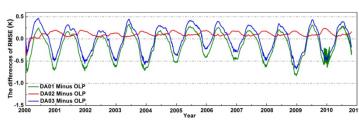


Figure 2. As Figure 1, but for 60-100 cm soil temperature (ST).

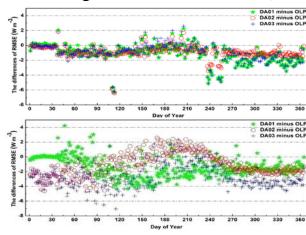


Figure 3. As Figure 1, but for LWnet (top) and SWnet (bottom).

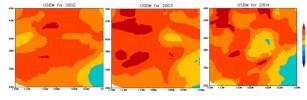


Figure 4. USDM patterns during 2002-2004.

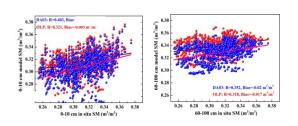
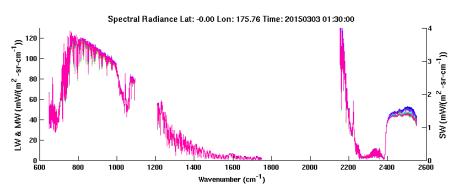
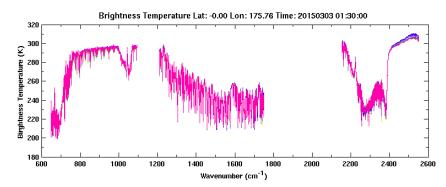


Figure 5. Domain (in Figure 4) averaged OLP/DA03 cases model 0-10 cm (left) and 60-100 cm (right) SM compared with in-situ Observations during 2002-2004 periods.

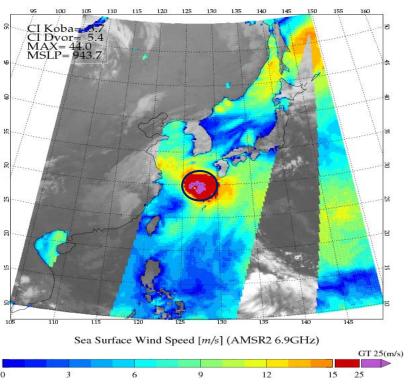

Evaluating the inter-FOV radiance difference of S-NPP CrIS Full Spectral Resolution (FSR) Data Product

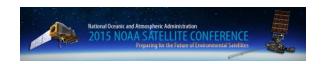
Xin Jin et al. NOAA/NESDIS/STAR and ERT, Inc., College Park, MD


- NOAA/STAR provides the CrIS FSR SDR since last Dec 4. One critical issue is to evaluate the inter-Field-Of-View radiance difference
 - Nadir-view clear sky pixels over tropical oceans are selected for evaluation
 - Comparing to normal-resolution SDR products, the FSR SDR inevitably has higher noise. But improved calibration algorithm reduces at least part of the increased uncertainty.
 - This study will help to establish a hyperspectral radiance dataset with climate-level quality

NPP CrIS Earth Scene, Equator

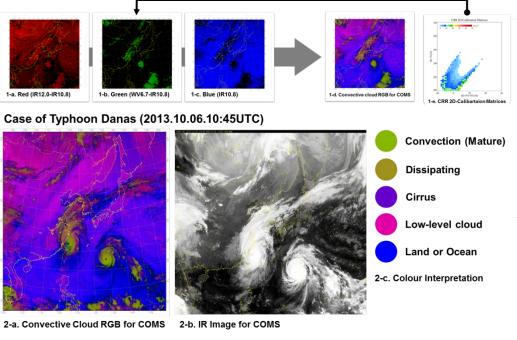
Created at 03/03/2015 - 13:03:37 UTC

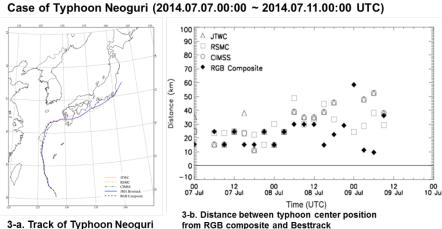

FOV1 FOV2 FOV3 FOV4 FOV5 FOV6 FOV7 FOV8 FOV9


Physical retrieval of ocean surface wind speed and its application to Typhoon analysis using microwave satellite remote sensing Sungwook Hong¹, Hwa-Jeong Seo², Inchul Shin² and Sang-Jin Lyu²

