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ABSTRACT

This document is the Algorithm Theoretical Basis Document (ATBD) for the next generation of Geostationary Operational Environmental Satellite (GOES-R) Land Surface Emissivity (LSE) products. It is a high level description and the physical basis for the physical retrieval of LSE using clear sky infrared (IR) radiances measured by the Advanced Baseline Imager (ABI) to be flown on the GOES-R. The unique feature of geostationary satellites, the time continuity, is utilized to assist and improve the LSE retrieval, in that the LSE is assumed to be temporally invariable within a short period of time while the land surface temperature (LST) is assumed to be temporally variable. This version matches the LSE code delivered in June 2011 (Version 5). In this version, the community radiative transfer model (CRTM) and its associated Jacobian methods are used. However, the fast analytical Jacobian method developed by Li (1994), which is the default setting in the previous versions, is still available as a selectable method. The Pressure-Layer Fast Algorithm for Atmospheric Transmittances (PFAAST), which is the default radiative transfer model in the previous versions, is abandoned in this version. This document contains a description of the algorithm, including scientific aspects and practical considerations. 
1 
INTRODUCTION
1.1 Purpose of This Document

The land surface emissivity (LSE) algorithm theoretical basis document (ATBD) provides a high level description and the physical basis for the retrieval of LSE using infrared (IR) radiances taken by the Advanced Baseline Imager (ABI) flown on the next generation of Geostationary Operational Environmental Satellite (GOES-R) series of NOAA geostationary meteorological/environmental satellites. The product of LSE is retrieved from clear sky radiances within an M ( M ABI field-of-view (FOV) area box. Here one FOV means one pixel. One field-of-regard (FOR) is defined as M ( M FOVs. The ABI LSE product is a new product, which is not provided by the current and previous GOES Sounder. 

1.2 Who Should Use This Document

The intended user of this document are those interested in understanding the physical basis of the algorithms and how to use the output of this algorithm to optimize the LSE product for a particular application. This document also provides information useful to anyone maintaining, modifying, or improving the original GOES-R LSE algorithm.  
1.3 Inside Each Section

This document is broken down into the following main sections.

· Observing System Overview: Provides relevant details of the ABI and provides a brief description of the product generated by the algorithm.

· Algorithm Description: Provides a detailed description of the LSE algorithm including its physical basis, its input and output.

· Test Data Sets and Outputs: Provides a description of the test data set used to characterize the performance of the algorithm and quality of the data products.  It also describes the results from algorithm processing using real SEVIRI data and simulated ABI data.

· Practical Considerations: Provides an overview of the issues involving numerical computation, programming and procedures, quality assessment and diagnostics and exception handling. 

· Assumptions and Limitations: All the assumptions and limitations concerning the algorithm theoretic basis have been described and discussed.

1.4 Related Documents

· GOES-R Algorithm Interface and Ancillary Data Description Document (AIADD), draft version, written and maintained by the GOES-R Algorithm Integration Team.

· GOES-R Ground Segment Functional and Performance Specification (F&PS) and to the references given throughout.

1.5 Revision History

Version 0.0 of this document was created by Dr. Jun Li of Cooperative Institute for Meteorological Satellite Studies (CIMSS) at the UW-Madison and Timothy J. Schmit of Center for Satellite Applications and Research (STAR) of NESDIS, with the intent to accompany the delivery of the version 1.0 algorithms to the GOES-R AWG Algorithm Integration Team (AIT). (July 2008)
Version 0.0 comments/suggestions from N. Nalli (STAR/PSGS) (September 2008)

Version 1.0 was developed by Zhenglong Li, Xin Jin and others to meet 80% ATBD requirement. (July 2010)

Version 2.0 was developed by Zhenglong Li, Graeme Martin and others to meet 100% ATBD requirement. (June 2011)

2 OBSERVING SYSTEM OVERVIEW

2.1 Products Generated

The GOES-R ABI LSE algorithm is responsible for the retrieval of LSE for an FOR consisting of M ( M ABI FOVs. In this document FOR specifically refers to the pixel group for one LSE retrieval. At the time of this writing, M = 5 (default) is assumed for LSE product with 10 km spatial resolution. The product generation needs brightness temperatures (BTs) from all ABI InfraRed (IR) channels of three times steps along with numerical weather prediction (NWP) outputs for the last time step. The output is LSE of all IR window channels. Table 1 shows the requirements for LSE product. More requirement information can be found in the GOES-R Mission Requirement Document (MRD) and the Functional and Performance Specification (F&PS). 

Note: FOR size M is configurable via the LSE runtime settings. The settings for this version define M=3 for MSG/SEVIRI, and M=5 for GOES-R/ABI. The algorithm is run on an FOR instead of a single FOV because the horizontal resolution requirement of LSE product is 10 km, roughly 5 ( 5 ABI FOVs or 3 ( 3 SEVIRI FOVs. Besides, this process greatly reduces the processing time. Another parameter configurable via settings is the minimum fraction of clear pixels required to perform the retrieval. This value is set to 0.2 in the current settings, indicating that a retrieval will only be performed if 20% of the pixels in an FOR are clear.

Table  AUTONUM  Requirements for GOES-R LSE product

	Name
	User and Priority
	Geographic Coverage
	Horizontal resolution
	Mapping accuracy
	Refresh rate
	Product measurement precision@
	Product Extent Qualifier
	Conditions Qualifier
	Product measurement accuracy

	LSE
	GOES-R
	C
	10 km
	5 km
	1 hour
	0.05
	<67 Deg
	Clear condition
	0.05



The LSE is the relative power of the land surface to emit energy by radiation. It is defined as the ratio of the energy radiated by the land surface to energy radiated by a blackbody at the same temperature. LSE has a spectral variation from as low as 0.6 to 1 depending on the surface materials, soil moisture, vegetation cover and surface roughness.

2.2 Instrument Characteristics

The next-generation geostationary satellite series will enable many improvements and new capabilities for imager-based products. The ABI (Schmit et al. 2005, see Table 2) on the next-generation GOES-R will improve upon the current GOES imager with more spectral bands, faster imaging, higher spatial resolution, better navigation, and more accurate calibration. The ABI expands from five spectral bands on the current GOES imagers to a total of 16 spectral bands in the visible (VIS), near-infrared (NIR), and IR spectral regions. The coverage rate for full disk scans will increase to at least every 15 min, and the continental U.S. (CONUS) region will be scanned every 5 min. ABI spatial resolution will be 2 km at the sub-point for 10 IR spectral bands, 1 km for select NIR bands, and 0.5 km for the 0.64 µm VIS band (Schmit et al. 2005). It is envisioned that better LSE product will improve selected ABI products, such as sounding and land surface temperature (LST) products. 

Both the current GOES Sounder and Imager have only 2 window channels in thermal IR (TIR) region, which are very sensitive to the surface and are useful for LSE retrieval. ABI, on the other hand, has 4 IR window spectral bands (8.5, 10.35, 11.2 and 12.3 (m), greatly enhancing the ABI’s capability to resolve the LSE spectral variation. Studies have shown that the ABI with the help from NWP forecast profiles, will be able to provide LSE product with quality similar as the operational MODIS products, but with much better temporal resolution. 

Table  AUTONUM  Channel numbers and approximate central wavelengths for the ABI.
	Channel Number
	Wavelength (µm)
	Used in LSE retrieval

	
	
	Regression
	Physical

	1
	0.47
	
	

	2
	0.64
	
	

	3
	0.86
	
	

	4
	1.38
	
	

	5
	1.61
	
	

	6
	2.26
	
	

	7
	3.9@
	
	

	8
	6.15
	(
	

	9
	7.0
	(
	

	10
	7.4
	(
	

	11
	8.5
	
	(

	12
	9.7
	(
	

	13
	10.35
	(
	(

	14
	11.2
	(
	(

	15
	12.3
	(
	(

	16
	13.3
	(
	


@ The LSE algorithm returns LSE of 3.9 (m as well. However, this channel is not processed in the same way as the other four window channels in the ABI LSE algorithm. Due to the large RTM model uncertainty, large instrument noise and solar contaminations in this channel; the physical iteration does not change the LSE value of this channel. So the retrieval of 3.9 (m is set as the first guess of 3.9 (m LSE. 

3 ALGORITHM DESCRIPTION

This section describes the theoretical basis of ABI LSE algorithm and its implementation.

3.1 Algorithm Overview

The current GOES Sounder and Imager (Menzel and Purdom 1994; Menzel et al. 1998) do not provide an operational surface IR emissivity product. However, an emissivity product is very important for other products from GOES-R ABI. Products that require emissivity information include, but are not limited to, temperature and moisture retrievals (Ma et al., 1999; Li et al., 2008), LST (Becker and Li, 1990; Wan and Dozier, 1996; Yu et al., 2008)), dust and aerosol property retrieval (Zhang et al., 2006; Li et al., 2007), cloud-top pressure (CTP) product (Menzel et al., 1992; Li et al., 2001; Li et al., 2005), Outgoing Longwave Radiation (OLR) and trace gas retrieval (Clerbaux et al., 2003; Ho et al., 2005). In addition, global IR surface emissivity is also very important for the assimilation of IR radiances in numerical weather prediction (NWP) models over land (LeMarshall et al., 2006) and climate modeling and prediction (Jin and Liang, 2006). A global IR surface emissivity product has been developed for the Moderate Resolution Imaging Spectroradiometer (MODIS) (Wan and Li, 1997), and has been used widely in research (Seemann et al., 2008). However, the operational MODIS product provides IR surface emissivity data at only monthly intervals; furthermore, the spectral coverage of the six MODIS IR window bands (3.7, 3.9, 4.0, 8.5, 11.0 and 12.0 µm) are different from that of ABI IR window bands. A monthly global database (Seemann et al., 2008) has been developed based on the operational MODIS emissivity product and hyperspectral IR emissivity measurements from laboratory measurements. For GOES-R products, such an emissivity database may lack information on temporal variations. Hyperspectral resolution IR sounders onboard the polar orbiting low earth orbit (LEO) satellites, such as the Atmospheric Infrared Sounder (AIRS) (Chahine et al., 2006) onboard the NASA Earth Observing System (EOS) Aqua, the Interferometer Atmospheric Sounding Instrument (IASI) onboard the European Meteorological Operational Satellite Programme (METOP-A), the Cross-track Infrared Sounder (CrIS) on the NPP/JPSS (joint polar-orbiting satellite system), have the capability for retrieving the IR emissivity spectrum. Recently, an algorithm has been developed for retrieval of hyperspectral IR emissivity spectra from global radiance measurements of advanced sounders (Li et al. 2007; Zhou et al. 2008) onboard LEO satellites such as Aqua and Metop-A (Li and Li 2008). LEO IR emissivity may be used for geosynchronous (GEO) product since it can be updated routinely and converted to ABI IR bands; however, due to the view angle difference between GEO and LEO, and the orbital gaps of LEO, the application of LEO emissivity to GEO products has some limitations.    

Therefore, it is important to develop the IR emissivity from ABI spectral bands directly so that other ABI products (LST dust/aerosol, radiation budget, cloud-top properties, OLR, etc.) have the option to use the ABI emissivity product. The LSE algorithm is developed by the GOES-R algorithm working group (AWG) emissivity team at the Cooperative Institute for Meteorological Satellite Studies (CIMSS) at the University of Wisconsin – Madison (UW). It is based on the assumption that the LST is temporally variable while the LSE is temporally invariable within a short period of time, i.e. a few hours. GOES-R ABI radiances from multiple time steps are used to retrieve temporally invariable IR LSE and variable LST.

3.2 Processing Outline

The process initialization gives access to three time steps of ABI IR radiances or BTs, ABI cloud mask (CM), satellite local zenith angle (LZA, this should be the same for the three time steps) and ancillary data (topographic data, land-water mask, longitude, latitude). Only if the pixels or FOR of all the three time steps are labelled as clear (at least 20 % of all pixels within the FOR must be clear; plus all pixels within the FOR must be over land) and the satellite zenith angle of all pixels or FOR is below the configurable maximum zenith threshold (67 degree recommended, but in practice the angle is extended to 70°; results with angle larger than 67° are not recommended for use), the LSE retrieval is performed for this FOR. 