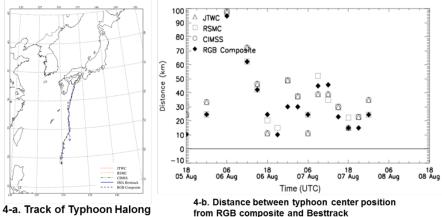
- 1. Sejong University, Korea, 2. National Meteorological Satellite Center, Korea Meteorological Administration
- A unique sea surface wind speed retrieval method (Hong and Seo algorithm) from passive microwave satellite observations is developed for use in both rainy and rain-free conditions.

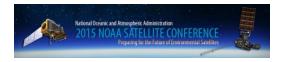
- This algorithm is based on a combination of satellite-observed microwave brightness temperatures, sea surface temperatures, and horizontally-polarized surface reflectivities from RTTOV model, and surface and atmospheric profiles from ECMWF.
- The retrieved wind speed(W_S) shows the improved results (low bias and RMSE)
- *W*_S was directly validated with the TAO buoy data and indirectly validated with the TCs intensity.


Fig.1 Sizes (radius of 15 m/s wind speed) of Typhoon DANAS using GCOM-W1/AMSR-2 6.9GHz(Hong & Seo algorithm) on 17:10 UTC Oct. 7, 2013 .

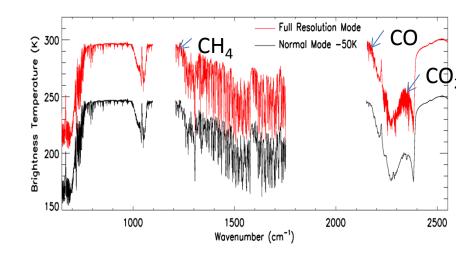

RGB product for convective clouds using COMS

Sungwook Hong¹, Yuha Kim² and Sang-Jin Lyu²


1. Sejong University, Korea, 2. National Meteorological Satellite Center, Korea Meteorological Administration



- The convective cloud RGB is composed from a combination of 12.0-10.8μm, 6.75-10.8μm,10.8μm (Fig 1).
- The threshold values of the RGB product for detection of convective clouds are taken from LUT of Convective Rainfall Rate(CRR) (Fig 1-e).
- Typhoon center positions from the RGB convective cloud product shows comparable or even better result relative to the best track data (Fig 3~4) implying that the RGB convective cloud product can be used to improve the accuracy of typhoon center position analysis.



NOAA/STAR S-NPP CrIS Full Spectral Resolution SDR Processing

Xiaozhen (Shawn) Xiong^{1,2}, Yong Han², Yong Chen^{2,3}, Likun Wang^{2,3}, Denis Tremblay^{2,4}, Xin Jin^{1,2}, Lihang Zhou² ¹Earth Resources Technology, Inc, MD; ²NOAA Center for Satellite Applications and Research, College Park, MD; ³University of Maryland, MD; ⁴Science Data Processing Inc.

The CrIS full spectral (FRS) data on S-NPP and J-1 will greatly improve trace gases observation over normal resolution

- ✓ Data is available since Dec.4, 2014;
- ✓ A modified ADL code made by STAR SDR group is used to generate the data with a latency within 12 hours;
- ✓ Data is delivered on STAR FTP site (ftp://ftp2.star.nesdis.noaa.gov/smcd/xxiong/) and GRAVITE (https://gravite.jpss.noaa.gov/).


CrIS full spectrum with 2223 channels (non apodized, red) vs current normal resolution mode with 1317 channels(black).