BTs of all IR channels (channel 7 – 16) are read into the LSE algorithm although some of them are not used. There are two options to get the radiances of the FOR. Use either the warmest clear pixel or the mean of all clear pixels. Our study shows the warmest clear pixel is less likely to be cloud-contaminated. So the default option chooses the warmest pixel (11 µm BT) to represent the FOR. The ABI IR radiances are used in two processes. The first one is the regression and the second is the physical retrieval. In the regression, all IR bands except the 3.9 and 8.5 (m are used in a non-linear regression (Table 2), which may supply the first guesses of LSE and LST as well as other ancillary information, such as temperature, moisture and ozone profiles needed to drive the radiative transfer model. The regression algorithm is performed three times, one for each time step. 

Note all profiles are in 101 atmospheric pressure level coordinates unless specified. See Table A5 for the pressure coordinate in 101 levels.
Based on the requirement of the LSE product, the algorithm runs hourly. 

The whole process includes:
(1) 
Pre-processing: 

· Check whether the cloud mask (CM) product and Level 1 BTs are available for the first two time steps. If not, run the cloud mask algorithm twice to generate BTs and CM information for the first two time steps as required by the third run, i.e. the LSE retrieval algorithm.

· Initialization in the third run: reading of processing options from the configuration file, reading of all coefficient file names, initialization of RTM, get calibrated ABI IR BTs and associated geographical ancillary data to process, read of ABI CM, etc. Read in the regression coefficient array for non-linear regression for generating the first guess.
· Collect clear pixels within the FOR for LSE retrieval. At least 20 % of all pixels within the FOR must be clear for each of the three time steps and all pixels within the FOR must be over land. 
· Take the BTs from the warmest pixel at 11µm band to represent the FOR for the regression.

· Take collocated forecast temperature and moisture profiles and forecast surface air pressure at the third time step as ancillary factors for regression, combining with the BTs from the three time steps, to generate the atmospheric profiles for three time steps. These profiles will be used as ancillary data in RTM calculation. The regressions also generate LST and LSE for the three time steps. The LST will be used as first guess in the retrieval. Since the LSE are assumed to be unchanged during the past 6 hours, they are averaged as first guess in the following physical retrieval. Another option, which is also the default option, to obtain LSE first guess is read in the monthly UW Baseline Fit emissivity database. 
· Bias adjustment of ABI BTs. A linear regression mode is assumed for bias correction. So far it is not done because we don’t have field data. However, there are two arrays are hardcoded in the sounding code and one is filled with 1.0 for slope and the other is filled with 0.0 for offset. These two arrays will be removed in the future and ancillary data will be introduced, containing the coefficients for bias correction.
 (2) 
Processing:

· Performing of physical retrieval for LSE in the physical retrieval module using the first guess. 

· Checking that the retrieved results are between limits and they have physical sense.

(3) 
Post-processing:

· Quality control (QC) is performed to determine the quality of the LSE retrieval.

· Writing output file.
A flowchart (Figure A1) is presented in the Appendix Section to help readers understand the whole process.
3.3 Algorithm Input

3.3.1  Primary Sensor Data

The list below contains the primary sensor data used by the LSE algorithm. The primary sensor data means information that is derived solely from the ABI observations and navigation.

· Calibrated BTs (K) for IR bands 7-16 from M x M (where M = 3 for SEVIRI and M = 5 for ABI) FOV array for three time steps
· Sensor’s local zenith angle (LZA) at the center of each M x M FOV array. This is the same for all the three time steps.
· Latitude at the center of the M x M FOV array
· Longitude at the center of the M x M FOV array
· ABI channel use index array

· NeDR (radiance detector noise) array

· ABI CM for each pixel in the M x M FOV array (developed by cloud team) for three time steps

· ABI land-water flag for each pixel in the M x M FOV array. This is the same for all time steps. 

If any of the data from previous time steps is missing, a quality flag of fatal processing error is set and the entire segment is skipped. If any BT for any pixel in an FOR for any time step is marked as bad, the FOR is skipped and a quality flag is set. If NWP data is missing for a given FOR, a quality flag is set and the FOR is skipped. 

3.3.2  Ancillary Data

The following lists and briefly describes the ancillary data required to run the LSE algorithm. Ancillary data means information that is not included in the ABI observations or navigation data.

· Non-ABI dynamic data
The following data is required from the NWP forecast model, which is generated every 6 hours. The forecast interval can be 3-hour, 6-hour, 9-hour, 12-hour or 18-hour. NWP data is temporally and spatially interpolated to FOR resolution as described in the GOES-R AIADD. It is also vertically interpolated to the 101-level of pressure ordinate, meeting the requirement of the radiative transfer model on atmospheric model as its input. It is suggested that for CONUS or meso-scale processing, regional NWP output is used, while global NWP data is used in full disk processing.
(1) Surface pressure
(2) Temperature profile 

(3) Moisture profile 
The following is calculated and bi-linearly interpolated to FOR coordinates as described in the GOES-R AIADD.

(4) Surface level index

· Non-ABI static data
1. Runtime settings. The default settings for ABI are shown as an example. 

&Name_Sounding_Emiss_Ret_Main

   

BLOCK_SIZE = 5

  

Min_Clr_Fraction = 0.2



NUM_Window_Chn = 4

   

Flag_Emiss_FG = 1

  

Flag_Jacobian = 1

   

Flag_Print    = 0

   

Flag_Max_or_Mean_BT = 0

 /

Here BLOCK_SIZE is the previously mentioned parameter M, where M x M is the size of the FOR array. Min_Clr_Fraction is the minimal clear sky fraction in the FOR. NUM_Window_Chn is the number of window channels used in the physical iterations. Flag_Emiss_FG is the switch to choose the first guess of LSE. Default of 1 indicates the UW-Madison Baseline Fit database will be used. Flag_Jacobian is the switch determining which Jacobian method is used in the physical retrieval. The value of 1 means the CRTM-associated K-matrix method is used; the value of 0 means the Li (1994) fast analytical method is used. Here the K-Matrix method is used as the default method because the Li (1994) method requires the explicit output of temperature, moisture and ozone transmittance profiles. However these profiles are not available in the officially released version 2.0.2. Flag_Print controls printing of trouble-shooting information. Flag_Max_or_Mean_BT controls the method used to determine the representative clear sky brightness temperatures in the FOR. The value of 0 means the MAX (or the warmest) FOV will be used to represent the FOR.

The settings for SEVIRI are nearly the same as that for ABI. The only differences are 1) the BLOCK_SIZE for SEVIRI is set to 3 as default and 2) the NUM_Window_Chn of SEVIRI is 3.

Because the retrieval is performed with regard to FOR instead of single pixels, the last a few columns or lines may not see a full block if the image size is not a multiple of block size. In that case, retrievals are skipped. 
2. The regression coefficient file (Refer to the GOES-R AIADD for a description of coefficients preparation). This is expected in a 2-D floating point array of size (num_predictors + 1)*num_angle_bins*num_predictands, where num_predictors is the number of predictors, 109 for ABI and 105 for SEVIRI, num_angle_bins is the number of LZA bins, 81 for both ABI and SEVIRI, and num_predictands is the number of predictands, 314 for ABI and 312 for SEVIRI. 
The algorithm accesses coefficients from the 2-D array in the following manner. First, the angle bin index 
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 is determined by rounding LZA to the nearest integer and adding 1, so that 
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, the coefficient array for the viewing zenith angle, is set as shown below. For j=1 to num_predictors:
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where C is the 2-D coefficients array, and ‘:’ indicates all elements along a dimension. Next 
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, the average value of predictands array, is set:
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Note that 
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 corresponds to the intercept term in Table 4 and 5. 

The above two non-ABI static inputs are listed in the green boxes in Figure A1. 

3. In addition, a clear-sky fast and accurate forward RTM along with the RTM coefficients is needed in the iterative physical retrieval process. The community radiative transfer model (CRTM) is used to perform RT calculation in the algorithm. There are two options to calculate the Jacobians of the retrieval parameters. The default option is to use CRTM. The other option is to use the analytical form of Jacobian developed by Li et al., (1994), which is faster but less accurate. For a complete view of the RTM mechanism, please refer to the Figure A1. CRTM routines called by the LSE algorithm are shown in yellow boxes in Figure A1. External routines described in the GOES-R AIADD are shown in blue boxes.
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Figure 1. IR surface emissivity at 8.3 µm from operational MODIS product.

4. IR LSE for ABI bands from the monthly UW-Madison Baseline Fit (BF) database. The default setting of the first guess of LSE is from the monthly UW BF database, developed at CIMSS by combining the operational MODIS emissivity measurements and laboratory measured hyperspectral emissivity spectra. Emissivity is available globally at ten wavelengths (3.6, 4.3, 5.0, 5.8, 7.6, 8.3, 9.3, 10.8, 12.1, and 14.3 μm) with 0.05-degree spatial resolution (Seemann et al. 2008). The database is spectrally interpolated to the ABI spectrum and spatially interpolated to center pixel coordinates as described in the AIADD. Unlike the regression-generated LSE, the BF database does not have any false diurnal change of emissivity. Some information about the emissivity database can be obtained from the following link: http://cimss.ssec.wisc.edu/iremis/. Figure 1 shows a global emissivity image of 8.3 µm from the operational MODIS emissivity product.
5. The following ancillary data, remapped to satellite grids, are mandatory:

· Land/water mask 

Atlas and water/land mask datasets covering the whole GOES-R disk in the default satellite projection at full ABI IR horizontal resolution are needed. 

3.4 Theoretical Description

Land surface IR emissivity is a key parameter for many other ABI products as mentioned in section 3.1. Surface IR emissivity varies with land surface types (according to soil type, land cover, and land use; Snyder et al. 1998; Peres and DaCamara 2005), viewing angle (Francois et al. 1997; McAtee et al. 2003), and time (following changes in the state of the vegetation and weather conditions, such as dew formation, rainfall, or snowfall). Nevertheless, many numerical weather prediction (NWP) and climate models still use static maps with a limited number of possible emissivity values prescribed per surface type (Jin and Liang 2006; Sherlock 1999; Ogawa and Schmugge 2004). Several methods have been proposed for the retrieval of IR emissivity from remote sensing data. 
The top of atmosphere (TOA) radiance is a combination of surface emitted radiance (in itself a result of emissivity and surface temperature) and the surface reflection of downward atmospheric flux, which are both absorbed and reemitted by the atmosphere, along with the upward emitted atmospheric radiation. Because of this mixing of surface (emissivity and temperature) and atmospheric signal, the direct retrieval of emissivity is a very difficult problem. Different approaches for solving the direct retrieval of emissivity include the temperature–emissivity separation method followed by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) team (Gillespie et al. 1999), the two-temperature method (TTM) (Watson 1992; Faysash and Smith 1999; Faysash and Smith 2000; Peres and DaCamara 2005), the day/night land surface temperature (LST) algorithm applied to MODIS data (Wan and Li 1997), among others (Rodger et al. 2005; Morgan 2005). All of these provide spectral (or channel) emissivity, which would have to be converted into broadband values for numerical model applications. A different approach called the vegetation cover method (VCM) (Peres and DaCamara 2005; Caselles et al. 1997) consists of the combination of the pixel fraction of vegetation cover (FVC) with a lookup table developed for spectral and broadband emissivities, and assigned to different vegetation and bare-ground types within a land cover classification. The pixel effective emissivity is estimated using information on the proportion of vegetation and exposed surfaces.

All the different approaches for the retrieval of thermal IR emissivity over land surfaces mentioned above have advantages and drawbacks. The choice of a given methodology essentially relies on the sensor characteristics, the required accuracy versus computation time, and the availability of (reliable) atmospheric temperature and humidity profiles. Two methodologies currently pursued by the Satellite Application Facility on Land Surface Analysis (Land SAF, http://landsaf.meteo.pt) (Schmetz et al. 2002; DaCamara 2006): (1) the Land SAF operational scheme consisting of a version of the VCM applied to the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) geostationary satellites and (2) an adaptation of TTM applied to SEVIRI split-window channels.  

Taking the advantage of high temporal information, the ABI LSE algorithm is based on the assumption that the LSE is temporally invariable while the LST is temporally variable within a few hours. Thus, by using ABI window IR radiances from multiple time steps, LSE and LST can be simultaneously derived. Experiments indicate that IR window spectral band radiances from three time steps that have large land surface temperature contrast are best for success in the ABI LSE retrieval. The temperature and moisture profiles from a short range forecast model are used for atmospheric correction in the LSE retrieval.  

In the GOES-R LSE algorithm, ABI radiances from three time steps that have a time difference of 3 hours are used to retrieve three skin temperatures and 4 surface IR emissivities (at ABI IR window bands). Therefore, ABI radiances at the current time step (Tcurrent) will be used together with that at three hours before (Tcurrent – 3) and six hours before (Tcurrent – 6) for the land surface temperature and emissivity retrieval.  
The algorithm has been tested using both the SEVIRI radiance measurements and the simulated ABI radiances. Both of them have one IR window channel with a center wavelength near or in 3.9 µm in the near IR (NIR) spectral region. Due to the large instrument noise, large uncertainty in radiative transfer calculation and daytime solar contamination, the physical retrieval of this channel is not performed. The LSE retrieval of this channel is set as the first guess. Therefore, ABI has four IR window channels for physical retrieval, while the SEVIRI has three.
The following describes the theoretical basis for the LSE algorithm. Readers may find useful information about this algorithm from Li et al., (2010). 

3.4.1
Physics of the Problem 

Neglecting scattering by the atmosphere, the true clear spectrum of the IR window spectral band radiance exiting the earth-atmosphere system is approximated by the radiative transfer equation (RTE)
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where 
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R

 is the exiting radiance at the top of the atmosphere or SEVIRI IR radiance, 
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 is the surface emissivity, 
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 is the Planck function, 
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 is the atmospheric transmittance from the top to the atmospheric pressure p, subscript s denotes the surface, 
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 is the downwelling transmittance, 
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 is forward model uncertainty and 
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 is the reflected solar radiation, which is ignored in the longwave IR window region. As shown in equation (3), the IR radiance has three major contributions: the surface emission, the upwelling atmosphere emission, and the reflection of the downwelling atmosphere emission by the surface.
The LSE retrieval problem is to solve the LSE on the right-hand side of equation (3) for the given radiance measurements. Since the LSE is closely coupled with LST to govern the surface emission, the retrieval of LSE must be performed simultaneously with the retrieval of LST. The atmosphere correction is also necessary because of its substantial contribution to the total radiance for the window channels.

3.4.2
Mathematical Description

3.4.2.1  Radiative Transfer Equation Linearization

Since the inverse problem is non-linear and ill-posed, there are no analytical solutions for the LSE retrieval problem, and regularization is needed. Usually, the first step is to linearize the RTE. Neglecting impacts from ozone and other trace gases, equation (3) could be linearized to the first order as 

[image: image20.emf]OR =K, OT, +K,0¢, + ¥ K, 0T+ Y K,0lnQ+e









   

d

R

=

K

T

s

d

T

s

+

K

e

de

n

+

K

T

d

T å

+

K

Q

d

ln

Q å

+

e

 




(4)

where δR is the radiance perturbation, which is the difference between the observation and the radiative transfer calculation from the first guess, K is the weighting function, defined as 
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, where x is the variable to be retrieved. It shows the sensitivity of the radiance at the TOA with respect to the change in the variable x. 
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 is the sum over different atmospheric layers. Notice the logarithm of the mixing ratio is used instead of the mixing ratio because it has a better linear relationship with the radiance. 
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 in equation (4) contains both forward model uncertainty and observation noise. Equation (4) shows that the radiance perturbation has three components: the LST, the LSE, and the atmosphere (including the temperature and the moisture profiles). Any perturbation in these components results in departure of the calculated radiances from the observed ones. 
Figure 2 shows the examination of the first-order linearization approximation using the matchup database (see section 4.1 for the details for the matchup database). In each panel, only one variable is allowed to have any perturbation (radiative transfer calculation using the first guess instead of the true state), meaning that the radiance perturbation is only caused by that variable. The x-axis represents the calculation from the right-hand side of equation (4), and the y-axis represents the calculation from the left-hand side of equation (4). A perfect linearization approximation would see these two exactly the same. 

All three IR channels show larger than 0.99 correlation coefficients (R) for LST, LSE and temperature profiles (Figure 2 a, b and c), indicating strong linear relationships. Together with the small STD (standard deviation) and bias, it is clear that that radiative transfer equation could be linearized using a first-order linearization approximation with respect to LST, LSE and the temperature profiles. 
However, for the moisture profiles in Figure 2 (d), the first-order linear approximation is not good enough. All three channels have correlation coefficients less than 0.86, and the STDs are larger than 0.28 K, indicating that the first order linear approximation is insufficient. In fact, better agreements could be reached if a second order expansion for moisture is included (not shown). However, the second order expansion only increases the complexity of equation (4), which makes it more difficult to solve. 
Although ABI has four IR window channel emissivities (8.5, 10.35, 11.2, and 12.3 µm) to be retrieved, similar results as Figure 2 are obtained (not shown): the radiative transfer equation has great linear relationship with respect to LST, LSE and temperature profiles, and ordinary linear relationship with respect to moisture profiles.
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Figure 2. Evaluation of first-order linearization of the radiative equation for SEVIRI channels 7 (8.7 µm), 9 (10.8 µm) and 10 (12 µm) for: a) the land surface temperature, b) the land surface emissivity, c) the temperature profile, and d) the moisture profile. The x-axis represents the actual Tb differences as observation minus the calculation and the y-axis represents the Tb difference calculated using a first-order linearization approximation. For each panel, only the variable in that panel was perturbed.
3.4.2.2  Atmospheric Correction 

It is difficult to solve equation (4) with only three IR window channels for SEVIRI or 4 channels for ABI. The number of unknowns is much larger than the number of observations. The linearization approximation analysis above shows more complexity with the atmospheric profiles, especially the moisture profiles. It is therefore necessary to simplify equation (4) without introducing significant errors, especially with regard to the atmospheric terms. A simplified equation not only makes it easier to solve for LSE and LST, but also with better retrieval precision. 

The simplest way to simplify Equation (4) is to remove the atmospheric contributions (# 3 and 4 terms on the right hand). This removal is equivalent to assuming that the atmospheric states are known and the first guesses of the atmospheric profiles perfectly represent the true state. 
In the LSE algorithm, a more advanced atmospheric correction method is utilized; one single variable is used to represent the atmospheric contribution
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where 
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, the pseudo mean temperature (PMT) is a combination of temperature and moisture error profiles. It doesn’t have a physical meaning. It is not updated in iteration. But its existence increases the retrieval quality of LSE and LST (see Li et al., 2011 for more details on how this simplification increases the LSE retrieval quality). For each channel, the radiance deviation caused by errors in the atmospheric profiles can be expressed as
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Let 
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the new linearized equation is
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This is the equation used to solve LSE and LST along with 
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3.4.2.3  Time Continuity 

For a general case, supposing there are N channels, there are N+2 unknowns in Equation (7): 1 LST, N LSE and 1 PMT of 
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. For a single time, the number of unknowns (N+2) is always larger than the number of equations (N). Therefore equation (7) is under-determined. As a result, it will be difficult to achieve good retrieval precision. 
Taking advantage of the high temporal information, the ABI LSE algorithm is based on the assumption that the IR LSE is temporally invariable while LST is temporally variable within a short period of time. Let M be the number of time steps. The total number of equations is M ( N. And the number of unknowns is N + 2M (each time step has one LST and one 
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For SEVIRI, the number of channels is N=3. The solution of Equation (8) is M ( 3. For ABI, the number of channels is N=4, the solution of equation (8) is M ( 2. 
The selection of the number of time steps and the time interval between two consecutive time steps is critical. Three factors are considered: the assumption of time continuity, the contrast among different time steps, and cloud contamination. The time span from the first to the last time step cannot be too large, otherwise the assumption of invariable LSE is violated, and the chance for all three observations to be clear is reduced. For better retrieval precision, it is important that there are substantial contrasts between different time steps. Therefore, the time distance between consecutive steps cannot be too small. Experiments with actual SEVIRI observations indicate three time steps with a time range of three hours are adequate. Therefore, SEVIRI radiances at the current time step (T0) will be used together with those at three hours before (T0 – 3) and six hours before (T0 - 6) for the LSE and LST retrieval. For ABI, we use the same setting of time steps and time intervals.
3.4.2.4  The Inverse Algorithm 

For three time steps and three channels, there are 9 equations and 9 unknowns for SEVIRI. Let 
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Here, the number in superscript denotes the time step, and the number in subscript denotes the channel index.
For ABI,
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. 
Equation (7) can be written as
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Here, K is the linear or tangent model of the forward radiative transfer model. It is also called a Jacobian matrix or k-matrix. A simple least square method gives an iterative solution to Equation (9)
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where 
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 is the Jacobian matrix in the nth iteration, 
[image: image45.emf]








   

E

 is the observation error covariance matrix which includes instrument noise and forward model uncertainty. 
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 is the vector of the parameters to be retrieved, 
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 is the initial state or the first guess, 
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 is the vector of the observed radiances used in the retrieval process, and 
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 is the calculated radiances based on the atmospheric and surface state of 
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. For given first guesses and the satellite observations, the parameters can be retrieved using Equation (10), if the matrix 
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 is invertible. 

However, one might find no solution or the solutions may not be realistic because the matrix 
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 is singular or near singular, in which the iteration will be unstable. Any noise in 
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 will be greatly amplified, and the retrieval will be unrealistic. Therefore, an optimal estimate method is needed to solve equation (9). A general form of the variational solution is to minimize the following cost function (Rodgers 1976; Li et al., 2000)
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where 
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 is the a priori matrix which constrains the solution, and it can be the inverse of the a priori first guess error covariance matrix or another type of matrix. In this algorithm, it is the inverse of the first guess error covariance matrix. More will be discussed about 
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the following quasi-nonlinear iterative form is obtained
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Note in Equation (12), 
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 is the first order derivative of the cost function with respect to 
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 is the inverse of the second order derivative of the cost function with respect to 
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Table  AUTONUM  The first guess and its source

	First guess
	Source (default)
	Note

	Temperature, moisture and ozone profile
	Regression
	NWP forecast profile from the last time step is used as predictors for all the three time steps.

	LSE
	The Monthly UW Baseline Fit database
	Can also be obtained from regression

	LST
	Regression
	


Compared with the least square method solution in Equation (10), the only difference is that Equation (13) has one extra term 
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. Physically, this term provides background information, so that the adjustment of the retrieval parameters is made accordingly in the iterations. Mathematically, this term adds extra positive values along the diagonal direction of matrix
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, decreasing the singularity of it and making the inverse 
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 (a) The first guess (
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For non-linear ill-posed inverse problems, the quality of the first guess is critical for the retrieval precision. Table 3 shows the sources of the first guess. Both the profiles and the LST are from regression. More details about regression are provided later in this section. 

There are two options to determine the first guess of LSE. The default is to use the monthly UW Baseline Fit emissivity database. The other option uses regressed LSE. In the physical algorithm, only the four window channels are used (Table 2). Due to the uncertainty of radiative transfer model, the large instrument noise and daytime solar contamination, emissivity of channel 3.9 µm is acquired from the first guess, and not changed in physical iterations. The algorithm supports both SEVIRI and ABI. 