Applications of GOES data in Brazil Nelson J. Ferreira

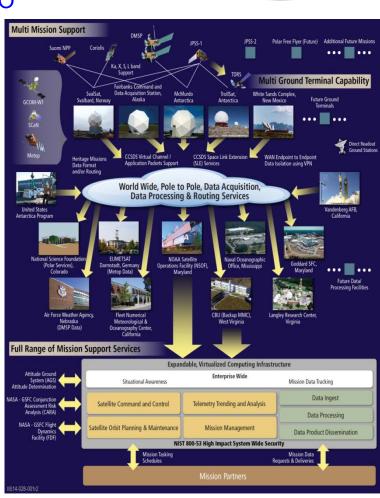
DSA/CPTEC Brazilian Institute for Space Research – INPE Cachoeira Paulista, SP, Brazil

GOES-13 has been successfully used in Brazil providing imagery data every 30 minutes in routine mode and every 3 hours in RSO mode. This reception routine enabled to weather forecasts, disaster improve management, drought, fires warnings and to monitor extreme weather events. Also training material on the use of GOES over South America was designed to increase the forecasters' skill in incorporating satellite data in the short-range forecast, and warning decision makers processes.

GOES Products available at CPTEC/INPE

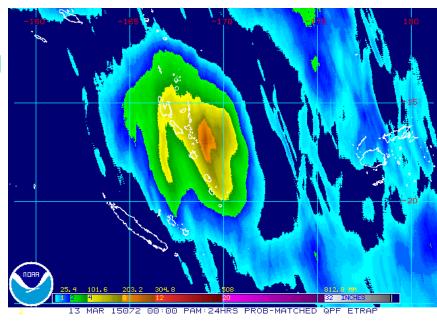
Joint Polar Satellite System (JPSS) Common Ground

System (CGS) Multimission Support #1-45


Mike Jamilkowski, Shawn Miller and Kerry Grant

Raytheon Intelligence, Information and Services
Greenbelt MD & Aurora CO

- CGS design tenants emphasize ability to incorporate multiple missions
 - Modular functionality
 - Flexible interfaces
 - Improved information integration across missions
 - Generalized capabilities rather than point solutions
- Support for new missions can be tailored to specific needs
 - Data acquisition and routing
 - Command and control
 - Data processing and delivery
- Block 3.0 will provide opportunity to align the CGS with the NOAA Enterprise Ground vision

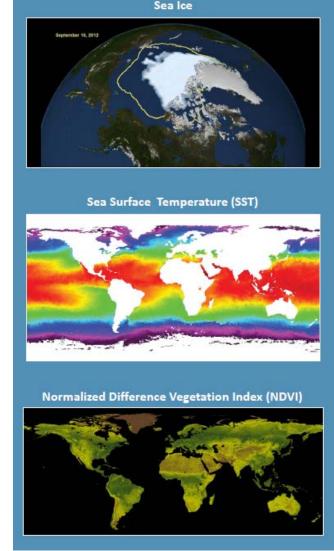


CGS Block 2.0: Operational, Multi-Mission Enterprise Ground

Improvements to Ensemble Tropical Rainfall Potential (eTRaP)

The eTRaP team: Robert J. Kuligowski, Stan Kidder, Liqun Ma, Robert Glassberg, Clay Davenport, Rachel Hatteberg, Mike Turk, Sheldon Kusselson, and Beth Ebert

- An operational forecast of rainfall from tropical cyclones:
 - Based on extrapolating satellite-retrieved rainfall along the predicted storm track
 - Uses an ensemble of rainfall retrievals and forecast tracks
 - Accumulations and exceedance probabilities in 6-h segments out to 24 h
 - Used by forecasters worldwide
- Recent and ongoing improvements:
 - Removed biases in probabilities
 - Additional ensemble members to improve forecast quality and reliability


eTRaP for Cyclone Pam at 0000 UTC 13 March 2015

A Systematic Approach to Building and Maintaining NOAA's Climate Data Records (CDRs)

Daniel Wunder NOAA/NCEI Asheville, NC

- NOAA's CDR Program office has transitioned 28 satellite CDRs to initial operational capability (IOC)
 - Research to Operations (R2O) is a six phase process which culminates with an Operational Readiness Review (ORR).
 - The source code, documentation and data are available to the public, ensuring a transparent and scientifically defensible CDR.
 - A follow on commitment to sustained Operations and Maintenance (O&M) provides routine product generation extending the record.
 - Specific applications are developed to help end users and decision makers better understand the CDR data and potential applications.