Table  AUTONUM  The predictors and predictands of the ABI regression algorithm

	Predictors
	Predictands

	1-8
	BT
	1-101
	Temperature profile (K)

	9-16
	BT^2/250
	102-202
	Mixing ratio (g/Kg) profile in log 

	17
	Surface Pressure (hPa) from NWP forecast
	203-303
	Ozone profile (ppmv) in log 

	18
	Land Percentage (must be 1) *
	304
	LST (K)

	19
	Latitude of the FOR
	305-314
	LSE

	20
	Month of the observation
	
	

	21-74
	NWP temperature (K) profile from 100 to 1050 hPa in 101 coordinate 
	
	

	75-109
	NWP mixing ratio (g/Kg) profile from 300 to 1050 hPa in 101 coordinate
	
	

	110
	1 (this one corresponds to the intercept).
	
	


* In the training, land percentage is 1 for land and 0 for water. In the regression, land percentage is 1 because retrievals are only performed over land pixels.

The regression algorithm pursues a relationship between satellite measurements (along with NWP forecast profiles) and LSE, LST and atmospheric soundings, or 
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where 
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 is the predictands, a vector of retrieval parameters (n unknowns, including LSE, LST and atmospheric soundings), 
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 is the predictors, a vector of measurements (m knowns, including satellite measurements and other known variables), and 
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 is an operator matrix to calculate Y given X. With a training database, the regression coefficients can be obtained using the least square method
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And they are pre-determined. Table 4 and 5 show the predictors and predictands for ABI and SEVIRI respectively. For linear regression, there is an intercept. The coefficients are written into the file in the order of predictors as shown in Table 4 and 5. The last predictor is set as 1 to indicate that it is the intercept. 

For all three time steps, the same NWP temperature between 100 – 1050 hPa and moisture profiles between 300 and 1050 hPa from the last time step are used as additional predictors (predictor # 21 – 109 for ABI and 17 – 105 for SEVIRI) in the regression along with BTs to generate first guesses of LST, LSE and profiles of temperature, moisture and ozone (see Table 4 and 5). 

Table  AUTONUM  The predictors and predictands of the SEVIRI regression algorithm

	Predictors
	Predictands

	1-6
	BT
	1-101
	Temperature profile (K)

	7-12
	BT^2/250
	102-202
	Mixing ratio (g/Kg) profile in log 

	13
	Surface Pressure (hPa)
	203-303
	Ozone profile (ppmv) in log 

	14
	Land Percentage (must be 1)*
	304
	LST (K)

	15
	Latitude of the FOR
	305-312
	LSE

	16
	Month of the observation
	
	

	17-70
	NWP temperature (K) profile from 100 to 1050 hPa in 101 coordinate 
	
	

	71-105
	NWP mixing ratio (g/Kg) profile from 300 to 1050 hPa in 101 coordinate
	
	

	106
	1 (this one corresponds to the intercept).
	
	


* In the training, land percentage is 1 for land and 0 for water. In the regression, land percentage is 1 because retrievals are only performed over land pixels.

The three nominal time steps used for the LSE algorithm are t-6 hours, t-3 hours and t. However, due to the limited temporal range of the available simulated ABI data, the previous time steps t-2 hours and t-30 minutes were used when running simulated ABI test cases. The nominal time steps were used when running SEVIRI test cases.   

In the algorithm, all the IR channels’ BTs are transferred to the regression algorithm. That is 10 for ABI, and 8 for SEVIRI. Not all channels are used in the algorithm. Channels actually used are controlled by the variable of Flag_Chn. 

For ABI, it is set as 

INTEGER(LONG),DIMENSION(Num_Chn_ABI), PARAMETER :: Flag_Chn_Reg_ABI =  (/ 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1 /)

For SEVIRI, it is set as

INTEGER(LONG),DIMENSION(Num_Chn_MSG), PARAMETER :: Flag_Chn_Reg_MSG = (/ 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0 /)

The algorithm relies on spectral and spatial information. The performance of the LSE is therefore sensitive to any imagery artifacts or instrument noise. Calibrated measurements are critical because the algorithm compares the observed radiances to those calculated from a forward radiative transfer model (RTM). The channel specifications are given in the GOES-R MRD. 
(b) The first guess error covariance matrix

The first guess error covariance matrix must be consistent with the first guesses. There is no universal covariance matrix suitable for all first guesses. Ideally, the inverse of the first guess error covariance matrix is obtained by inverting the first guess error covariance matrix. However, due to lack of validation data, we cannot estimate the first guess error covariance matrix in such a way. Instead, we assume the correlative errors are small and negligible, which indicates the off-diagonal elements of the inverse of the error covariance matrix could be set as zero. The diagonal values are determined empirically. Our study shows that an LST error of 10 K and LSE error of 10%, 2% and 2% for the three SEVIRI channels, and PMT error of 1 K are suitable for the chosen first guess.  Therefore the H matrix, which is the inverse of the error covariance matrix, is defined as follows:
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For ABI, the LSE errors of 10%, 2%, 2% and 2% are suitable, and the H matrix is
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In the matrix, the 0.01 is derived by 1/(10 * 10), 100 is derived by 1/(0.1*0.1), 2500 is derived by 1/(0.02*0.02), and 1 is derived by 1/(1.0*1.0). All the off-diagonal elements are zeros.
(c) The observation error covariance matrix

Normally, matrix 
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 includes two components: the observation noise and the radiative transfer model uncertainty. The observation noise is estimated based on the instrument’s characteristics. It is typically less than 0.15 K for the IR window channels under consideration. The forward model uncertainty is estimated from the inter-comparison of different radiative transfer models. The uncertainty is assumed to be 0.2 K for the window channels. Similar to the background error covariance matrix, matrix 
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 is a diagonal matrix. This is equivalent to assuming that there are no correlative errors between channels of the observed radiances and the forward model uncertainties. For SEVIRI, matrix 
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where 
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 is the combined error from the observation noise and the forward model uncertainty for the ith channel at the jth time step. And for ABI, matrix 
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(d) Jacobian matrix 

The Jacobian matrix or k-matrix 
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 (the subscript n denotes the nth iteration in the physical retrieval procedure) describes the change of the radiance at the top of the atmosphere (TOA) with respect to the change in the parameters to be retrieved: 
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where 
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 is the index for spectral band in radiance vector 
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, and 
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 is the index for retrieval parameters in the parameter vector 
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. Jacobians can be calculated by a differential scheme or analytical method (Li et al., 1994). In this version, the CRTM Forward model is the only fast RTM. The CRTM-associated tangent linear Jacobian method is used as the default in the calculation of Jacobian matrix (K-Matrix). The analytical calculation from Li (1994) is also available in the code as an alternative option. To apply the Li (1994) method, the transmittance profiles of atmospheric temperature, moisture and ozone are explicitly needed. However, they are only available in a development version of CRTM. In the CRTM official Release version 2.0.2, which is the default RTM in this delivery, such transmittance profiles are not available. Therefore only the K-Matrix method is practically available. 

(e) Convergence control

In each iteration, a convergence test is performed based on the averaged BT residual. The averaged BT residual is defined as 
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where 
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 is the BT residual in nth iteration for the ith used channel, and m is the number of channels used. If  
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 is smaller than a given threshold (0.2 K), the convergence is reached and the iteration stops.
Figure A2 shows the flow chart of the physical iteration. Details about how the inverse is performed and how the quality flags are set, are both highlighted. 
3.4.3
Algorithm Output
The output of the algorithm (see Table A1) for each FOR is:
(1) LSE products in the five IR window channels (3.9, 8.5, 10.35, 11.2 and 12.3 (m) for ABI. For SEVIRI, LSE products in four IR window channels (3.92, 8.7, 10.8 and 12 (m). Note these LSE products are valid for all the time steps used in the retrieval. The default time steps are three with a time interval of 3 hours. 

Quality flags (see Table A2):

(2) General Quality Flag: including some general information of each pixel such as space background, latitude range, zenith angle range, missing NWP data, or number of clear pixel, and etc. 
· 0: good retrieval.

· 1: any pixel within the FOR is a space pixel. 

· 2: absolute value of latitude of the FOR is larger than given threshold (70 deg). 

· 3: satellite local zenith angle is larger than the given threshold (70 deg). 

· 4: number of clear pixels within a FOR is less than the given threshold (20 %).

· 5: missing NWP data.

· 6: fatal processing error.

· 7: the surface index is not reasonable. See “Setting the Surface Index” in section 5.5.
· 8: found NaN in the retrievals.

· 9: any pixel within the FOR is a water pixel.

· 10: Satellite BT is <100 or > 380.

Quality flag is initialized as a good retrieval. During the process, if quality flag is set as non-zero, retrieval of the FOR is skipped.

(3) Retrieval Quality Flags (see Table A3):

· 0: good retrieval. This is the initialization and the default value. 

· 1: non-convergence. The averaged BT residual is increased comparing the second iteration to the first iteration.

· 2: large residual. A final averaged BT residual larger than the given threshold (0.8 K). Note the large residual is checked after the max number of iterations is reached. 
· 3: non-completed convergence. The averaged BT residual is increased for iteration 3 and after.

· 4: bad retrieval. The retrieved LSE is larger than given threshold (1.02). Although the real max value of LSE is 1, a larger threshold is used because the observations and retrievals have error. 
(4) Surface Sensitivity Quality Flags: the radiance must show enough sensitivity to the LST and LSE in order for quality LSE retrieval. Two quality flags are provided to show whether the LST weighting functions of 11.2 (10.8 (m for SEVIRI) and 12.3 (12.0 (m for SEVIRI) (m are smaller than a given threshold (0.3). Two possible reasons may cause the LST weighting functions smaller than the threshold. If there is a lot of moisture in the atmosphere, the water vapour absorption reduces sensitivity to the surface, especially for the dirty window channel of 12.3 (m (12.0 (m for SEVIRI). Also, at large LZA, the increased optical path lowers the sensitivity to the surface. As a result of reduced sensitivity, the LSE retrieval quality is reduced. Two sensitivity quality flags are provided to users to help them better understand the retrieval quality. It is suggested not to use the LSE product if both quality flags indicate little sensitivity. If 11.2 (m shows enough sensitivity and 12.3 (m shows little sensitivity, we suggest not to use the LSE product of 12.3 (m. 
Diagnostic/intermediate information (see Table A3):

(5) Number of clear sky pixels in the FOR. It is required that at least 20 % of the pixels within the FOR are clear to perform the LSE retrieval for an FOR. However, it is expected that FOR with fewer clear pixels are more prone to cloud contamination. Use with caution on those FORs.

(6) Number of iterations for each retrieval. Generally, the convergence should be reached within 3 steps. If more iterations are needed, there might be something unusual with the retrieval, such as cloud contamination or low surface sensitivity or something else. Cautions are suggested to use the LSE retrievals with iterations more than 4 times. Especially, if large iteration numbers are associated with large residuals (see # 9), it is suggested not to use those retrievals. 
(7) The changes of the retrieval parameters in the first and the last iterations. Large changes in the first iteration indicate the first guess is quite different from the true values. Large changes in the last iteration might indicate that the algorithm struggles to converge. Take ABI as an example. For three time steps and four window channels, the number of unknowns is 10, including 3 LST, 4 LSE and 3 PMT. For any FOR with a change of LST larger than 1 K, if the number of iterations is larger than or equal to 4, the retrieval is considered unsafely converged; if the number of iterations is smaller than or equal to 3, the retrieval is considered normal (even the change of LST is large). Note the max number of iterations allowed is 8. 

(8) The LST of the last time step (# 3 in default setting). Although not required, LST is output for diagnostic purpose. A time series of LST imagery should provide a rough idea about the overall retrieval quality. The LST should have a diurnal change, and the heating and cooling of the surface should have an east-western pattern.