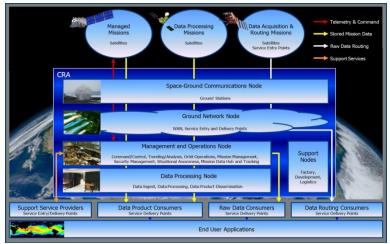
Poster # 1.49

Adding a Mission to the Joint Polar Satellite System (JPSS)

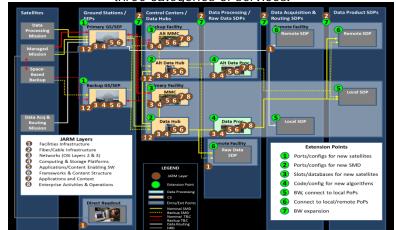
Common Ground System (CGS) #1-50

Shawn Miller, Kerry Grant and Mike Jamilkowski

Raytheon Intelligence, Information and Services
Aurora CO & Greenbelt MD

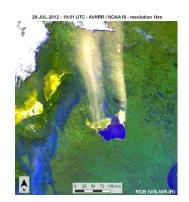


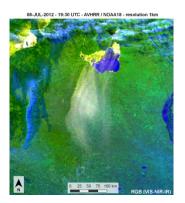
JPSS


Raytheon

- Managed Mission Services: CGS flies the satellite, manages mission resources, acquires and/or routes the raw data, and generates and distributes data products.
- Data Processing Mission Services: CGS acquires and/or routes the raw data, generates and distributes data products.
- Data Acquisition and Routing Mission Services: CGS acquires and/or routes the raw data.
- Scalability is a key tenet of the CGS. The CGS architecture, mapped to the Joint Architecture Reference Model (JARM) and locations of CGS extension points for scalability, enables the addition of new missions to the CGS, and essentially serves as a "checklist" per each new mission, which has been demonstrated in expanded CGS multi-mission support to date.

High-level architecture of the CGS as it applies to the three categories of services.




CGS Architectural Extension Points

Characteristics of detected salt storms by AVHRR sensor on NOAA satellites from 2006 to 2014 in Argentina Diana Rodríguez

National Weather Service Buenos Aires, Argentina

- The occurrence of salt storms near the Mar Chiquita Lake (Argentina) from 2006 to 2014 is documented using satellite images captured by sensor AVHRR on NOAA 17, 18 and 19 satellites.
 - The images reveal that these storms have occurred with varying degrees of development, from a weak plume to a thick cloud of great extent.
 - These forms of expression are linked to hydrological and meteorological factors.
 - The number of storms varies throughout the year and from one year to another.
 - Most storms recorded occurred during the winter months, with winds almost exclusively south or north, but more with northerly winds
 - The observed 11µm minus 12µm brightness temperature difference (BTD) is always negative for these clouds.



The impact of the high temporal resolution GOES/GOES-R moisture information on severe weather systems in regional NWP model

Pei Wang, Jun Li, Yong-Keun Lee, Zhenglong Li, Jinlong Li, Zhiquan Liu, Tim Schmit, Steve Ackerman

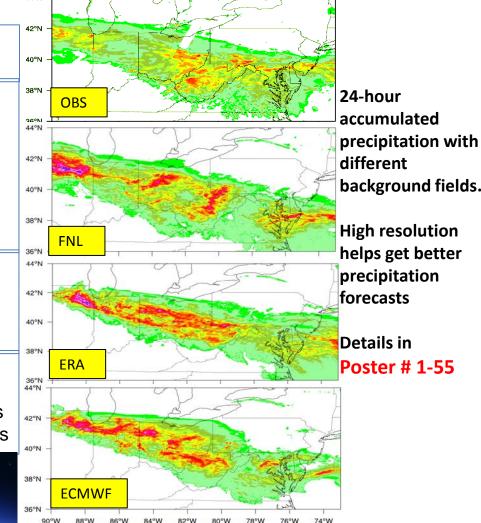
SDAT — Satellite Data Assimilation for Tropical storm (CIMSS/SSEC/UW-Madison)