(9) Residuals of average BT between observation and calculation after retrieval. It is expected this variable is small if the iteration is successfully converged. Since the profiles are not adjusted in iterations, it is possible relatively large residuals exist. However, any residuals significantly larger than surrounding areas (by looking at the residual image) need more attention. 
Metadata:

(10) Please refer to Table A4 for the metadata.
4 TEST DATA SETS AND OUTPUTS

This section describes the inputs needed to run the LSE algorithm. These files are needed by the LSE software. 
Note: All of the ancillary inputs and external functions/subroutines applied in the LSE sounding algorithm are shown in the sketch map in Figure A1.
The list of inputs needed is the following:

· Inputs

1. ABI IR BT of three nominal time steps. Note: due to the limited temporal range of the available simulated ABI data, the previous time steps t-2 hours and t-30 minutes were used when running simulated ABI test cases in the version 5 delivery. 
2. ABI CM of three nominal time steps

3. GFS NWP forecast data of the last time step, 3-18 hour forecasts

· ABI geographical data 

1. Longitude

2. Latitude

3. LZA

· Coefficients 

1. Bias correction coefficients

2. Regression coefficients: 81 regression coefficient datasets; each coefficient dataset corresponds to one LZA ranging from 0 to 80 degrees

3. Error covariance matrix of background and first guess

4. Error covariance of observation matrix

5. RTM coefficients for the GOES-R satellites are also needed

· Geographical static data

1. IR surface emissivity for ABI IR bands from UW BF database. 
2. The land/water mask.
· LSE runtime settings
4.1 List of Proxy Data Sets

Here is a list of all proxy data sets used for validation purposes:

For SEVIRI:

· Real observations of full-disk MSG-1/SEVIRI IR BTs with spatial resolution of 3 km and temporal resolution of 15 minutes for August 2006;

· Simulated SEVIRI radiances using the match-up database. See below for details about this database. 

For ABI:

· Simulated ABI BTs for all IR channels over CONUS with spatial resolution of 2 km at 22:00, 23:30 on June 04, 2005 and 00:00 on June 05, 2005;
· Simulated ABI radiances using the match-up database. See below for details about this database. 

· 
· 
SEVIRI is a 12-channel Imager onboard the Meteosat Second Generation (MSG) (Meteosat 8 and 9). It observes the full disk of the Earth every 15 minutes (Schmetz et al., 2002). Among the 11 SEVIRI channels in Table 6, only the three window channels in thermal IR region (8.7, 10.8 and 12 µm) are tested. The water vapor (6.2 and 7.3 µm), CO2 (13.4 µm) and ozone (9.7 µm) channels are not sensitive enough to the surface for LSE and LST retrieval. The 3.92 µm channel is excluded due to large model uncertainty, large instrument noise and solar contaminations of this channel. More information on the SEVIRI can be found in Schmid et al. (2000), Schumann et al. (2002), Aminou et al. (2003), and Schmetz et al. (2002). The algorithm was applied to the SEVIRI observation from August 2006. 
A study using simulated SEVIRI radiances was conducted to help develop, test, diagnosis and improve the algorithm. A match-up dataset (Li et al., 2009, 2010) is used to generate the simulation dataset. This dataset includes:

· The temperature and moisture profiles from radiosonde observations (RAOB) from the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program at the Southern Great Plains (SGP) site (Miloshevich et al., 2006) at Lamont, OK (C1, 36°37’N, 97°30’W), 

· The GFS 6-hour forecast, 

· The laboratory-measured LSE spectrum from the MODIS emissivity library (http://www.icess.ucsb.edu/modis/EMIS/html/em.html) and the ASTER spectral library (Salisbury et al., 1994), 

· And the LST measured by the infrared radiometer at the ARM site (Morris et al., 2006). 

The time coverage is from August 2006 to August 2009. The sample size for clear skies is 1718.


	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	


The ARM RAOBs are preferred to the conventional RAOB because they are more frequent (4 times a day), and have better overall quality (Turner et al., 2003; Li et al., 2009). The sampling rate is 2 s through the flight. For each sample output, details about time in seconds and a quality flag are provided. 

The simulated SEVIRI radiances are calculated using the Pressure-Layer Fast Algorithm for Atmospheric Transmittance (PFAAST) models (Hannon et al., 1996) with the RAOB profiles, the measured LST and the laboratory-measured LSE. 

Table  AUTONUM  Channel numbers and approximate central wavelengths for the SEVIRI.

	Channel Number
	Wavelength (µm)
	Used in LSE algorithm

	
	
	Regression
	Physical

	1
	0.635
	
	

	2
	0.81
	
	

	3
	1.64
	
	

	4
	3.92
	
	

	5
	6.3
	(
	

	6
	7.3
	(
	

	7
	8.7
	
	(

	8
	9.7
	(
	

	9
	10.8
	(
	(

	10
	12.0
	(
	(

	11
	13.4
	(
	


The first guesses of LST and the surface emissivities are generated using
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where  xg is the first guess, xt is the true parameter, and E((xt) is a random number with a bias of 0 and a standard deviation (STD) of (xt (10 K for LST; 0.1, 0.02 and 0.02 for emissivities of 8.7, 11 and 12 (m, respectively). The first guesses of LSE are restrained within [0.5 0.99], [0.85 0.99] and [0.9 0.99] for the three channels, respectively. The GFS forecast is used as the first guess for the atmospheric profiles.

4.2 Output from the ABI LSE Algorithm
The primary output of the ABI LSE algorithm is the LSE of the four window channels of ABI. 

Moreover, the output also includes some variables for quality control, which are listed in Tables A2 and A3.
The following figures are the results of output variables based on the simulated ABI observations and GFS-6 hour forecast for the moment of 22:00 of June 4th, 23:30 of June 4th and 00:00 of June 5th 2005 over CONUS.
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Figure 3. The retrieved LSE of channel 11 (8.5 (m) using simulated ABI data.
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Figure 4. The retrieved LSE of channel 13 (10.35 (m) using simulated ABI data.
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Figure 5. The retrieved LSE of channel 14 (11.2 (m) using simulated ABI data.
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Figure 6. The retrieved LSE of channel 15 (12.3 (m) using simulated ABI data.
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Figure 7. The BT residuals at the end of the iterations
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Figure 8. The departure from first guess of LSE of channel 11 (8.5 (m) in the first iteration using simulated ABI data.
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Figure 9. The departure from first guess of LSE of channel 13 (10.35 (m) in the first iteration using simulated ABI data.
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Figure 10. The departure from first guess of LSE of channel 14 (11.2 (m) in the first iteration using simulated ABI data. 
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Figure 11. The departure from first guess of LSE of channel 15 (12.3 (m) in the first iteration using simulated ABI data.
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Figure 12. The departure from first guess of LST in the first iteration using simulated ABI data.
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Figure 13. The retrieved LST of the last time step using simulated ABI data.
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Figure 14. The number of clear pixels of each FOR using simulated ABI data.
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Figure 15. The number of iterations using simulated ABI data.
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Figure 16. The quality_flag_rtvl using simulated ABI data.
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Figure 17. The LST sensitivity quality flag of channel 14 (11.2 (m) using simulated ABI data.
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Figure 18. The LST sensitivity quality flag of channel 15 (12.3 (m) using simulated ABI data.
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Figure 19. The quality_flag using simulated ABI data.
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Figure 20. The departure from previous iteration of LSE of channel 11 (8.5 (m) in the last iteration using simulated ABI data.
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Figure 21. The departure from previous iteration of LSE of channel 13 (10.35 (m) in the last iteration using simulated ABI data.
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Figure 22. The departure from previous iteration of LSE of channel 14 (11.2 (m) in the last iteration using simulated ABI data. 
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Figure 23. The departure from previous iteration of LSE of channel 15 (12.3 (m) in the last iteration using simulated ABI data.
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Figure 24. The departure from previous iteration of LST of the last time step in the last iteration using simulated ABI data.

4.2.1 Precision and Accuracy Estimate

Results from SEVIRI observations using the GOES-R LSE algorithm show the bias and the STD are 

(1) 8.7 µm: bias of 0.0009, STD of 0.0388

(2) 10.8 µm: bias of 0.0015, STD of 0.0252

(3) 12.0 µm: bias of 0.0001, STD of 0.0255
These numbers are calculated using the UW Baseline Fit database as reference. Please see Figure 29 - 31 for the comparisons. 

The following procedures are recommended for diagnosing the performance of the LSE.

· Fraction of clear sky pixels within FOR

· Counts of total iterations.
· 11 and 12 μm LST weighting functions

· BT residuals between calculations and observations after final iteration.

· The change of the retrieval parameters in the first iteration.
· The change of the retrieval parameters in the last iteration.
4.2.2 Error Budget

The same match-up database introduced in section 4.1 is used to simulate ABI radiances to study the error contribution from various sources. Everything is the same as the SEVIRI radiance simulation except that ABI has four channels under consideration instead of three. For the four channels, the first guesses have precisions of 10 K for LST, 0.1, 0.02, 0.02 and 0.02 for emissivities of 8.5, 10.35, 11.2 and 12.3 (m. Note the PFAAST instead of CRTM is used in the study just for convenience. This has no impact on the conclusions. 

Table  AUTONUM  Configuration of the five experiments

	
	Atmospheric profiles
	Instrument noise
	Forward model uncertainty

	Exp1
	RAOB
	NO
	NO

	Exp 2
	FCST
	NO
	NO

	Exp 3
	FCST
	YES
	NO

	Exp 4
	FCST
	NO
	YES

	Exp 5
	FCST
	YES
	YES


There are four potential sources of retrieval error: the inverse algorithm, the atmospheric profiles, the instrument noise and the forward model uncertainty. To study the contribution from each component, five experiments are conducted. Table 7 shows the configuration of each experiment. Column 2 shows the input for the first guess of atmospheric profiles, which could be RAOB or GFS forecast (FCST). Column 3 shows if instrument noise is allowed. And column 4 shows if the forward RT model uncertainty (a flat value of 0.2 K for all four ABI window channels) is allowed. 

Table 8 shows retrieval errors of the four ABI LSE and LST from the five experiments. For all the five parameters, Exp1 has the smallest errors of both STD and BIAS. These errors are associated with the inverse algorithm, such as the non-linearity and channel correlations. These small errors represent the best retrieval quality one may achieve assuming atmospheric state is known and the given initial LSE precisions (see introduction at the beginning of section 4.2.2 for more information).  

Table  AUTONUM  The retrieval errors of the five retrieval parameters from the five experiments. Note the first number is the standard deviation (STD) and the second is the mean bias (BIAS). LST has a unit of K, and LSE is unitless.
	
	Exp1
	Exp2
	Exp3
	Exp4
	Exp5

	LST
	0.579
	0.931
	0.944
	0.990
	1.000

	
	-0.00901
	0.209
	0.209
	0.206
	0.206

	LSE 8.5 (m
	0.0114
	0.0243
	0.0265
	0.0251
	0.0273

	
	0.00003
	0.00928
	0.00922
	0.00921
	0.00916

	LSE 10.35 (m
	0.0111
	0.0130
	0.0130
	0.0133
	0.0133

	
	0.000143
	-0.000892
	-0.000894
	-0.000914
	-0.000923

	LSE 11.2 (m
	0.0113
	0.0115
	0.0115
	0.0118
	0.0118

	
	-0.00004
	-0.00165
	-0.00166
	-0.00167
	-0.00168

	LSE 12.3 (m
	0.0127
	0.0148
	0.0148
	0.0151
	0.0151

	
	-0.00050
	0.00215
	0.00217
	0.00220
	0.00222


The Exp2 differs the Exp1 in that the former uses the GFS forecast profiles as the first guess instead of RAOB. So any error changes are the results of the errors in the first guess of atmospheric profiles. From Table 8, the degradation in atmospheric profiles causes more degradation (in percentage) in LST and 8.5 (m LSE than LSE in the other three channels. Because the GFS forecast profiles are biased, the LST and 8.5 (m LSE are also substantially biased. When there is no bias in the atmospheric profiles in Exp1, the retrieval shows no bias either.

Comparing Exp3 with Exp2, the instrumental noise slightly further degrades the retrieval quality. However, comparing Exp4 with Exp2 shows that the forward model uncertainty (a flat value of 0.2 K) has more impacts than the instrumental noise. When allowing both instrumental noise and the forward model uncertainty in Exp5, the retrieval error is the largest. 

It is reasonable to assume the four error sources are independent of each other. From Table 8, the error contribution from each source can be derived. For example, the error resulted from GFS forecast profiles can be estimated using


[image: image123.wmf]  

s

a

2

=

s

a

+

i

2

-

s

i

2

=

s

2

(

Exp

2

)

-

s

2

(

Exp

1

)


    



(23)

where 
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 is the error contribution from GFS forecast profiles, 
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 is the error contribution from the inverse algorithm plus the GFS forecast profiles, which is also the error from Exp2, and 
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 is the error contribution from the inverse algorithm, which is also the error from Exp1. The relative contribution from GFS forecast profiles may be estimated using
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where 
[image: image128.wmf]  

a

 is the relative contribution in percentage from GFS forecast profiles, and 
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 is the total error from all sources, which is also the error from Exp5.
Table 9 shows the error contribution of the four sources and their relative contribution in percentage for the four ABI LSE and LST. Note only the STD is shown. For LST, uncertainty from atmospheric profiles has the largest contribution (52.81 %) to the total error, followed by the inverse algorithm error (33.41 %). The instrument noise and the forward model uncertainty have limited contribution. Therefore, further improvement of LST retrieval might be achieved by utilizing better quality atmospheric profiles. For 8.5 (m LSE, it is similar; atmospheric profiles have the largest impact on the retrieval. It could also be further improved with better quality atmospheric profiles.
For LSE of 10.35, 11.2 and 12.3 (m, the inverse algorithm has dominant contribution (more than 2/3) to the total errors. This is because the channel correlation among the three channels is the dominant factor affecting the retrieval. The atmospheric profiles have some substantial impacts on 10.35 and 12.3 (m because these two channels are more affected by water vapor absorption than 11.2 (m. 
In summary, the analysis presented in this section shows that:

1. The combination of the inverse algorithm and the atmospheric profiles contributes more than 80 % to the total retrieval errors. Further improvement of retrieval might be achieved by using more accurate atmospheric profiles.
2. The instrument noise and the forward model uncertainty contribute a small percentage (less than 20 %) to the total error. It is therefore the current instrument noise characteristics and the forward model quality are good for LSE retrieval.
Table  AUTONUM  The retrieval errors (STD) of the four sources for the four ABI LSE and LST. There are two numbers for each entry. The above number is the individual error contribution from each error source. And the lower number is the relative contribution in percentage to the total error. LST has a unit of K, and LSE is unitless. 
	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	


	
	Inverse algorithm
	Atmospheric profiles
	Instrument noise
	Forward model uncertainty
	Total 

	LST
	0.579
	0.729
	0.155
	0.338
	1.003

	
	33.41
	52.81
	2.40
	11.36
	

	LSE 8.5 (m
	0.0114
	0.0215
	0.0104
	0.0061
	0.0273

	
	17.60
	62.18
	14.67
	5.02
	

	LSE 10.35 (m
	0.111
	0.0068
	0.0005
	0.0028
	0.0133

	
	69.55
	25.87
	0.12
	4.51
	

	LSE 11.2 (m
	0.113
	0.0020
	0.0000
	0.0028
	0.0118

	
	91.44
	2.92
	0
	5.65
	

	LSE 12.3 (m
	0.0127
	0.0076
	0.0004
	0.0030
	0.0151

	
	70.75
	25.24
	0.06
	3.95
	


4.3 Validation
Since the GOES-R is not launched yet, the GOES-R ABI LSE algorithm is tested using SEVIRI data. The algorithm is tested using both the simulated and the observed SEVIRI radiances. The primary output from the SEVIRI LSE algorithm is the LSE in three SEVIRI IR window channels (8.7, 10.8 and 12 µm). These retrieved LSEs are valid for all the three time steps. 
4.3.1 The Simulated SEVIRI

[image: image130.png]340

320

300

Rivl

280

0.95

0.9

Rivl

0.85

0.8

a) LST (K)

Sample=693

+

fg
rtvi

260

280

300
True

320

¢) 10.8 um LSE

i Sample=693

0.85

0.9
True

0.95

R=0.796
RMS=10.3
BIAS=-0.371
STD=10.3
MAX=29.6
MIN=-28.4
R=0.997
RMS=1.04
BIAS=0.319
STD=0.993

{MAX=5.25

MIN=-3.26

340

R=0.948
RMS=0.0184
BIAS=-0.000652
STD=0.0184
MAX=0.0537
MIN=-0.0595
R=0.974
RMS=0.0129
BIAS=-0.00119
STD=0.0129
MAX=0.0364
MIN=-0.0433

Rivl

Rivl

b) 8.7 um LSE

Ll Sample=693 e
: .I .\’. A
0.9 REE it
. s 4%
. S LEET e Y
0.8 TR e
LN E T
. .,’ ’0'03
. Ay ¢ e
0.7 et S "'. %
.i:....’-i_ i
Ao, N
06 P R
0.5 T
04
0.4 0.6 0.8
True
d) 12 um LSE
1.02 ;
Sample=693 ,
1 4
0.98
0.96
0.94
0.92t
0.9
0.88

R=0.824
RMS=0.0865
BIAS=0.00613
STD=0.0863
MAX=0.281
MIN=-0.243
R=0.993
RMS=0.0178
BIAS=0.00252
STD=0.0177
MAX=0.0892
MIN=-0.0644

R=0.808
RMS=0.0175
BIAS=-0.00147
STD=0.0174
MAX=0.0547
MIN=-0.0515
R=0.874
RMS=0.0143
BIAS=-0.000743
STD=0.0143
MAX=0.038
MIN=-0.0436




Figure 25. The scatter plots of the retrieval parameters against the true values for a) LST, b) 8.7 µm LSE, c) 10.8 µm LSE, and d) 12 µm LSE. The x-axis represents the true values, and the y-axis represents the retrieved values. 
Figure 25 shows the scatter plots of the three LSE and LST, along with the statistics for the LZA of 0 degree from the simulation study. The noise is added to each channel based on the instrument characteristics and forward model uncertainty. For all four variables, the physical retrieval algorithm successfully brings them closer to the true values. In particular, for LST and LSE at 8.7 µm, the retrievals are significantly better than the first guesses; the root-mean-square (RMS) error for LST is reduced from 10 K to 1.04 K; and the RMS of the 8.7 µm LSE is reduced from 0.087 to 0.018. For the 10.8 and 12 µm LSE, the algorithm is also able to improve the first guesses; the RMS is reduced from 0.018 to less than 0.015. However, the improvements are less significant compared with LST and LSE at 8.7 µm. Further studies show that the LSE algorithm 1) is not sensitive to the first guess quality of LST and 8.7 µm LSE, but sensitive to the first guess of 10.8 and 12 µm LSE; 2) is only weakly sensitive to the instrument noise, and 3) is sensitive to the radiance bias. Therefore, it is very important to provide quality first guess of 10.8 and 12 µm LSE and to perform radiance bias adjustment if there is any.
Sensitivity analysis was conducted to study and demonstrate the algorithm’s feasibility in various conditions, such as bad first guess, large LZA, large observational noise and radiance biases. The readers are referred to Li et al. (2011) if interested.


4.3.2 The Observed SEVIRI
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Figure 26. (Top left) the retrieved SEVIRI LSE from August 1 2006 for 8.7 µm, (top right) IASI monthly LSE product for 8.7 µm from August 2007 (after convolved using SEVIRI spectral response function), (lower left) operational AIRS monthly LSE product for 8.7 µm from August 2006, and (lower right) operational MODIS/Aqua LSE product for 8.55 µm (collection 4.1) from August 2007. The blank areas are either cloudy or no data. 

The SEVIRI LSE algorithm is applied to the SEVIRI radiance measurements from 12 UTC on August 1 2006. The LSE retrievals have been inter-compared with other LSE products. Figure 26 shows the retrieved SEVIRI LSE imagery for 8.7 µm, along with monthly LSE imagery from IASI (research product), the operational AIRS and the operational MODIS/Aqua (collection 4.1, our study shows collection 5 is not as good as collection 4.1). The visual comparison shows that the SEVIRI LSE retrievals have a lot similarity to the operational MODIS/Aqua monthly LSE product, especially geographical distribution. Both the SEVIRI and MODIS/Aqua have much better spatial resolution than the IASI (0.5 degree) and operational AIRS (1 degree) monthly LSE product. Figures 27 and 28 show the LSE product imagery for 10.8 and 12 µm. 
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Figure 27. Same as Figure 26 except for 10.8 µm.

Note, because the operational MODIS products are used as reference, the monthly UW Baseline Fit database, which is MODIS-based, is not used as first guess to avoid the danger of circular validation logic. Instead, the regression-generated LSE is used as first guess. 
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Figure 28. Same as Figure 26 except for 12 µm.




4.3.3 Precision and Accuracy Estimate
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Figure 29. The scatter plots of 8.7 µm LSE products for (left) SEVIRI, (middle) operational monthly AIRS, and (right) IASI using MODIS/Aqua operational monthly LSE product as reference. The SEVIRI product agrees with MODIS/Aqua product better than both AIRS and IASI.  

The SEVIRI LSE product has not been directly validated due to the lack of LSE measurements. So the validation has been focused on inter-comparisons with other LSE database and other indirect evaluations. According to Li et al., 2010, the operational MODIS/Aqua monthly LSE product has better precisions than both IASI and AIRS. It is therefore used as reference to evaluate the SEVIRI LSE product. Figure 29 shows the scatter plots of the 8.7 µm LSE using MODIS/Aqua operational monthly LSE product (collection 4.1) as reference. Figures 30 and 31 show the scatter plots using MODIS/Aqua as reference for 10.8 and 12 µm. For both 10.8 and 12 µm, the SEVIRI LSE products agree with MODIS/Aqua operational monthly LSE products better than AIRS and IASI. Compared with operational AIRS and IASI monthly LSE products, the SEVIRI LSE product has smaller STD (0.0388) and bias (-0.000878), indicating the SEVIRI LSE product has more similarity to the MODIS/Aqua product than AIRS and IASI (Zhou et al., 2011). 

4.3.4 Error Budget

Sensitivity studies were conducted to test the algorithm’s sensitivity on the first guess, the local zenith angle, the radiance noise and the radiance biases. The simulation study shows that 
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Figure 30. Same as Figure 29 except for 10.8 µm.
The algorithm is effective at bringing the LST and LSE at 8.7 µm to the true state, no matter how good the first guesses are. 

The algorithm is also able to improve the LSE at 10.8 and 12 µm, although it is more dependent on the quality of the first guesses. 





It is found that the retrieval is less sensitive to LZA, but more sensitive to the value of the weighting functions of LSE and LST. As long as the weighting functions are large enough (large sensitivity), the retrieval precisions are good. However, when applying to real data, the retrieval might not be as good as in the simulation when the LZA is large as there might have more radiative transfer uncertainty and cloud contamination in the large LZA. An LZA cut-off of 67 degrees is recommended from the study. 

The algorithm is found to be weakly sensitive to the observational random noise, including the observation noise and the forward model uncertainty, while the retrieval is partially sensitive to the radiance biases. The radiance bias in the 8.7 µm from dust contamination only affects the retrieval of the 8.7 µm LSE, while the radiance bias in the 12 µm from the radiative transfer calculation affects the retrieval of LST and all the LSE.
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Figure 31. Same as Figure 29 except for 12 µm.

It is expected that the retrieval accuracy and precision are less than 0.05 for the LZA less than 67 degree, meeting the requirement of 0.05 for both precision and accuracy. An objective method, recently developed by Li et al., 2010, will be used to evaluate the LSE precision.