GSI v3.1: 3-Dvar Data Assimilation Method

- NAM background error covariance matrix
- Cycled bias correction
- Conventional Data from GTS

http://cimss.ssec.wisc.edu/sdat/

- Satellite radiances: AMSU-A from AQUA, Metop-A, NOAA-15 and NOAA-18
- LPW: Layer Precipitable Water (three layers)


2012 June Derecho

- Jun 29 12z to Jun 30 12z, 2012
- Impact from different background fields
- Total three layers PW; separate layer PW

Background sensitivity

- NCEP FNL: 1-degree, 26 vertical levels
- ECMWF ERA-Interim: 0.7-degree, 37 vertical levels

NOAA/NESDIS SOUNDING DATA PRODUCTS FROM THE NEXT GENERATION OF SATELLITES

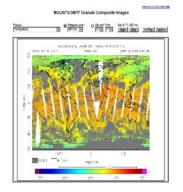
A.K. Sharma

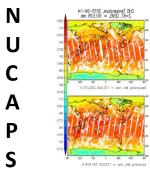
NOAA/NESDIS Office of Satellite and Product Operations (OSPO)

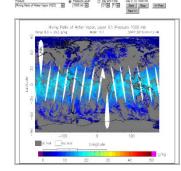
http://www.ospo.noaa.gov/Products/atmosphere/soundings/index.html

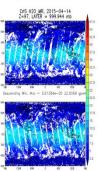
This poster presentation will include several of the tools developed and deployed for the sounding products monitoring and data quality assurance which lead to improve the maintenance and sustainment of the **Environmental Satellites Processing Center** (ESPC) processing systems. The presentation will include the discussion on the ESPC system architecture involving sounding data processing and distribution for CrIS, IASI, and GOES sounding products. Discussion will also include the improvements made for data quality measurements, granule processing and distribution, and user timeliness requirements envisioned from the next generation of JPSS and GOES-R satellites. There have been significant changes in the operational system due to system upgrades, algorithm updates, and value added data products and services.

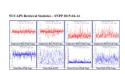
NUCAPS Sounding Products


SNPP Global Gridded 0.5 deg lat x 2 deg lon Images


uesday. April 14, 2015


0-24 Z
<u>0-24 Z</u>
0-24 Z
<u>0-24 Z</u>
0-24 Z
<u>0-24 Z</u>
0-24 Z
0-24 Z
0-24 Z

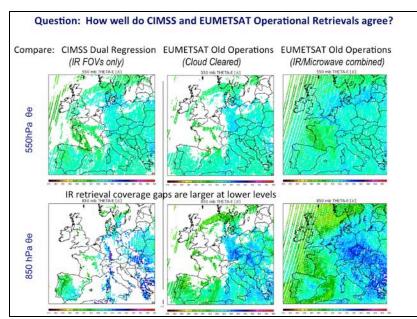

NUCAPS Sounding Products


The NOAA Unique CrisS/ATMS Processing System (NUCAPS) was developed to generate (1) spectrally and spatially thinned radiances, (2) retrieved products such as profiles of temperature, moisture, trace gases and clous-cleared radiances, and (3) global validation products such as radiosende matchaps and gridded radiance and profiles. The thinned radiance products are produced in BUFR format using the NetCDF4 Reformating Tockit (NART) and are tailored to specifically Numerical Weather Prediction (MNP) centres. The NUCAPS Environmental Data Records (EDR) products are archived in Comprehensive Large Array-Data Stewardship System (CLASS) for non-real time users and can be acquired from www.nof class proas pow.