5 PRACTICAL CONSIDERATIONS
5.1 Numerical Computation Considerations

Both the regression and the physical iterative procedure are mathematically straightforward. The requirement of the computation is not high since there are only 10 variables and 12 equations for ABI. Besides, the algorithm only runs hourly. The physical iterative procedure is less efficient than regression approach. For computation efficiency, numerical approaches are used; see Equation (13) for details. The interpolation of NWP field to ABI spatially, temporally and vertically can be pre-processed before the algorithm run.

5.2 Programming and Procedural Considerations

The LSE algorithm requires knowledge of clear sky mask and NWP forecast information within each FOR. The LSE is implemented sequentially (pre-process, regression followed by iterative physical approach, see Figure A1). The LSE is purely a FOR by FOR algorithm. Then it could be parallelized in future version for processing with multiple CPUs. The only task that is not made inside LSE code is spatial interpolation of NWP before retrieval process upon the arrival of new NWP data to avoid repeat the process every slot. 

5.3 Quality Assessment and Diagnostics 

The following procedures are recommended to diagnose the performance of the LSE.

· Fraction of clear sky pixels within FOR

· Counts of total iterations.
· BT residuals between calculation and observation after final iteration.

· The change of the retrieval parameters in the first iteration.
· The change of the retrieval parameters in the last iteration.
· The 11 µm LST weighting functions. 

· The 12 µm LST weighting functions. 

· The absolute value of LSE should be reasonably less than 1.0.

· The temporal variation of LSE should be small if the surface condition is not changed dramatically.

5.4 Exception Handling

Algorithm cannot be run if any of the mandatory IR channels data, ABI CM and NWP forecast is bad or missing. It is required that more than 20 % of the pixels in the FOR are clear and all pixels in the FOR are over land. 

5.5 Interaction With External Libraries

RTM calculations are performed by calling the external CRTM library. Interaction with CRTM is described here. Refer to the CRTM 2.0.2 documentation for a description of the CRTM API. Figure A1 shows where the CRTM routines are called from within the LSE algorithm. The dimensionality of CRTM data structure arrays is described in Table 11, and the values of the constants and instrument-specific parameters used below are described in Table 10.

CRTM Initialization and setup:

CRTM is initialized by calling the routine CRTM_Init as shown below, passing the CRTM data structure array Channel_Info. In this code snippet, CRTM_Coefficients_Directory is the name of the directory that contains the CRTM coefficients.

    Error_Status = CRTM_Init( (/Sensor_ID/), &

         Channel_Info, &

         File_Path=CRTM_Coefficients_Directory, &

         Quiet=.TRUE.)

Next, the first element of the Channel_Info array is explicitly initialized. Member N_Channels is set to Num_Chn, and members Sensor_Channel and Channel_Index are set to indicate the channels we are interested in, expressed as indices into an array of IR channels only. In this case, SEVIRI has 8 IR channels and only 3 (the 4th, 6th, and 7th) of them are selected for physical retrieval. For ABI, it has 10 IR channels, and 4 (the 5th, 7th, 8th, and 9th) of them are selected for physical retrieval.
    IF ((Index(TRIM(Sensor_ID),'seviri_m08')) /= 0) THEN

       Num_Chn = 3

       Channel_Info(1)%N_Channels = Num_Chn

       Channel_Info(1)%Sensor_Channel(1:3) = &

            (/Channel_Info(1)%Sensor_Channel(4) , &

            Channel_Info(1)%Sensor_Channel(6) , &

            Channel_Info(1)%Sensor_Channel(7) /)

       Channel_Info(1)%Channel_Index(1:3) = &

            (/Channel_Info(1)%Channel_Index(4), &

            Channel_Info(1)%Channel_Index(6), &

            Channel_Info(1)%Channel_Index(7) /)

    ELSEIF ((Index(TRIM(Sensor_ID),'abi_gr')) /= 0) THEN

       Num_Chn = 4

       Channel_Info(1)%N_Channels = Num_Chn

       Channel_Info(1)%Sensor_Channel(1:4) = &

            (/Channel_Info(1)%Sensor_Channel(5) , &

            Channel_Info(1)%Sensor_Channel(7) , &

            Channel_Info(1)%Sensor_Channel(8) , &

            Channel_Info(1)%Sensor_Channel(9) /)

       Channel_Info(1)%Channel_Index(1:4) = &

            (/Channel_Info(1)%Channel_Index(5), &

            Channel_Info(1)%Channel_Index(7), &

            Channel_Info(1)%Channel_Index(8), &

            Channel_Info(1)%Channel_Index(9) /)

    ELSE

       Err_Status = -1

       RETURN

    END IF

Finally, the CRTM data structure arrays Options, Atm, Atm_K, RtSolution and RtSolution_K are created by calling CRTM “Create” routines, as shown below. After each “Create” call, the appropriate “Associated” routine is called to check that the array was successfully created. 

    CALL CRTM_Options_Create( Options, Num_Chn )

    IF ( ANY(.NOT. CRTM_Options_Associated(Options)) ) THEN

       Err_Status = -3

       RETURN

    END IF

! 3c. Atmosphere

    !------------------------

    CALL CRTM_Atmosphere_Create( Atm, &

         NUM_LAYERS, &

         NUM_ABSORBERS, &

         NUM_CLOUDS, &

         NUM_AEROSOLS )

    IF ( ANY(.NOT. CRTM_Atmosphere_Associated(Atm)) ) THEN

       Err_Status = -3

       RETURN

    END IF

    ! The output K-MATRIX structure

    CALL CRTM_Atmosphere_Create( Atm_K(:,1), &

         NUM_LAYERS, &

         NUM_ABSORBERS, &

         NUM_CLOUDS, &

         NUM_AEROSOLS )

    IF ( ANY(.NOT. CRTM_Atmosphere_Associated(Atm_K)) ) THEN

       Err_Status = -3

       RETURN

    END IF

    ! Create the RTSolution structure

    CALL CRTM_RTSolution_Create( RTSolution, NUM_LAYERS )

    IF ( ANY(.NOT. CRTM_RTSolution_Associated(RTSolution)) ) THEN

       Err_Status = -3

       RETURN

    END IF

    ! Create the RTSolution structure

    CALL CRTM_RTSolution_Create( RTSolution_K(:,1), NUM_LAYERS )

    IF ( ANY(.NOT. CRTM_RTSolution_Associated(RTSolution_K)) ) THEN

       Err_Status = -3

       RETURN

    END IF

Calculation of the tangent-linear instrument channel Planck radiance
The tangent–linear Planck radiances are calculated for a given FOR and channel by calling CRTM_Planck_Radiance_TL as shown below, where Chn_Idx is the index of the channel (see Band_Use_CRTM in Table 10), Num_Vis_Channels is the value from Table 10, Temp_Internal is the observed brightness temperature, ONE_DOUBLE is 1.0, and Radiance_TL is the output radiance.

 CALL CRTM_Planck_Radiance_TL( 1, &

         Chn_Idx - Num_Vis_Channels, & 

         Temp_Internal, &              
         ONE_DOUBLE, &                 
         Radiance_TL)   
Table  AUTONUM  CRTM-related dimensions and constants
	Variable
	SEVIRI
	ABI

	Sensor_ID
	‘seviri_m08’
	‘abi_gr’

	Num_Chn
	3
	4

	Num_Vis_Channels
	3
	6

	NUM_SENSORS
	1
	1

	NUM_PROFILES
	1
	1

	NUM_LAYERS
	100
	100

	NUM_ABSORBERS
	2
	2

	NUM_CLOUDS
	0
	0

	NUM_AEROSOLS
	0
	0

	Band_Use_CRTM
	7, 9, 10
	11, 13, 14, 15


Setting the Surface Index

For each FOR, the index of the surface level is set in the Atm and Atm_K arrays by calling CRTM_SetLayers_Atmosphere, passing the array and the bi-linearly interpolated surface index for the FOR. This routine is repeatedly called as FOR changes because new surface index is loaded.
K-Matrix Calculation

If the K-Matrix method has been selected, CRTM_K_Matrix is called for each FOR. Before the call, the arrays Atm, Options, Sfc GeometryInfo and Rt_Solution_K are manually initialized, and the arrays Atm_K and Sfc_K zeroed by calling CRTM routines. 

In the code snippet below, note that:

· Lat is the latitude of the FOR

· PRESS_STD is the 101 standard atmospheric pressure levels (hPa) as shown in Table A5

· Idx_Sfc is the index of the surface level

· Press_Sfc is the surface pressure (hPa)

· PRESS_LAYER is the standard 100 layer atmospheric pressures (hPa) as shown in Table A6
· Temp is the input temperature profile (K)

· WV is the input moisture profile (g/kg)

· Ozo is the input ozone profile (ppmv)

· The values of Num_Chn is shown in Table 10.

· Flag_Lnd_Ocn is 0 if the FOR is ocean and 1 if land, as determined by the pixel-level land mask

· Skin_Temp is the Skin Temperature (K)

· Loc_Zen is the local zenith angle (degrees)

· SOLAR_ZENITH_ANGLE is set to 100.0

    ! 4. *** ASSIGN INPUT DATA ****

    !

    ! Fill the Atm structure array.

    ! ---------------

    IF (ABS(Lat) <= 30) THEN

       Atm(1)%Climatology = TROPICAL

    ELSE

       Atm(1)%Climatology = US_STANDARD_ATMOSPHERE

    END IF
    Atm(1)%Absorber_ID = (/ H2O_ID, O3_ID /)

    Atm(1)%Absorber_Units = (/ MASS_MIXING_RATIO_UNITS, &

         VOLUME_MIXING_RATIO_UNITS /)

    Atm(1)%Level_Pressure(0:Idx_Sfc - 1) = PRESS_STD(1: Idx_Sfc)

    Atm(1)%Level_Pressure(Idx_Sfc) = Press_Sfc

    Atm(1)%Pressure(1:Idx_Sfc) = PRESS_LAYER(1:Idx_Sfc)

    Atm(1)%Temperature(1:Idx_Sfc) = ( Temp(1:Idx_Sfc) + Temp(2:Idx_Sfc + 1) ) &

         / 2.0

    Atm(1)%Absorber(1:Idx_Sfc, 1) = ( WV(1:Idx_Sfc) + WV(2:Idx_Sfc + 1) ) &

         / 2.0

    Atm(1)%Absorber(1:Idx_Sfc, 2) = ( Ozo(1:Idx_Sfc) + Ozo(2:Idx_Sfc + 1) ) &

         / 2.0

    ! set emissivity in options structure

    Options(1)%Use_Emissivity = .TRUE.

    DO Loop_Chn = 1, Num_Chn

       Options(1)%Emissivity(Loop_Chn) = Emiss(Loop_Chn)

    END DO

    Sfc(1)%Water_Coverage    = (1.0 - Flag_Lnd_Ocn)

    Sfc(1)%Water_Temperature = Skin_Temp

    Sfc(1)%Land_Coverage    = Flag_Lnd_Ocn

    Sfc(1)%Land_Temperature = Skin_Temp

    ! 4b. GeometryInfo input

    ! ----------------------

    Geometry_Info%Sensor_Zenith_Angle = Loc_Zen

    Geometry_Info%Source_Zenith_Angle = SOLAR_ZENITH_ANGLE   

    ! 5. **** INITIALIZE THE K-MATRIX ARGUMENTS ****

    !

    ! 5a. Zero the K-matrix OUTPUT structures

    ! ---------------------------------------

    CALL CRTM_Atmosphere_Zero( Atm_K )

    CALL CRTM_Surface_Zero( Sfc_K )

    ! 5b. Inintialize the K-matrix INPUT so that all the results are dTb/dx

    ! -------------------------------------

    RtSolution_K%Brightness_Temperature = ONE

    ! 5c. **** CALL THE CRTM FORWARD MODEL ****

    !