Using hyper-spectral sounding products to improve short-range forecasts in the Alaska Region

Ralph A. Petersen¹, Lee Cronce¹, William Line², Robert Aune³, Carven Scott⁴

¹CIMSS, University of Wisconsin-Madison, Madison, WI


²CIMMS, University of Oklahoma (and SPC), Norman, OK

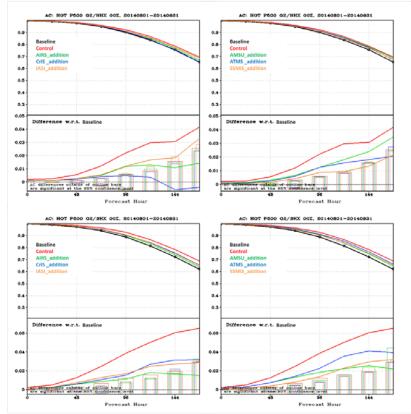
³NOAA/NESDIS Advanced Satellite Products Branch (ASPB), Madison, WI

⁴NWS, Alaska Region, Anchorage, AK

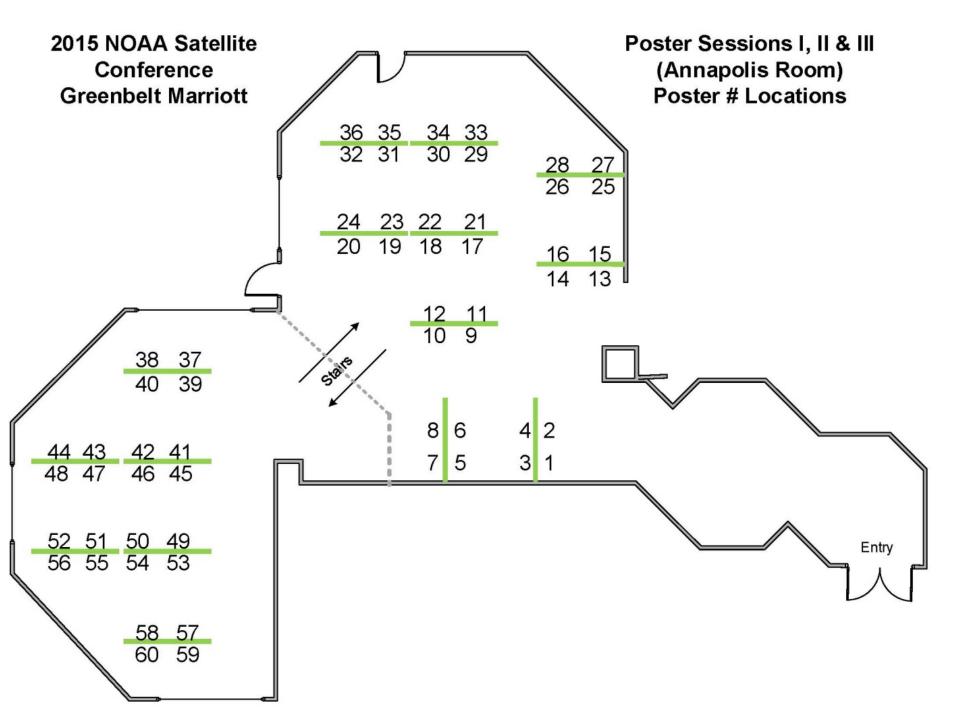
National Oceanic and Atmospheric Administration

- Improving Alaska Region
 Forecasts by Adding Predictive
 Component to JPSS Soundings
 - Assess accuracy of JPSS moisture retrievals over high latitude land through compares with GPS Total Precipitable Water (TPW) observations
 - Provide forecasters tools to identify, track and anticipate extreme horizontal and vertical variations in the atmosphere (especially moisture fields).

Comparison of NearCasts using CIMSS, NESDIS and EUMETSAT Retrievals


Infrared and Microwave Data Addition Observing System Experiment Impacts Using the NCEP Global Forecast System

James Jung¹ and Mitch Goldberg²


¹CIMSS/UW, Madison WI

²NOAA/NESDIS/JPSS, Greenbelt MD

- Specific sensors (AIRS,IASI, CrIS, ATMS, AMSU, SSMIS) were added to a baseline of observations
 - Infrared and Microwave sensors have relatively similar impacts (AIRS = AMSU).
 - Microwave sensors ATMS and AMSU show similar and mostly equivalent improvements.
 - IASI shows more overall improvements than the other infrared sensors.

Thank you to all poster presenters!