    Error_Status = CRTM_K_Matrix( Atm         , &  

         Sfc         , &  

         RtSolution_K, &  

         Geometry_Info, &  

         Channel_Info , &  

         Atm_K       , &  

         Sfc_K       , &  

         RtSolution  , &

         Options = Options )

Legacy Fast Analytical Method

If the legacy fast analytical method has been selected, the CRTM methods CRTM_Forward and CRTM_Planck_Radiance_TL will be called. While the fast analytical method is slightly faster, the K-Matrix method is generally preferred because it was found to produce higher quality output in our testing. Furthermore the legacy method requires temperature, moisture and ozone transmittance profiles, which are not available from the current release version of CRTM (2.0.2). For these reasons, a complete description of CRTM setup and calls related to this method has been omitted.

Cleanup
After all FORs have been processed, CRTM is cleaned up by calling the methods CRTM_Destroy, CRTM_Atmosphere_Destroy, CRTM_RTSolution_Destroy and CRTM_Options_Destroy.

Table  AUTONUM  Dimensionality of CRTM structure arrays
	Array Name
	CRTM Data Type
	Dimensions

	Channel_Info
	CRTM_Channelinfo_Type
	NUM_SENSORS

	Geometry_Info
	CRTM_Geometry_Type
	NUM_PROFILES

	Atm
	CRTM_Atmosphere_Type
	NUM_PROFILES

	Sfc
	CRTM_Surface_Type
	NUM_PROFILES

	RtSolution
	CRTM_RTSolution_Type
	Num_Chn x NUM_PROFILES

	Atm_K
	CRTM_Atmosphere_Type
	Num_Chn x NUM_PROFILES

	Sfc_K
	CRTM_Surface_Type
	Num_Chn x NUM_PROFILES

	RtSolution_K
	CRTM_RTSolution_Type
	Num_Chn x NUM_PROFILES

	Options
	CRTM_Options_Type
	NUM_PROFILES


6 ASSUMPTIONS AND LIMITATIONS

6.1 Performance

The factors impact LSE performance include the inaccuracy of CM, uncertainty of fast RTM, radiance and calibration bias, and imperfect of first guesses of the LSE.  The strategies for mitigation include:

(1) For CM improvement, collaborate with cloud team and provide feedback on using their CM product, identify the problematic areas where CM algorithm needs to be improved.
(2) Based on the comparisons of the LSE products retrieved using PFAAST, RTTOV and CRTM, CRTM is chosen.
(3) For radiance bias, compare the ABI observed radiances to the more accurate hyperspectral observations, such as IASI and AIRS. Derive the radiance bias adjustment coefficients, and these coefficients should be updated routinely. 
(4) The first guesses of LSE from the operational monthly UW Baseline Fit LSE database are used. 
6.2 Assumed Sensor Performance

Good ABI radiometric performance is required. The sensitivity study shows that the algorithm is only weakly sensitive to the instrument noise. Unless the instrument noises are changed dramatically from the specification, the algorithm should work without any problem. 
6.3 Pre-planned Product Improvements

Here are pre-planned product improvements based on the operational priority and feasibility.

6.3.1 Improvement 1: Radiance Bias Adjustment

The more accurate hyperspectral radiances from IASI and AIRS will be used to correct ABI radiances. 
6.3.2 Improvement 2: Using More Sophisticated RT Model.

New version of CRTM will be utilized if improvement is proved. 
6.3.3 Improvement 3: Using Regional High Resolution Forecast Model

The algorithm benefits from more sophisticated and accurate NWP model. It is believed using three time steps of regional high resolution NWP model improve the LSE retrieval. 
6.4 Assumptions

· The single FOV ABI CM is available before the LSE retrieval
· A high quality dynamic land surface IR emissivity product is available

· Forecast temperature and moisture profiles of the current time step, as well as surface pressure are available

· NeDR and calibration for all ABI IR bands are known and reasonably good

· A fast and accurate RTM along with K-Matrix computation are available

· Retrieval is performed on FOR basis 

· Spectral response knowledge is stable and known

· ABI satellite position is known

· Good quality ABI data with respect to striping, stability, cross-talk, etc.

6.5 Limitations

· LSE products are only available over “clear” FORs only (20% or more pixels within the FOR are clear)

· Effect of emissivity short-term variation is not handled. 

· Surface roughness and skin temperature non-homogeneousness are not handled

· Since it is an iterative physical retrieval, computation is relative expensive. It could be parallelized in future version for processing with multiple CPUs.
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Table A1: LSE output variables – product

	Variable Name
	Unit
	Type
	Size†
	Description

	Emiss_ch7
	none
	Float32
	NX_NY
	LSE of channel 7

	Emiss_ch11
	none
	Float32
	NX_NY
	LSE of channel 11

	Emiss_ch13@
	none
	Float32
	NX_NY
	LSE of channel 13

	Emiss_ch14
	none
	Float32
	NX_NY
	LSE of channel 14

	Emiss_ch15
	none
	Float32
	NX_NY
	LSE of channel 15


@ Emiss_ch13 is not available for SEVIRI. For SEVIRI, Emiss_ch7, Emiss_ch11, Emiss_ch14 and Emiss_ch15 correspond to channels 5, 7, 9 and 10.
†  NX_NY refers to the number of FORs in the x-direction by the number of FORs in the y-direction

Table A2: LSE output variables – quality flags

	Variable Name
	Unit
	Type
	Size†
	Description

	Quality_Flag
	none
	Int8
	NX_NY
	Overall quality flag :

=0 : good

=1 : space

=2 : latitude greater than threshold

=3 : satellite zenith angle greater than threshold

=4 : number of clear pixels less than threshold

=5 : missing NWP data

=6 : fatal processing error
=7 : bad surface index

=8 : NaN found in retrievals

=9 : water

=10 : Satellite BT out of range

	Quality_Flag_Rtvl
	none
	Int8
	NX_NY
	Retrieval quality flag:

=0: good retrieval

=1: non-convergence

=2: residual too large

=3: non-completed converge

=4: bad retrieval 

	Quality_Flag_Wgt_Func_11Mu_LST
	none
	Int8
	NX_NY
	Surface sensitivity quality:

=0: Kts,11um >=0.3, good#
=1: Kts,11um <0.3 bad

	Quality_Flag_Wgt_Func_12Mu_LST
	none
	Int8
	NX_NY
	Surface sensitivity quality:

=0: Kts,12um >=0.3, good

=1: Kts,12um <0.3 bad


† NX_NY refers to the number of FORs in the x-direction by the number of FORs in the y-direction

#: Kts,11um is the LST weighting function of 11 micron; Kts,12um is the LST weighting function of 12 micron
Table A3: LSE output variables -- diagnostic information

	Variable Name
	Unit
	Type
	Size†
	Description

	LST
	K
	Float32
	NX_NY
	Land surface temperature of current time step

	Num_Iteration
	none
	Int8
	NX_NY
	Number of iterations

	RMSE_BrtTemp_Next
	K
	Float32
	NX_NY
	RMSE of average BT residual after retrieval

	Num_Clr_Pix
	none
	Int8
	NX_NY
	Number of clear pixels in FOR

	Residual_FG
	Complicated
	Float32
	NUnknown_NX_NY
	The change of the retrieval parameters in the first iteration.

	Residual_Ret
	Complicated 
	Float32
	NUnknown_NX_NY
	The change of the retrieval parameters in the last iteration.


† NX_NY refers to the number of FORs in the x-direction by the number of FORs in the y-direction; NUnknown refers to the number of unknowns, also the number of retrieval parameters.  

Table A4: LSE meta-data 

	Name
	Details/Comments

	
	

	Date
	swath beginning and swath end

	Time
	swath beginning and swath end

	Bounding Box
	product resolution

number of rows and

number of columns,

bytes per pixel

data type

byte order information

location of box relative to nadir (pixel space)

	Product Name
	

	Product Units
	

	Ancillary Data to Produce Product
	product precedence

	Version Number
	

	Origin
	where it was produced

	Quality Information
	

	Name
	

	Satellite
	GOES-16, etc.

	Instrument
	ABI

	Altitude
	

	Nadir pixel in the fixed grid
	

	Attitude
	

	Latitude
	

	Longitude
	

	Grid Projection
	

	Type of Scan
	

	Product Version Number
	

	Data compression type
	

	Location of production
	

	Citations to Documents
	

	Contact Information
	

	For each LSE product, the following information is required:
	

	Mean, Min, Max and Standard deviation of retrieval parameters from first guess and retrieval
	for LSE

	Number of IR channels, channel 8 to channel 16
	

	For each IR channel, the following information is required: bias and standard deviation of the difference 
between calculated BT (from first guess and retrieval) and observed BT for the IR channel
	

	Number of QA flag values
	

	For each QA flag value, the following information is required:

Percent of retrievals with the QA flag value

Definition of QA flag
	

	Total number of attempted retrievals
	


Table A5: 101 standard atmospheric pressure levels, in hPa

0.0050,    0.0161,    0.0384,    0.0769,    0.1370, 

0.2244,    0.3454,    0.5064,    0.7140,    0.9753,    1.2972, 

1.6872,    2.1526,    2.7009,    3.3398,    4.0770,    4.9204, 

5.8776,    6.9567,    8.1655,    9.5119,   11.0038,   12.6492, 
14.4559,   16.4318,   18.5847,   20.9224,   23.4526,   26.1829, 
29.1210,   32.2744,   35.6505,   39.2566,   43.1001,   47.1882, 
51.5278,   56.1260,   60.9895,   66.1253,   71.5398,   77.2396, 
83.2310,   89.5204,   96.1138,  103.0172,  110.2366,  117.7775, 
125.6456,  133.8462,  142.3848,  151.2664,  160.4959,  170.0784, 
180.0183,  190.3203,  200.9887,  212.0277,  223.4415,  235.2338, 
247.4085,  259.9691,  272.9191,  286.2617,  300.0000,  314.1369, 
328.6753,  343.6176,  358.9665,  374.7241,  390.8926,  407.4738,
424.4698,  441.8819,  459.7118,  477.9607,  496.6298,  515.7200, 
535.2322,  555.1669,  575.5248,  596.3062,  617.5112,  639.1398, 
661.1920,  683.6673,  706.5654,  729.8857,  753.6275,  777.7897, 
802.3714,  827.3713,  852.7880,  878.6201,  904.8659,  931.5236, 
958.5911,  986.0666,  1013.9476, 1042.2319, 1070.9170, 1100.0000
Table A6: 100 standard atmospheric layer pressures, in hPa

0.009,   0.026,   0.055,   0.104,   0.177,   0.281,   0.421,   0.604,

0.838,   1.129,   1.484,   1.910,   2.416,   3.009,   3.696,   4.485,

5.385,   6.402,   7.545,   8.822,  10.240,  11.807,  13.532,  15.423,

17.486,  19.730,  22.163,  24.793,  27.626,  30.671,  33.934,  37.425,

41.148,  45.113,  49.326,  53.794,  58.524,  63.523,  68.797,  74.353,

80.198,  86.338,  92.778,  99.526, 106.586, 113.965, 121.669, 129.703,

138.072, 146.781, 155.836, 165.241, 175.001, 185.121, 195.606, 206.459,

217.685, 229.287, 241.270, 253.637, 266.392, 279.537, 293.077, 307.014,

321.351, 336.091, 351.236, 366.789, 382.751, 399.126, 415.914, 433.118,

450.738, 468.777, 487.236, 506.115, 525.416, 545.139, 565.285, 585.854,

606.847, 628.263, 650.104, 672.367, 695.054, 718.163, 741.693, 765.645,

790.017, 814.807, 840.016, 865.640, 891.679, 918.130, 944.993, 972.264,

999.942,1028.025,1056.510,1085.394/)
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Figure A1: The flow chart of the LSE algorithm. CRTM routines are in yellow. Non-ABI static inputs are in green. Routines described in the GOES_R AIADD are in blue. 
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Figure A2: The flow chart of the LSE physical iteration. 
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